第十二章 气体动理论-2
高中物理竞赛第12章气体动理论(共56张PPT)
k
3 2
kT
6.211021J
1m3
Ek nk 1.65105 J/m3
H2 : vrms= 1920ms-1 O2 : vrms= 483ms-1
注
a. P、T、 k 、vrms… — 统计量(平衡态,系统)
对少数粒子 无意义
b. 不同气体(m 、v 2不同) k 相同 — T 相同
15 .
氢( H2 )
2.02
氦( He )
4.0
氮( N2 )
28.0
水蒸气( H2O )
18.0
氧( O2 )
32.0
二氧化硫(SO2)
64.0
1 920
1 370 517 645 483
324
14 .
[讨论] 系统( V=1m3 ,t =27ºC,P=1atm) 的分子微观量的平均值
n P 2.661025 m3 kT
17 .
二 能量均分定理(玻耳兹曼假设)
气体处于平衡态时,分子任何一个能量 自由度的平均值都相等,均为 1 kT ,这就 是能量按自由度均分定理 . 2
分子的平均能量
1 (t r 2s)kT 1 (t r v)kT i kT
2
2
2
对于个别分子来说,每一种形式的能量不一定 按自由度均分.能均分定理是关于分子热运动 动能的统计规律.
系统状态了,其它的宏观物理
性质则是这两个物态参量的函数 o
A ( p1,V1,T1)
B ( p2 ,V2 ,T2 ) V
— T =f (P 、V ) (与气体性质有关)
如果过程进行的充分缓慢,过程进行的每一个
中间态都可以近似看成平衡态,这就是准静态过程
第十二章气体动理论答案
一、选择题1.下列对最概然速率p v 的表述中,不正确的是( )(A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同;(D )两种气体的压强相同。
答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为:(A )pV/m (B )pV/(kT)(C )pV/(RT) (D )pV/(mT)答案:B4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为 ( ) (A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
答案:A5.一摩尔单原子分子理想气体的内能( )。
(A )32mol M RT M (B )2i RT (C )32RT (D )32KT 答案:C二、简答题1.能否说速度快的分子温度高,速度慢者温度低,为什么?答案:不能,因为温度是表征大量分子热运动激烈程度的宏观物理量,也就是说是大量分子热运动的集体表现,所以说温度是一个统计值,对单个分子说温度高低是没有意义的。
2.指出以下各式所表示的物理含义:()()()()()RT i RT i kT i kT kT 252423232211ν 答案: (1)表示理想气体分子每个自由度所具有的平均能量(2)表示分子的平均平动动能(3)表示自由度数为的分子的平均能量(4)表示分子自由度数为i 的1mol 理想气体的内能(5)表示分子自由度数为i 的ν mol 理想气体的内能3. 理想气体分子的自由度有哪几种?答案: 理想气体分子的自由度有平动自由度、转动自由度。
第十二章 气体动理论
v
2
v
2
3 RT 3kT M m
可见,在温度相同的情况下,分子质量大 13. 的气体,其方均根速率小. 七、道尔顿分压定律 在温度T一定的条件下,密闭容器中混合气 体(无化学反应)的总压强,等于各气体分压强 之和. 即 p p1 p2 pm 证明: T1 T2 Tm T
2 x
2 p nm v x
2 p nE t 3
1 Et mv 2 2
1 2 1 2 nm v n( m v 2 ) 3 3 2
10.
注意:这里m 为一个分子的质量; n为分子数密度.
称为气体分子的平均平动动能
物理意义:气体的压强是大量分子对器壁碰撞 的统计平均效应. 微观量的统计平均值 E t 及分 子数密度n越大,则气体压强p越大. (如雨点打雨伞) 注意: 1.)n太小或太大时,压强公式不成立; 2.)理想气体压强公式是统计规律,而不 是力学规律.
v v v v 1 2 2 2 2 v x v y vz v 3 2 为所有分子速率 v
2 2 x 2 y 2 z
平方的平均值
三、理想气体压强公式 设第i组分子的速度在vi~vi+dvi区间内 以ni表示第i组分子的分子数密度 总的分子数密度为n=n1+n2+· · · +ni+· · · 设 器壁上面积dA 的法向为 x 轴
1.
§ 12-1 分子运动论的基本概念及研究方法
(The Basic Concept and The Research Method for Molecular Kinematical Theory)
2.
