复数高考真题复习百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用特值法依次判断选项即可得到答案.
【详解】
对选项A,若复数满足,设,其中,则,则选项A正确;
对选项B,若复数满足,设,其中,且,
则,则选项B正确;
对选项C,若复数满足,设
解析:AB
【分析】
利用特值法依次判断选项即可得到答案.
【详解】
对选项A,若复数 满足 ,设 ,其中 ,则 ,则选项A正确;
对选项B,若复数 满足 ,设 ,其中 ,且 ,
则 ,则选项B正确;
对选项C,若复数 满足 ,设 ,则 ,
但 ,则选项C错误;
对选项D,若复数 , 满足 ,设 , ,则 ,
而 ,则选项D错误;
故答案选:AB
【点睛】
本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.
18.CD
【分析】
取特殊值可判断A选项的正误;由复数的概念可判断B、C选项的正误;由复数模的概念可判断D选项的正误.
A. 是纯虚数B. 对应的点位于第二象限
C. D.
25.已知复数 ,其中 是虚数单位,则下列结论正确的是()
A. B. 的虚部为
C. D. 在复平面内对应的点在第四象限
26.已知复数 的共轭复数为 ,且 ,则下列结论正确的是()
A. B. 虚部为 C. D.
27.已知复数 ,则下列说法正确的是()
A.若 ,则共轭复数 B.若复数 ,则
【详解】
由,得,
则,
故选:A.
解析:A
【分析】
将 代入 ,利用复数的除法运算化简,再利用复数的求模公式求解.
【详解】
由 ,得 ,
则 ,
故选:A.
10.B
【分析】
根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.
【详解】
由题意可得,则.
故答案为:B
解析:B
【分析】
根据复数的除法运算法则求出复数 ,然后根据共轭复数的概念即可得解.
故选:BCD.
【点睛】
本题考查复数的相关计算,属于基础题.
21.AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z不是纯虚数,故A错误;
复数z的虚部为,故B错误;
在复平面内,对应的点为,在第三象限,故C正确
解析:AB
【分析】
先由复数除法运算可得 ,再逐一分析选项,即可得答案.


