第十二章 气体动理论 习题解答

合集下载

第十二章气体动理论答案

第十二章气体动理论答案

一、选择题1.下列对最概然速率p v 的表述中,不正确的是( )(A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。

答案:A2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同;(D )两种气体的压强相同。

答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为:(A )pV/m (B )pV/(kT)(C )pV/(RT) (D )pV/(mT)答案:B4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为 ( ) (A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。

答案:A5.一摩尔单原子分子理想气体的内能( )。

(A )32mol M RT M (B )2i RT (C )32RT (D )32KT 答案:C二、简答题1.能否说速度快的分子温度高,速度慢者温度低,为什么?答案:不能,因为温度是表征大量分子热运动激烈程度的宏观物理量,也就是说是大量分子热运动的集体表现,所以说温度是一个统计值,对单个分子说温度高低是没有意义的。

2.指出以下各式所表示的物理含义:()()()()()RT i RT i kT i kT kT 252423232211ν 答案: (1)表示理想气体分子每个自由度所具有的平均能量(2)表示分子的平均平动动能(3)表示自由度数为的分子的平均能量(4)表示分子自由度数为i 的1mol 理想气体的内能(5)表示分子自由度数为i 的ν mol 理想气体的内能3. 理想气体分子的自由度有哪几种?答案: 理想气体分子的自由度有平动自由度、转动自由度。

27气体分子运动论一解答

27气体分子运动论一解答

u rms
2 6.0221023 6.2110 21 2 Βιβλιοθήκη 483 . 46 m/s 32103
气体分子运动论 一
第十二章 气体动理论
4.在一个具有活塞的容器中盛有一定的气体。如果压 缩气体并对它加热,使它的温度从27℃升到177℃,体 积减少一半,(1) 求气体压强变化多少?(2) 这时气体分 子的平均平动动能变化多少? 解:
气体分子运动论 一
第十二章 气体动理论
2. 三个容器内分别贮有1mol氦(He)、1mol氢(H2)和1 mol氨(NH3)(均视为刚性分子的理想气体).若它们的温 度都升高1 K,则三种气体的内能的增加值分别为:(普 适气体常量R = 8.31 J· mol-1· K-1) 3R/2 = 12.465J 氦:DE=___________________ ; 氢:DE=___________________ ; 5R/2 = 20.775J 氨:DE=____________________ . 6R/2 = 24.93J
p nkT n p kT EK n k n 3kT 2
r nm
气体分子运动论 一
第十二章 气体动理论
二、填空题
1.某容器内分子数密度为1026m-3,每个分子的质量 为3×10-27kg,设其中1/6分子数以数率u=200m/s垂直地 向容器一壁运动,而其余5/6分子或者离开此壁,或者 平行此壁方向运动,且分子与容器壁的碰撞为完全弹 性.则(1)每个分子作用于器壁的冲量Dp = . (2)每秒碰在器壁单位面积上的分子数n0= . (3)作用在器壁上的压强P= .
3 k O2 kT O2 2 2 T O2 k O2 3k 3 kT H 2 k H 2 6.2110 21 J 2 2 6.2110 21 300K 23 3 1.3810

第十二章气体动理论-1

第十二章气体动理论-1
1
=-kT
2
1
题号:21011001分值:3分 难度系数等级:1
1mol刚性双原子分子理想气体的内能为
(A)5kT
2
5
(B)— RT
2
7
(D)-RT
2
答案:(B)
题号:21011002分值:3分 难度系数等级:1
根据能量均分定理,分子的每一自由度所具有的平均能量为
答案:
分值: 难度系数等级:1
质量为Mkg的理想气体,其分子的自由度为i,摩尔质量为
分值: 难度系数等级:3
有一瓶质量为M的非刚性双原子分子理想气体,摩尔质量为4,温度为T,则该瓶气 体的内能为
答案:
分值:
难度系数等级:3
分值: 难度系数等级:3
mol刚性分子的理想气体氨(NH3),当其温度升高1K时,其内能的增加值为
分值:2分
难度系数等级:
分值:
难度系数等级:4
(760mmHg =1.013咒105Pa,空气分子可认为是刚性双原子分子)。
其中
N-----分子数
= 1.38X10- J .k-为玻耳曼常数。
v—物质的量
R =8.31 J mol」为摩尔气体常数。
n----分子数密度
253
(标况下n=2.69X10m
附: 理想气体的压强式:
1—2
P=—nmV
3
1
其中n-----分子的数密度。瓦=-mv2为ቤተ መጻሕፍቲ ባይዱ子的平均平动动能。
2
理想气体分子的平均平动动能瓦与温度T的关系式:(联立①②式)
2
答案:
分值: 难度系数等级:3
如果氢气和氦气的温度相同,摩尔数相同,那么这两种气体的平均动能也一定相同。