《气体动理论》课件
理想气体和非理想气体
理想气体特点
非理想气体行为
介绍理想气体的定义及数学模型, 并讨论实际情况下的限制。
讨论非理想气体的行为和模型, 广泛应用于现实世界中的工作流 程。
气液相变
深入介绍气体液化过程,重点解 析液化温度、压力的变化以及转 化过程对气体状态的影响。
气体的状态方程
1
理想气体状态方程
推导理想气体状态方程,让大家更深刻地认识理想气体。
Brownian运动及其应用
1
Brownian运动的定义
深入解析Brownian运动的概念以及相关特征,探究这一运动常见于哪些实际场 合。
2
Brownian运动在物理、化学和生物学领域中的应用
说明Brownian运动在物理、化学和生物学领域中的具体场合和应用方式。
3
Brownmann分布
深入探究Maxwell-Boltzmann速度分布函数的计 算方法和理论分析。
气体状态参数的统计分布
温度的分布
探究气体温度的分布规律,着重 讲解气体分子运动论的应用。
压强的统计分布
其他参数的分布
讲解气体状态下压强的统计分布 规律,为大家解析气体物理原理。
介绍气体其他状态参数的统计分 布规律,从宏观视角理解气体行 为。
气体动理论
欢迎来到《气体动理论》课件!本次课程将会深度探究气体动力学原理,从 理想气体以及状态方程到分子运动论等方面为大家进行详细讲解。
气体动理论的定义
1 定义
介绍气体动力学的含义,为后续课程奠定基础。
2 分子速度分布
讲解分子运动的速度分布规律,从微观层面理解气体特性。
3 压强与温度的关系
探究压力与温度的关系以及状态方程的推导。
第十二章 气体动理论 习题解答
专业班级
12.5
学号
5
姓名
一容器内储有氧气,其压强为 1.01 10 Pa ,温度为 300K。求:
(1)气体分子的数密度; (2)氧气的质量密度; (3)氧气分子的平均平动能。 1.01 105 P 2.45 10 25 m 3 kT 1.38 10 23 300 32 10 3 M 25 (2)方法一: nm n 2.45 10 1.3kg / m3 (注意摩尔质量的单位); 23 NA 6.02 10 解: (1) 物态方程 p nkT ,得 n
12.11 在常压下,把一定量的理想气体温度升高 50℃,需要 160J 的热量。在体积不变的情况 下,把此气体温度降低 100℃,将放出 240J 的热量,则此气体分子的自由度是_6_。 分析:本题为第十三章内容。 根据摩尔定体热容和摩尔定压热容公式: CV,m
dQ p i 2 dQV i R 和 C p,m R 得到 2 2 dT dT
m MP 32 10 3 1.01 105 m RT ,得到 1.3kg / m3 M V RT 8.31 300 3 3 (3)氧气分子的平均平动能: k kT 1.38 10 23 300 6.21 10 21 J 2 2 注意:物态方程中的参数都要使用国际单位,因此摩尔质量 M 的单位应该取 kg / mol ,例
专业班级
学号
§12.1~12.3
姓名
12.1 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情 况下气体的状态 【B】 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. 分析:一定量的气体,在不受外界的影响下,经过一定的时间,系统达到一个稳定的宏观 性质不随时间变化的状态称为平衡态.(第十二章复习提纲 P.5) 根据物态方程 pV RT 可知,当一定量的气体各处压强(或者温度)相等时,并不能保证 气体的体积和温度(或者压强)时时不变,因此不能说此时气体达到平衡态。 如果本题改为:一定量的气体,各处压强相同,并且各处温度也都相同,此时气体的体积 也就是确定的值,因此气体达到平衡态。 12.2 若理想气体的体积为 V,压强为 P,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常 量,R 为普适气体常量,则该理想气体的分子数为【B】 (A)
第十二章 气体动理论
1 2 v = v 3
2 x
1 ε k = mv2 2
理想气体压强公式: 第十二章:气体动理论
2 p = nε k 3
压强的物理意义
统计关系式 宏观可观测量
2 p = nε k 3
微观量的统计平均值
理想气体的压强公式是力学原理和统计方法相结合得出 的统计规律。
第十二章:气体动理论
理想气体分子平均平动动能与温度的关系
T = 273.15 + t
此外还包含:气体的质量,密度等
表示大量分子集体特征的物理量,可直接测量! 第十二章:气体动理论
微观角度: 研究气体分子的热运动
质量 m 坐标 (x, y, z) 气体分子 的: 精确求解所有分子的运动方程? 不可能! 分子数目太大! 相互作用复杂! 不能直接观测!