所以,,
故选:C.
解析:C
【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案.
【详解】


所以, ,
故选:C.
7.B
【分析】
,然后算出即可.
【详解】
由题意,则复数的虚部为1
故选:B
解析:B
【分析】
,然后算出即可.
【详解】
由题意 ,则复数 的虚部为1
故选:B
8.B
【分析】
设,由是实数可得,即得,由此可求出.
【详解】
解: ,所以复数 的实部为 ,虚部为 ,因为实部和虚部互为相反数,所以 ,解得
故选:B
二、多选题
16.ACD
【分析】
分别计算各选项的值,然后判断是否正确,计算D选项的时候注意利用复数乘方的性质.
【详解】
因为,所以A正确;
因为,,所以,所以B错误;
因为,所以C正确;
因为,所以,所以D正确
解析:ACD
18.已知复数 ,则()
A. B. 的虚部是
C.若 ,则 , D.
19.已知复数 (i为虚数单位)在复平面内对应的点为 ,复数z满足 ,下列结论正确的是()
A. 点的坐标为 B.复数 的共轭复数对应的点与点 关于虚轴对称
C.复数z对应的点Z在一条直线上D. 与z对应的点Z间的距离的最小值为
20.已知复数 (其中 为虚数单位,,则以下结论正确的是().
A. B. C. D.
6.已知 是虚数单位,复数 ,则 的模长为()
A.6B. C.5D.
7.若复数 ,则复数 的虚部为()
A.-1B.1C.-iD.i
8.设 是虚数, 是实数,且 ,则 的实部取值范围是()
A. B. C. D.
9.若复数 ,则 ()
A. B.2C. D.4
10.已知复数 ,则 ()
【详解】
对于A选项,取,则,A选项错误;
对于B选项,复数的虚部为,B选项错误;
解析:CD
【分析】
取特殊值可判断A选项的正误;由复数的概念可判断B、C选项的正误;由复数模的概念可判断D选项的正误.
【详解】
对于A选项,取 ,则 ,A选项错误;
对于B选项,复数 的虚部为 ,B选项错误;
对于C选项,若 ,则 , ,C选项正确;
【详解】
由题意得: ,即 ,
所以z不是纯虚数,故A错误;
复数z的虚部为 ,故B错误;
在复平面内, 对应的点为 ,在第三象限,故C正确;
,故D正确.
故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
22.BC
【分析】
先利用复数的运算求出复数z,然后逐个分析判断即可
C.若复数z为纯虚数,则 D.若 ,则
28.若复数 ,其中 为虚数单位,则下列结论正确的是( )
A. 的虚部为 B.
C. 为纯虚数D. 的共轭复数为
29.复数 ,i是虚数单位,则下列结论正确的是()
A. B.z的共轭复数为
C.z的实部与虚部之和为2D.z在复平面内的对应点位于第一象限
30.对任意 , , ,下列结论成立的是()
A. B. C. D.
15.若复数 ( 为虚数单位)的实部和虚部互为相反数,则实数 ()
A. B. C. D.
二、多选题
16.已知复数 ,则下列结论正确的有()
A. B. C. D.
17.下列四个命题中,真命题为()
A.若复数 满足 ,则 B.若复数 满足 ,则
C.若复数 满足 ,则 D.若复数 , 满足 ,则
A. B. C. D.
11.设复数 ,则复数 的共轭复数 在复平面内对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
12.已知复数 的共轭复数 , 是虚数单位,则复数 的虚部是()
A. B. C. D.
13.已知i是虚数单位,a为实数,且 ,则a=()
A.2B.1C.-2D.-1
14.在复平面内,已知平行四边形 顶点 , , 分别表示 , ,则点 对应的复数的共轭复数为()
对于D选项, ,D选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.
19.ACD
【分析】
根据复数对应的坐标,判断A选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C选项的正确
14.A
【分析】
根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数.
【详解】
由题意,设,
∵是平行四边形,AC中点和BO中点相同,
∴,即,∴点对应是,共轭复数为.
解析:A
【分析】
根据复数的几何意义得出 坐标,由平行四边形得 点坐标,即得 点对应复数,从而到共轭复数.
【详解】
【分析】
分别计算各选项的值,然后判断是否正确,计算D选项的时候注意利用复数乘方的性质.
【详解】
因为 ,所以A正确;
因为 , ,所以 ,所以B错误;
因为 ,所以C正确;
因为 ,所以 ,所以D正确,
故选:ACD.
【点睛】
本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.
17.AB
【分析】
【详解】
由题意可得 ,则 .
故答案为:B
11.D
【分析】
先求出,再求出,直接得复数在复平面内对应的点
【详解】
因为,所以,在复平面内对应点,位于第四象限.
故选:D
解析:D
【分析】
先求出 ,再求出 ,直接得复数 在复平面内对应的点
【详解】
因为 ,所以 , 在复平面内对应点 ,位于第四象限.
故选:D
12.A
2.D
【分析】
运用复数除法的运算法则化简复数的表示,最后选出答案即可.
【详解】
因为,
所以在复平面内,复数(为虚数单位)对应的点的坐标为.
故选:D
解析:D
【分析】
运用复数除法的运算法则化简复数 的表示,最后选出答案即可.
【详解】
因为 ,
所以在复平面内,复数 ( 为虚数单位)对应的点的坐标为 .
故选:D
复数 的共轭复数对应的点与点 关于实轴对称,B错误;
设 ,代入 ,得 ,即 ,整理得, ;即Z点在直线 上,C正确;
易知点 到直线 的垂线段的长度即为 、Z之间距离的最小值,结合点到直线的距离公式可知,最小值为 ,故D正确.
故选:ACD
【点睛】
本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.
A.当m, 时,有
B.当 , 时,若 ,则 且
C.互为共轭复数的两个复数的模相等,且
D. 的充要条件是
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.B
【分析】
利用复数的除法法则可化简,即可得解.
【详解】
,.
故选:B.
解析:B
【分析】
利用复数的除法法则可化简 ,即可得解.
【详解】
, .
故选:B.
【分析】
先化简,由此求得,进而求得的虚部.
【详解】