5-练习册-第十二章 气体动理论

5-练习册-第十二章 气体动理论

第十二章 气体动理论§12-1 平衡态 气体状态方程【基本内容】热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。

统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。

分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。

一、平衡态 状态参量1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。

外界:与系统发生相互作用的系统以外其它物体(或环境)。

从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。

2、平衡态与平衡过程平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。

它是一种热动平衡,起因于物质分子的热运动。

热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。

平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。

3、状态参量系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。

它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。

微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。

二、理想气体状态方程1、气体实验定律(1)玻意耳定律:一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。

即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。

(2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。

即V T =恒量。

(3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即P T=恒量。

气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。

2、理想气体的状态方程(1)理想气体的状态方程在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程M PV RT RT νμ==(2)气体压强与温度的关系 P nkT =玻尔兹曼常数23/ 1.3810A k R N -==⨯J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数236.02310/A N mol =⨯质量密度与分子数密度的关系nm ρ=分子数密度/n N V =,ρ气体质量密度,m 气体分子质量。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。

为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?解:由式nkT p =,有3202352/1068.15731038.1760/10013.1100.1m kT p n 个⨯≈⨯⨯⨯⨯⨯==-- 因而器壁原来吸附的气体分子数为个183201068.110101068.1⨯=⨯⨯⨯==∆-nV N12-2 一容器内储有氧气,其压强为1.01⨯105 Pa ,温度为27℃,求:(l )气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。

(设分子间等距排列)分析:在题中压强和温度的条件下,氧气可视为理想气体。

因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。

又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。

解:(l )单位体积分子数325m 1044.2-⨯==kT p n(2)氧气的密度3m kg 30.1-⋅===RT pM V m ρ(3)氧气分子的平均平动动能J 1021.62321k -⨯==kT ε(4)氧气分子的平均距离m1045.3193-⨯==n d12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。

试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。

因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-⋅⨯=v 应是对应于氢气分子的最概然速率。

气体动理论习习题解答

气体动理论习习题解答

欢迎阅读习题8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。

若此理想气体的压强为1.35×1014 Pa 。

试估计太阳的温度。

(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(===ρ8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个解:8-3 (1∑t εn p i =∑8-4 气的解:8-5 温度从27 ℃上升到177 ℃,体积减少一半,则气体的压强变化多少?气体分子的平均平动动能变化多少?分子的方均根速率变化多少?解:已知 K 300atm 111==T p 、根据RT pV ν=⇒222111T V p T V p =⇒atm 3312==p p8-6 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1 eV ,气体的温度需多高?解:(1)J 1065.515.2731038.12323212311--⨯=⨯⨯⨯==kT t ε (2)kT 23J 101.6ev 1t 19-==⨯=ε 8-7 一容积为10 cm 3的电子管,当温度为300 K 时,用真空泵把管内空气抽成压强为5×10-4 mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气分子的平均平动动能的总和是多少?(3)平均转动动能的总和是多少?(4)平均动能的总和是多少?(将空气分子视为刚性解:(1(2(3(48-8 也就是解:8-9 3。

求:(1和转动动能各为多少?(4)容器单位体积内分子的总平动动能是多少?(5)若该气体有0.3 mol ,其内能是多少?解:(1)231v p ρ=⇒m/s 49432≈=ρp v (2)g 28333⇒322≈===ρμμpRT v RTRTv 所以此气体分子为CO 或N 2(3)J 1065.52321-⨯==kT t ε (4)J 1052.123233∑⨯===P kT n t ε (5)J 170125==RT E ν 8-10 一容器内储有氧气,其压强为1.01×105 Pa ,温度为27.0℃,求:(1)分子数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。

气体动理论---习题及答案解析

气体动理论---习题及答案解析

气体动理论练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。

A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。

3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。

二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。

2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。

练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是( )A. p1>p2;B. p1<p2;C. p1=p2;D. 不能确定。

2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n,单位体积内的气体分子的总平动动能为E kV⁄,单位体积内的气体质量为ρ,分别有如下关系( )A. n不同,E kV⁄不同,ρ不同;B. n不同,E kV⁄不同,ρ相同;C. n相同,E kV⁄相同,ρ不同;D. n相同,E kV⁄相同,ρ相同。