v 速度 v
1 3 2 ε k = m v = kT 2 2
i ε = kT 2
分子的平均能量:
i 1 mol 理想气体的内能: E = N Aε = RT 2
第十二章:气体动理论
εk ∝ T
第十二章:气体动理论
方均根速率
1 3 2 ε k = m v = kT 2 2
vrms
3kT 3RT = v = = m M
2
气体分子的方均根速率和质量的平方根成反比
第十二章:气体动理论
注意
热运动与宏观运动的区别: 温度所反映的是分子的无规则运动,它和物体的整体 运动无关,物体的整体运动是其中所有分子的一种有 规则运动的表现. 当温度 T = 0 时,气体的平均平动动能为零,这时气 体分子的热运动将停止。然而,事实上绝对零度是不 可能达到的,因而分子的热运动是永不停息的。
单个分子遵循力学规律:
5-练习册-第十二章 气体动理论
第十二章 气体动理论§12-1 平衡态 气体状态方程【基本内容】热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。
统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。
分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。
一、平衡态 状态参量1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。
外界:与系统发生相互作用的系统以外其它物体(或环境)。
从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。
2、平衡态与平衡过程平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。
它是一种热动平衡,起因于物质分子的热运动。
热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。
平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。
3、状态参量系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。
它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。
微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。
二、理想气体状态方程1、气体实验定律(1)玻意耳定律:一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。
即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。
(2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。
即V T =恒量。
(3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即P T=恒量。
气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。
2、理想气体的状态方程(1)理想气体的状态方程在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程M PV RT RT νμ==(2)气体压强与温度的关系 P nkT =玻尔兹曼常数23/ 1.3810A k R N -==⨯J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数236.02310/A N mol =⨯质量密度与分子数密度的关系nm ρ=分子数密度/n N V =,ρ气体质量密度,m 气体分子质量。
12章气体动理论
二、分子力
分子力是指分子之间存在的吸引或排斥的相互作 用力。它们是造成固体、液体、和封闭气体等许多物理
性质的原因。
吸引力——固体、液体聚集在一起; 排斥力——固体、液体较难压缩。 分子力 f 与分子之间的距离r有关。 存在一个r0——平衡位置 r= r0时,分子力为零 r < r 0分子力表现在排斥力 r > r0分子力表现在吸引力 r > 10 r0分子力可以忽略不计
2 x 2 y 2 z
1 1 1 1 2 2 2 m v x m v y m v z kT 2 2 2 2
结论:分子的每一个平动自由度上具有相同的平均平动动
能,都是kT/2 ,或者说分子的平均平动动能3kT/2是均匀地 分配在分子的每一个自由度上
推广:在温度为T 的平衡态下,分子的每一个转动自由度
12-5 能量均分定理 理想气体内能
一、自由度 确定一个物体的空间位置所需的独立 坐标数,常用i 表示。
(1)单原子分子: 可视为质点,确定其质心空 间位置需三个独立坐标。 故 自由度为3(i=3) 称为平动自由度 , 如He、Ne等。
z
O
( He ) ( x, y, z )
x
y
(2) 刚性哑铃型双原子分子
单原子分子 双原子分子 三原子分子
练习:说明下列各式的物理含义
§12-4 麦克斯韦气体分子速率分布率 一、速率分布函数
1.分布的含义
人口按地域分布、按年龄分布
石油按储量分布等
例如,某城市人口按年龄分布:
N N
1% 5% 30% 35% 20% 4% 2% … 0 10 20 30 40 50 6 0 70 80 ∞
(1)揭示宏观现象的本质; (2)有局限性,与实际有偏差,不 可任意推广.