所以,则的虚部为.
故选:A
解析:A
【分析】
先化简 ,由此求得 ,进而求得 的虚部.
【详解】

所以 ,则 的虚部为 .
故选:A
13.B
【分析】
可得,即得.
【详解】
由,得a=1.
故选:B.
解析:B
【分析】
可得 ,即得 .
【详解】
由 ,得a=1.
故选:B.
【详解】
设,,
则,
是实数,,则,
,则,解得,
故的实部取值范围是.
故选:B.
解析:B
【分析】
设 ,由 是实数可得 ,即得 ,由此可求出 .
【详解】
设 , ,
则 ,
是实数, ,则 ,
,则 ,解得 ,
故 的实部取值范围是 .
故选:B.
9.A
【分析】
将代入,利用复数的除法运算化简,再利用复数的求模公式求解.
A. B. C. D.
21.设复数 满足 ,则下列说法错误的是()
A. 为纯虚数B. 的虚部为
C.在复平面内, 对应的点位于第三象限D.
22.若复数z满足 ,则()
A. B.z的实部为1
C. D.
23.已知 , 为复数,下列命题不正确的是()
A.若 ,则 B.若 ,则
C.若 则 D.若 ,则
24.已知复数 则()
由题意 ,设 ,
∵ 是平行四边形,AC中点和BO中点相同,
∴ ,即 ,∴ 点对应是 ,共轭复数为 .
故选:A.
15.B
【分析】
利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.
【详解】
解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得
故选:B
解析:B
【分析】
利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.
3.C
【分析】
应用复数相乘的运算法则计算即可.
【详解】
解:
所以的虚部为9.
故选:C.
解析:C
【分析】
应用复数相乘的运算法则计算即可.
【详解】
解:
所以 的虚部为9.
故选:C.
4.C
【分析】
根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.
【详解】
由已知可得,所以.
故选:C
解析:C
【分析】
根据复数单位 的幂的周期性和复数除法的运算法则进行求解即可.
【详解】
解:由,得,
所以z的实部为1,,,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭
解析:BC
【分析】
先利用复数的运算求出复数z,然后逐个分析判断即可
【详解】
解:由 ,得 ,
所以z的实部为1, , ,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题
20.BCD
【分析】
计算出,即可进行判断.
【详解】

,故B正确,由于复数不能比较大小,故A错误;
,故C正确;
,故D正确.
故选:BC关计算,属于基础题.
解析:BCD
【分析】
计算出 ,即可进行判断.
【详解】

,故B正确,由于复数不能比较大小,故A错误;
,故C正确;
,故D正确.
【详解】
由已知可得 ,所以 .
故选:C
5.B
【分析】
由已知等式,利用复数的运算法则化简复数,即可求其模.
【详解】
,所以,
故选:B
解析:B
【分析】
由已知等式,利用复数的运算法则化简复数,即可求其模.
【详解】
,所以 ,
故选:B
6.C
【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案.
【详解】
解析:ACD
【分析】
根据复数对应的坐标,判断A选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B选项的正确性.设出 ,利用 ,结合复数模的运算进行化简,由此判断出 点的轨迹,由此判读C选项的正确性.结合C选项的分析,由点到直线的距离公式判断D选项的正确性.
【详解】
复数 在复平面内对应的点为 ,A正确;
一、复数选择题
1.已知复数 ,若 为虚数单位,则 ()
A. B. C. D.
2.在复平面内,复数 ( 为虚数单位)对应的点的坐标为()
A. B. C. D.
3.复数 (其中i为虚数单位)的虚部为()
A. B. C.9D.
4.若 ,则 ()
A. B. C. D.
5.若复数 (其中 为虚数单位),则复数 的模为()
相关文档
最新文档