3. 有容积不同的A、B两个容器,A中装有刚体单原子分子理想气体,B中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A和E B的关系( )A. E A<E B;B. E A>E B;C. E A=E B;D.不能确定。

东北大学大学物理附加题答案第十二章气体动理论

东北大学大学物理附加题答案第十二章气体动理论
5
PM 1.0 32 1.30 g L1 RT 0.082 300
(3) (4)
1.30 23 m 5.3 10 g 25 3 n 2.45 10 10
3 3 kt kT 1.38 1023 300 6.21 1021 J 2 2
2

3
附12-2 一瓶氢气和一瓶氧气温度相同,若氢气分子的
平均平动动能为6.21×10-21J,求: (1) 氧气分子的平均平动动能和方均根速率; (2) 氧气的温度
k O k H 6.21 10 J
-21
2 2
kO
v
2
2
1 m v 2 6.21 10-21 J 2
表示速率区间0~vp的分子数占总分子数的百分率
(6) f (v )dv
v1 v2
表示速率在v1~v2之间的分子数占总分子数的百分率
(7) v p f v d v

表示分布在速率vp~区间的分子数在总分子数中占
的百分率
12
(8)
0

1 mv 2 f v d v 2

0
表示分子平动动能的平均值.
2: 2
(5)
P nkT
P氢气:P氦气 2 : 1
(6)
M P M PM n N 0 kT N 0 RT
氢:氦= 1:1
10
附12-5
已知f(v)是气体速率分布函数。N为总分子数,
n为单位体积内的分子数, vp为最概然速率。试说明以下
各式的物理意义。
(1) Nf (v)dv
ቤተ መጻሕፍቲ ባይዱ
v0
v0 2
Nvf v d v

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。

(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。

(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。

[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。

大学物理题库-第12章 气体动理论

大学物理题库-第12章 气体动理论

气体动理论一、选择题1、某容器内装有混合气体,处于热平衡状态,则不同种类分子的下列哪个量相同[ ](A )分子数密度 (B ) 方均根速率 (C )平均平动动能 (D ) 分子质量2、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v . (B) mkT x 3312=v . (C) m kT x /32=v . (D) m kT x /2=v . [ ] 3、若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)0.500. (B) 400. (C) 900. (D) 2100. [ ]4、在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比为1:2,则它们的内能比为:(A ) 1/2 (B ) 5/3 (C )5/6 (D ) 3/10 [ ] 5、一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为:(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.[ ]6、水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ]7. 已知分子总数为N ,它们的速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A)⎰21d )(v v v v v f . (B) ⎰21d )(v v v v v f /⎰21d )(v v v v f .(C)⎰21d )(v v v v v f N . (D)⎰21d )(v v v v v f /N . [ ]8、若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则⎰21d )(212v v v v v Nf m 的物理意义是 (A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差.(B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和. (C) 速率处在速率间隔1v ~2v 之内的分子的平均平动动能.(D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和. [ ]9、金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似.设金属中共有N 个自由电子,其中电子的最大速率为 m v ,电子速率在v ~v + d v 之间的概率为⎩⎨⎧=0d d 2vv A N N式中A 为常数.则该电子气电子的平均速率为 (A)33m A v . (B) 44m A v . (C) m v . (D) 23m A v . [ ]0≤v ≤v m v > v m10、两个容器中分别装有2N 和2CO ,它们的温度相同,则在下列各量中,相同的是:[ ](A ) 分子平均动能 (B ) 分子平均速率(C ) 分子平均平动动能 (D ) 最概然(可几)速率 [ ]11、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ]12、在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]13、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ]二 填空题1.有一瓶质量为M 的氢气(可视为刚性双原子分子的理想气体,其摩尔质量为M ),温度为T , 则氢分子的平均平动动能为_________, 氢分子的平均动能为_______, 该瓶氢气的内能为_________,氢气分子间的相互作用势能为__________。