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论
第十二章 气体动理论12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?解:由式nkT p =,有3202352/1068.15731038.1760/10013.1100.1m kT p n 个⨯≈⨯⨯⨯⨯⨯==-- 因而器壁原来吸附的气体分子数为个183201068.110101068.1⨯=⨯⨯⨯==∆-nV N12-2 一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。
(设分子间等距排列)分析:在题中压强和温度的条件下,氧气可视为理想气体。
因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。
又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。
解:(l )单位体积分子数325m 1044.2-⨯==kT p n(2)氧气的密度3m kg 30.1-⋅===RT pM V m ρ(3)氧气分子的平均平动动能J 1021.62321k -⨯==kT ε(4)氧气分子的平均距离m1045.3193-⨯==n d12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。
试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。
分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。
因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-⋅⨯=v 应是对应于氢气分子的最概然速率。
大学物理 气体动理论
n k
(
n m)
分子平均平动动能
k
1 mv2 2
气体压强公式
p
2 3
n k
宏观可测量量
微观量的统计平均
12-4 理想气体分子的平均平动
动能与温度的关系
P nkT
由
P
2 3
n k
k
1 2
mv2
3 2
kT
T k ( 运动激烈程度 )
方均根速率 vrms
v2
3kT m
*可以用温度计来比较各个系统的温度
48ºC
A
48ºC
绝热板
B
AB
(a)
(b)
12-2 物质的微观模型 统计规律性
一.分子的线度和分子力 分子间的平均距离 l 3 1/ n
1.分子线度
占有体积
自身体积
有效体积 (相互作用)
2.分子力 — 短程力、电磁相互作用力
r0 引力>斥力 r r0 分子力为零
理想气体满足:分子体积不计,相互作用不计,完全弹性碰撞
(1) 定量,平衡态
m M
pV N k T 或 pV RT
N NA
k R / NA 1.381023J K1 Boltzmann常数
摩尔气体常量 R 8.31 J mol1 K1
m系统总质量,M摩尔质量,m 单个分子质量
8.
[讨论] a. 抛硬币,抛骰子— 等概率事件 b. 伽尔顿板实验—不等概率事件
注
............
...........
当小球数 N 足够大时小
............ ...........
气体动理论-2
返回 退出
二、能量均分定理
分子的平均平动动能:
kt
1 2
m v2
1 2
m
vx2
1 2
m vy2
1 2
m
vz2
3 kT 2
vx2
v2y
vz2
1 v2 3
1 2
m vx2
1 2
m vy2
1 2
m vz2
1 2
kT
分子的平均平动动能 3kT/2 是均匀地分配在每个
§3-3 能量均分定理 理想气体的内能
一、分子的自由度
自由度 ( i ): 决定某物体在空间的位置所需要的 独立坐标数目。
质点: (x, y, z)
i=3
做直线运动的质点: 做平面运动的质点: 做空间运动的质点:
1个自由度 2个自由度 3个自由度
返回 退出
运动刚体的自由度: 随质心的平动+绕过质心轴的转动 自由刚体有 6个自由度:
(t r 2s) 1 kT
2
返回 退出
三、理想气体的内能
气体的内能:气体中所有分子的热运动能量和分 子间相互作用势能的总和。
理想气体内能:气体中所有分子的平均能量的总和。
1mol 理想气体的内能: (只考虑刚性分子)
Emol
NA
i 2
kT
i 2
RT
质量为m',摩尔质量为M的理想气体内能:
E
率在 v 附近单位速率区间 的分子数占总
数的百分比 .
f (v)dv 的物理意义:
表示速率在v v dv区间的分 子数占总分子数的百分比.
速率在v v dv内分子数:dN Nf (v)dv
12气体动理论 (1)
1 T 一定时 λ ∝ p p 一定时 λ ∝ T
25/26
第十二章 气体动理论
物理学
第五版
12-8 分子平均碰撞次数和平均自由程 试估计下列两种情况下空气分子的平均自由程: 例 试估计下列两种情况下空气分子的平均自由程 (1)273 K、1.013 ×105 Pa 时; ) (2) 273 K、1.333 × 10 −3 Pa 时。 ) d = 3.10×10−10 m) (空气分子有效直径
第十二章 气体动理论
1/26
z
物理学
第五版
12-5 能量均分定理 理想气体内能
刚性双原子分子 分子平均平动动能
ε kt
1 1 1 2 2 2 = m v Cx + m v Cy + m v Cz 2 2 2
分子平均转动动能
1 1 2 ε kr = J ω y + J ω z2 2 2
第十二章 气体动理论
第十二章 气体动理论
4/26
物理学
第五版
12-5 能量均分定理 理想气体内能
刚性分子能量自由度 刚性分子能量自由度 自由度 分子 单原子分子 双原子分子 多原子分子
t 平动
3 3 3
r
转动 0 2 3
i
总 3 5 6
第十二章 气体动理论
5/26
物理学
第五版
12-5 能量均分定理 理想气体内能
能量均分定理(玻耳兹曼假设) 二 能量均分定理(玻耳兹曼假设)
∆S
o
v1 v2
v
∆N = N
∫
v2 v1
f ( v )d v
12/26
第十二章 气体动理论
物理学
第五版
气体动理论2
求: 1)常量 a 和 v0 的关系 ( )
(2)平均速率 )
v
v 0 之间分子的平均速率 (3)速率在 0 ) v′ 2 ∞ ( ) 解: 1)归一化条件 ∫0 f (v ) d v = 1 3 a= 3 1 3 v0 ∞ v0 f (v ) d v = ∫0 av 2 d v = av 0 ∫0 3 11
T,m 一定 ,
d Nv f (v ) d v = N
2、在 dv 速率区间内分子 、 出现的概率 dN v dN v 0 v v dv v+△v f (v ) = f (v) dv = Ndv N 4、在f(v)~v整个曲线下的面 、 整个曲线下的面 3、在f(v)~v曲线下的 、 曲线下的 积为 1 ------ 归一化条件。 归一化条件。 面积为该速率区间内分 ∞ ∞ 子出现的概率: 子出现的概率: d Nv
9
规律:对任意 规律:对任意v 的函数 g(v),全体分子的 ,全体分子的g(v)的 的 平均值,都可以用速率分布函数求得 平均值 都可以用速率分布函数求得
g(v) = ∫ g(v) f (v) d v
0
∞
利用此公式还可计算分子的方均根速率、 利用此公式还可计算分子的方均根速率、分子的 平均平动动能等。 平均平动动能等。 求速率v 区间分子的平均速率。 问:求速率 1→ v2区间分子的平均速率。
dNv m 2 mv2 2kT 2 v dv = 4π e N 2πkT
3 2
麦克斯韦速率分布函数
m mv2 2kT 2 f (v) = 4π v e 2πkT
4
讨论: 讨论: 1、 f(v)~v曲线 、 曲线 f(v)
v = 0时 f (v) = 0 v → ∞时 f (v) → 0
大学物理B2_第12章_2
(2)由分子平均平动动能公式
3 k k (T2 T1 ) 2 3 1.38 1023 (450 300) 3.11 1021 J 2
2014年10月15日星期三
3 k kT 2
4
第十二章 气体动理论2
12-5 能量均分定理 理想气体的内能
一、自由度 力学概念 1.自由度的定义: 决定一个物体的空间位置所需要的独立坐标数目
三、麦克斯韦速率分布律 麦克斯韦在1859年导出,在温度为
T的平衡态下气体速率分布函数为
f ( v) 4 ( m ) e 2 kT
3 2 mv 2 2 kT
f ( v)
dS
v2
mv dN m 3 4 ( ) 2 e 2 kT v 2 d v N 2 kT
2
f (v)
dN Nd v
分子能量自 由度的数目
或是分子能量中独立的速度和坐标的二次方项数目 z 2.各类(刚性)分子的自由度: z (1)单原子:
3个平动自由度,i =3 (2)双原子: (3)多原子: 刚性多原子3平动+3转动,i=6
2014年10月15日星期三
x
o
y
3个平动自由度+2个转动自由度,i=5
cos2 cos2 cos2 1
N Nf ( v)d v
0 vp
1 2 1 2 2) Ek v ( mv ) Nf (v)d v mv v Nf (v)d v p p 2 2 1 2 2 2 2 Ek m(v2 dN v dN v dN ... v dN ... v p 1 2 2 3 3 i i dN n ) 2 1 2 1 m vi dNi m v 2 Nf ( v)d v 2 vvp 2 vp
大学物理-气体动理论-(2)
21~22 1000 10%
例如气体分子按速率的分布
速率
v1 ~ v2 v2 ~ v3
…
vi ~ vi +Δv