大学物理第十二章课后习题答案

大学物理第十二章课后习题答案

第四篇 气体动理论 热力学基础求解气体动理论和热力学问题的基本思路和方法热运动包含气体动理论和热力学基础两部分.气体动理论从物质的微观结构出发,运用统计方法研究气体的热现象,通过寻求宏观量与微观量之间的关系,阐明气体的一些宏观性质和规律.而热力学基础是从宏观角度通过实验现象研究热运动规律.在求解这两章习题时要注意它们处理问题方法的差异.气体动理论主要研究对象是理想气体,求解这部分习题主要围绕以下三个方面:(1) 理想气体物态方程和能量均分定理的应用;(2) 麦克斯韦速率分布率的应用;(3)有关分子碰撞平均自由程和平均碰撞频率.热力学基础方面的习题则是围绕第一定律对理想气体的四个特殊过程(三个等值过程和一个绝热过程)和循环过程的应用,以及计算热力学过程的熵变,并用熵增定理判别过程的方向.1.近似计算的应用一般气体在温度不太低、压强不太大时,可近似当作理想气体,故理想气体也是一个理想模型.气体动理论是以理想气体为模型建立起来的,因此,气体动理论所述的定律、定理和公式只能在一定条件下使用.我们在求解气体动理论中有关问题时必须明确这一点.然而,这种从理想模型得出的结果在理论和实践上是有意义的.例如理想气体的内能公式以及由此得出的理想气体的摩尔定容热容2/m V,iR C =和摩尔定压热容()2/2m P,R i C +=都是近似公式,它们与在通常温度下的实验值相差不大,因此,除了在低温情况下以外,它们还都是可以使用的.在实际工作时如果要求精度较高,摩尔定容热容和摩尔定压热容应采用实验值.本书习题中有少数题给出了在某种条件下m V,C 和m P,C 的实验值就是这个道理.如习题中不给出实验值,可以采用近似的理论公式计算.2.热力学第一定律解题过程及注意事项热力学第一定律E W Q Δ+=,其中功⎰=21d V V V ρW ,内能增量T R i M m E Δ2Δ⋅=.本章习题主要是第一定律对理想气体的四个特殊过程(等体、等压、等温、绝热)以及由它们组成的循环过程的应用.解题的主要过程:(1) 明确研究对象是什么气体(单原子还是双原子),气体的质量或物质的量是多少? (2) 弄清系统经历的是些什么过程,并掌握这些过程的特征.(3) 画出各过程相应的p -V 图.应当知道准确作出热力学过程的p -V 图,可以给出一个比较清晰的物理图像.(4) 根据各过程的方程和状态方程确定各状态的参量,由各过程的特点和热力学第一定律就可计算出理想气体在各过程中的功、内能增量和吸放热了.在计算中要注意Q 和W 的正、负取法.3.关于内能的计算理想气体的内能是温度的单值函数,是状态量,与过程无关,而功和热量是过程量,在两个确定的初、末状态之间经历不同的过程,功和热量一般是不一样的,但内能的变化是相同的,且均等于()12m V,ΔT T C Mm E -=.因此,对理想气体来说,不论其经历什么过程都可用上述公式计算内能的增量.同样,我们在计算某一系统熵变的时候,由于熵是状态量,以无论在始、末状态之间系统经历了什么过程,始、末两个状态间的熵变是相同的.所以,要计算始末两状态之间经历的不可逆过程的熵变,就可通过计算两状态之间可逆过程熵变来求得,就是这个道理.4.麦克斯韦速率分布律的应用和分子碰撞的有关讨论深刻理解麦克斯韦速率分布律的物理意义,掌握速率分布函数f (v )和三种统计速率公式及物理意义是求解这部分习题的关键.三种速率为M RT /2P =v ,M RT π/8=v ,M RT /32=v .注意它们的共同点都正比于M T /,而在物理意义上和用途上又有区别.P v 用于讨论分子速率分布图.v 用于讨论分子的碰撞;2v 用于讨论分子的平均平动动能.解题中只要抓住这些特点就比较方便.根据教学基本要求,有关分子碰撞内容的习题求解比较简单,往往只要记住平均碰撞频率公式v n d Z 22=和平均自由程n d Z λ2π2/1/==v ,甚至只要知道n Z ⋅∝v ,n /1∝λ及M T /∝v 这种比值关系就可求解许多有关习题.第十二章 气体动理论12 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C).12 -2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( )(A) 1∶2∶4 (B) 1∶4∶8(C) 1∶4∶16 (D) 4∶2∶1分析与解 分子的方均根速率为M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相同时,得16:4:1::::321321==T T T p p p .故选(C). 12 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 0042λλ===,,Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d λ2π2/1=,n 不变,则珔λ也不变.