…
分子数按速率
的分布
ΔN1
ΔN2
…
ΔNi
…
分子数比率按 速率的分布
ΔN1/N
ΔN2/N
…
ΔNi/N
…
{ ΔNi }就是分子数按速率的分布
二. 速率分布函数 f(v) 设某系统处于平衡态下, 总分子数为 N ,则在v~v+ dv 区间内分子数的
v0 av dv 2v0 adv 1
0 v0
v0
1v 2
0
a
v0a
1
a 2 3v 0
f (v ) a
O
v0
2v 0 v
(2) 因为速率分布曲线下的面积代表一定速率区间内的分 与总分子数的比率,所以
v v0 的分子数与总分子数的比率为
N N
v0a v0
2 3v 0
2 3
因此,v>v0 的分子数为 ( 2N/3 )
p =2.58×104 Pa 。
求 (1) 分子的平均平动动能; (2) 混合气体的温度
解 (1) 由压强公式 , 有
3p3
p
9.681021 J
2 n 2 (N1 N2 ) V
(2) 由理想气体的状态方程得
T p
p
nk
N1
V
N2
k
467K
§12.5 麦克斯韦速率分布定律
一. 分布的概念
2π kT
式中μ为分子质量,T 为气体热力学温度, k 为玻耳兹曼常量
k = 1.38×10-23 J / K
马文蔚《物理学》(第6版)(下册)课后习题-第十二章至第十五章【圣才出品】
第12章气体动理论一、问题12-1你能从理想气体物态方程出发,得出玻意耳定律、查理定律和盖吕萨克定律吗?答:理想气体物态方程pV=vRT描述了理想气体在某种状态下,p,V,T三个参量所满足的关系式。
对于给定量的气体(不变),经历某一过程后,其初态和末态之间满足关系。
当温度不变时,有,即得玻意耳定律;当体积不变时,有,即得查理定律;当压强不变时,有,就是盖吕萨克定律。
12-2一定量的某种理想气体,当温度不变时,其压强随体积的增大而变小;当体积不变时,其压强随温度的升高而增大。
从微观角度来看,压强增加的原因是什么?答:压强是系统中大量分子在单位时间内对单位面积器壁碰撞的结果。
可由公式定量描述。
式中n为单位体积内的分子数,与一定量气体的体积有关;分子的平均平动动能与温度有关。
当温度不变,体积增大时,n减小,因此压强减小;当体积不变,温度升高时,由温度的升高而增大,从而导致压强增大。
12-3道尔顿(Dalton)分压定律指出:在一个容器中,有几种不发生化学反应的气体,当它们处于平衡态时,气体的总压强等于各种气体的压强之和。
你能用气体动理论对该定律予以说明吗?答:由P=nkT知,单独一种气体充满容器、温度为T时,产生的压强为同样第二种气体温度为T、产生的压强为,…,当几种气体混合处于:平衡态且温度为T时,压强为12-4阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分了数是相等的,与气体的种类无关。
你能用气体动理论予以说明吗?答:由P=nkT知,当温度和压强都相同时,气体的分子数密度n必定相等。
因此相同体积中含有的分子数也是相等的。
这与气体的种类无关。
12-5为什么说温度具有统计意义?讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动剧烈程度的宏观物理量。
由公式可知,分子平均平动动能与气体的温度成正比。
气体温度越高,分子平均平动动能越大,分子运动越剧烈。
由此可见,温度是大量分了热运动的集体表现,是个统计量,对一个分子来说,说它有多少温度是没有意义的。
气体动理论2优秀课件
p 2 n
3
m ' Nm
理想气体状态方程 pV m' RT M N A m nkT
玻尔兹曼常数
kR1.3 81 023 JK1
NA
分子平均平动动能 1mv2 3kT
2
2
微观量的统计平均值
宏观可测量量
温度 T 的物理意义
1mv2 3kT
kt12mv2
3kT 2
v2 xv2 yv2 z 1 3v2
z
oy x
1 2m v2 x1 2m v2 y1 2m v2 z1 2kT
单原子分子平均能量 31kT
2
刚性双原子分子 分子平均平动动能
kt1 2m v C 2 x1 2m v C 2 y1 2m v C 2 z
分子平均转动动能
kr1 2Jy21 2Jz2
zx
单位时间 N 个粒子
对器壁总冲量
i m x vi2xm x ivi2xN x im v N i2xN xv m 2 x
器壁A1所受平均冲力 Fv2xNmx
y
A2 o
-m m vvvxx
zx
A1 y
器壁 A1所受平均冲力
Fv2xNmx
气体压强
zx
p
F yz
Nxymzv2x
统计规律
n N xyz
v
2 x
1 v2 3
分子平均平动动能
1 mv2
2
p 2 n 3
压强的物理意义 统计关系式 宏观可测量量
p 2 n
3
微观量的统计平均值
分子平均平动动能
1 mv2
2
压强是大量分子对时间、对面积的统计平均结果 .
问 为何在推导气体压强公式时不考虑分子间的碰撞 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绍兴文理学院 学校 209 条目的4类题型式样及交稿式样(统计规律、理想气体的压强和温度)1、选择题题号:20911001分值:3分难度系数等级:1理想气体中仅由温度决定其大小的物理量是(A )气体的压强 (B )气体的内能(C )气体分子的平均平动动能 (D )气体分子的平均速率[ ] 答案:( C )题号:20911002分值:3分难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为(A )ε和k ε都相等 (B )ε相等,而k ε不相等(C )k ε相等,而 ε不相等(D )ε和k ε都不相等 [ ] 答案:( C )题号:20911003分值:3分难度系数等级:1一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为211021.6-⨯J ,则氧气的温度为(A )100 K (B )200 K (C )273 K (D )300 K[ ]答案:( D )题号:20911004分值:3分难度系数等级:1理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的(A )动能为kT i 2 (B )动能为RT i 2(C )平均平动动能为kT i 2 (D )平均平动动能为kT 23 [ ] 答案:( D )题号:20912005分值:3分难度系数等级:2一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为(A )1212p p T (B )2112p p T (C )121p p T (D )2112p p T [ ] 答案:( A )题号:20912006分值:3分难度系数等级:2一个能量为12100.1⨯eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。
如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为(A )71093.1-⨯K (B )71028.1-⨯K (C )61070.7-⨯ K (D )61050.5-⨯K[ ] 答案:( B )题号:20912007分值:3分难度系数等级:2设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。
从分子运动论的观点来看,这个压力施于dA 的压强为(A )k n p ε32= (B )k n p ε34= (C )kT p 23= (D )kT p 3= [ ] 答案:( A )题号:20912008分值:3分难度系数等级:2两瓶不同种类的气体,它们的温度和压强相同,但体积不同,则下列说法正确的是(A )单位体积内的分子数相同,单位体积内的气体质量也相同(B )单位体积内的分子数不相同,但单位体积内的气体质量相同(C )单位体积内的分子数相同,但单位体积内的气体质量不相同(D )单位体积内的分子数不相同,单位体积内的气体质量也不相同[ ] 答案:( C )题号:20912009分值:3分难度系数等级:2在等体过程中,理想气体的压强增大到原来的100倍,其方均根速率(A) 减小到原来的1/100 (B) 减小到原来的1/10(C) 增大到原来的100倍 (D) 增大到原来的10倍[ ] 答案:( D )题号:20912010分值:3分难度系数等级:2容积为V 的容器中,贮有1N 个氧分子、2N 氮分子和M kg 氩气的混合气体,则混合气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)(A )kT V N 1 (B )kT VN 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ++ [ ] 答案:( D )题号:20913011分值:3分难度系数等级:3阿佛伽德罗常数为A N ,某理想气体的摩尔质量为μ,则当该气体在压强为p ,气体质量为M 、体积为V 时的平均平动动能为(A )MpV 23μ (B )M N pV A 23μ (C )M N pV A 25μ (D )M N pV A 27μ [ ] 答案:( B )题号:20913012分值:3分难度系数等级:3如图所示,AB 为一理想气体等温线,C 态与D 态在AB 线的两侧,则D 态的温度与C 态的温度关系为(A )C D T T < (B )C D T T =(C )C D T T > (D )无法确定[ ] 答案:( C )题号:20913013分值:3分难度系数等级:3三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比为4:2:1::222=C B A v v v ,则其压强之比C B A p p p ::为(A )1:2:4 (B )4:2:1 (C )8:4:1 (D )16:4:1[ ] 答案:( D )(C B A C B A T T T p p p ::::=)题号:20913014分值:3分难度系数等级:3两瓶不同种类气体,体积不同,但温度和压强相同,k ε表示气体分子的平均平动动能,k n ε表示单位体积分子总的平均平动动能,则下列表述正确的是(A )k ε相同,k n ε也相同 (B ) k ε相同,k n ε不同 (C ) k ε不同,k n ε相同 (D ) k ε不同,k n ε也不同[ ] 答案:( A )题号:20913015分值:3分难度系数等级:3处于平衡状态下的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则下列表述正确的是(A )温度、压强均不相同(B )温度相同,但氦气压强大于氮气的压强(C )温度、压强均相同(D )温度相同,但氦气压强小于氮气的压强[ ] 答案:( C )题号:20913016分值:3分难度系数等级:3体积为3100.4-⨯m 3的容器中含有231001.1⨯个氧气分子,如果其中压强为51001.1⨯Pa ,则氧分子的平均平动动能为(A )201067.1⨯ J (B )51052.1⨯ J (C )606.0 J (D )21100.6-⨯J[ ] 答案:( D )题号:20914017分值:3分难度系数等级:4保持气体的压强恒定,当其温度升高时,则每秒与器壁碰撞的气体分子数以及每个分子在碰撞时施于器壁的冲量的变化分别为(A )每秒与器壁碰撞的气体分子数将变大,而每个分子在碰撞时施于器壁的冲量将减少(B )每秒与器壁碰撞的气体分子数将减少,而每个分子在碰撞时施于器壁的冲量将变大(C )每秒与器壁碰撞的气体分子数将减少,每个分子在碰撞时施于器壁的冲量也减少(D )每秒与器壁碰撞的气体分子数将变大,每个分子在碰撞时施于器壁的冲量也变大[ ] 答案:( B )题号:20914018分值:3分难度系数等级:4某理想气体处于平衡状态,已知压强为310013.1⨯=p Pa ,密度为21024.1-⨯kg/m 3 ,则该气体分子的方均根速率2v 为(A )494.5 m/s (B )457.3 m/s (C )403.0 m/s (D )无法确定[ ] 答案:( A )(ρp v 73.12= )题号:20914019分值:3分难度系数等级:4真空管的线度为210-m ,真空度为31033.1-⨯Pa 。
设空气分子的有效直径为10100.3-⨯m ,空气分子的平均速率为469 m/s ,则在C 027时空气的分子数密度和平均碰撞频率分别为(A )17102.3⨯=n m -3 ,9108.59⨯=Z S -1(B )18101.3-⨯=n m -3 ,371096.5-⨯=Z S -1 (C )17102.3⨯=n m -3 ,91098.5⨯=Z S -1(D )17102.3⨯=n m -3 ,0.60=Z S -1[ ] 答案:( D )题号:20915020分值:3分难度系数等级:5用绝热材料制成的一个容器,体积为02V ,被绝热板隔成A ,B 两部分,A 内储1 mol 单原子理想气体,B 内储有2 mol 刚性双原子理想气体,A ,B 两部分压强相等均为0p ,两部分体积均为0V ,则当抽去绝热板,两种气体混合后处于平衡时的温度为 (A )R V p 00 (B )RV p 13800 (C )R V p 3200 (D )R V p 200 [ ] 答案:( B )[简解:RT MpV μ=和RT i M E 2μ= 得两种气体各自的内能分别为 002323V p RT M E A ==μ,002525V p RT M E B ==μ 混合后内能不变,即 002825223V p RT RT E E B A =⨯+=+ 由此得混合后的温度 RV p T 13800=]2、判断题题号:20921001分值:2分难度系数等级:1从分子运动论的观点说明:当气体的温度升高时,只要适当增大容器的容积,就可使气体的压强保持不变。
[ ] 答案:对题号:20921002分值:2分难度系数等级:1理想气体是真实气体在压强趋于零时的极限情形,是一种理想化的模型,它严格尊从理想气体状态方程。
[ ] 答案:对题号:20921003分值:2分难度系数等级:1若盛有某种理想气体的容器漏气,使气体的压强、分子数密度各减为原来的一半,则气体分子的平均动能不变。
[ ] 答案:对(因温度不变)题号:20922004分值:2分难度系数等级:2两瓶不同种类的气体,它们的体积不同,但它们的温度和压强相同,所以它们单位体积内的分子数一定相同。
[ ] 答案:对(kTp n )题号:20922005分值:2分难度系数等级:2在推导理想气体压强公式时,可以不考虑分子间的相互碰撞。
[ ] 答案:对(因是大量分子共同作用的统计效果)题号:20922006分值:2分难度系数等级:2给自行车轮胎打气,使其达到所需要的压强,不管是夏天或冬天,打入胎内的空气质量一定相同。
答案:错(轮胎内的空气密度RT p μρ=)题号:20922007分值:2分难度系数等级:2理想气体的实验基础是(1)气体很容易被压缩;(2)气体分子可以到达它所能到达的任何空间;(3)平衡状态下,气体的温度和压强都不随时间改变。
[ ] 答案:对题号:20923008分值:2分难度系数等级:3在推导理想气体压强公式的过程中,利用了理想气体的假设、平衡态的条件和统计平均的概念。
[ ] 答案:对题号:20923009分值:2分难度系数等级:3气体处于平衡态时,其分子的平均速率不等于零,但分子的平均速度等于零,平均动量也等于零。
[ ] 答案:对题号:20923010分值:2分难度系数等级:3不管气体处于平衡态还是非平衡态,按统计规律性都有 222z y x v v v ==。