因此正确答案为(B).12 -4 已知n 为单位体积的分子数,()v f 为麦克斯韦速率分布函数,则()v v d nf 表示( )(A) 速率v 附近,dv 区间内的分子数(B) 单位体积内速率在v v v d +~区间内的分子数(C) 速率v 附近,dv 区间内分子数占总分子数的比率(D) 单位时间内碰到单位器壁上,速率在v v v d ~+ 区间内的分子数分析与解 麦克斯韦速率分布函数()()v v d /d N N f =,而v /N n =,则有()V N nf /d d =v v .即表示单位体积内速率在v v v d ~+ 区间内的分子数.正确答案为(B).12 -5 一打足气的自行车内胎,在C 07o1.=t 时,轮胎中空气的压强为Pa 100451⨯=.p ,则当温度变为C 037o2.=t 时,轮胎内空气的压强2p 2p 为多少?(设内胎容积不变)分析 胎内空气可视为一定量的理想气体,其始末状态均为平衡态,由于气体的体积不变,由理想气体物态方程RT Mm pV =可知,压强p 与温度T 成正比.由此即可求出末态的压强.解 由分析可知,当K 15310037152732...=+=T ,轮胎内空气压强为Pa 1043451122⨯==./T p T p可见当温度升高时,轮胎内气体压强变大,因此,夏季外出时自行车的车胎不宜充气太足,以免爆胎.12 -6 有一个体积为35m 1001⨯.的空气泡由水面下m 050.深的湖底处(温度为C 4o )升到湖面上来.若湖面的温度为C 017o.,求气泡到达湖面的体积.(取大气压强为Pa 10013150⨯=.p ) 分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出, 其中ρ为水的密度( 常取33m kg 1001⋅⨯=.ρ).解 设气泡在湖底和湖面的状态参量分别为(p 1 ,V 1 ,T 1 )和(p 2 ,V 2 ,T 2 ).由分析知湖底处压强为gh ρp gh ρp p +=+=021,利用理想气体的物态方程222111T V p T V p = 可得空气泡到达湖面的体积为()3510120121212m 1011.6//-⨯=+==T p V T gh ρp T p V T p V12 -7 氧气瓶的容积为32m 1023-⨯.,其中氧气的压强为Pa 10317⨯.,氧气厂规定压强降到Pa 10016⨯.时,就应重新充气,以免经常洗瓶.某小型吹玻璃车间,平均每天用去3m 400.压强为Pa 100115⨯.的氧气,问一瓶氧气能用多少天? (设使用过程中温度不变)分析 由于使用条件的限制,瓶中氧气不可能完全被使用.为此,可通过两条不同的思路进行分析和求解:(1) 从氧气质量的角度来分析.利用理想气体物态方程RT Mm pV =可以分别计算出每天使用氧气的质量3m 和可供使用的氧气总质量(即原瓶中氧气的总质量1m 和需充气时瓶中剩余氧气的质量2m 之差),从而可求得使用天数()321m m m n /-=.(2) 从容积角度来分析.利用等温膨胀条件将原瓶中氧气由初态(Pa 1030171⨯=.p , 321m 1023-⨯=.V )膨胀到需充气条件下的终态(Pa 1000162⨯=.p ,2V 待求),比较可得2p 状态下实际使用掉的氧气的体积为12V V -.同样将每天使用的氧气由初态(Pa 1001153⨯=.p ,33m 400.=V )等温压缩到压强为p 2的终态,并算出此时的体积V′2 ,由此可得使用天数应为()212V V V n '-=/. 解1 根据分析有RT V Mp m RT V Mp m RT V Mp m /;/;/333222111===则一瓶氧气可用天数()()5.9//33121321===-=V p V p p m m m n解2 根据分析中所述,由理想气体物态方程得等温膨胀后瓶内氧气在压强为Pa 1000162⨯=.p 时的体积为 2112p V p V /=每天用去相同状态的氧气容积2332p V p V /='则瓶内氧气可用天数为()()5.9//33121212=-='-=V p V p p V V V n12 -8 设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的.若此理想气体的压强为Pa 1035114⨯..试估计太阳的温度.(已知氢原子的质量Pa 1067127H -⨯=.m ,太阳半径kg 1067127H -⨯=.m ,太阳质量kg 1099130S ⨯=.m )分析 本题可直接运用物态方程nkT p =进行计算.解 氢原子的数密度可表示为()⎥⎦⎤⎢⎣⎡⋅==3S H S H S π34//R m m V m m n S 根据题给条件,由nkT p = 可得太阳的温度为()K 1016.13/π4/7S 3S H ⨯===k m R pm nk p T说明 实际上太阳结构并非本题中所设想的理想化模型,因此,计算所得的太阳温度与实际的温度相差较大.估算太阳(或星体)表面温度的几种较实用的方法在教材第十五章有所介绍.12 -9 一容器内储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知n V /10=,d 即可求出.解 (1) 单位体积分子数325m 10442⨯==./kT p n(2) 氧气的密度-3m kg 301⋅===.//RT pM V m ρ(3) 氧气分子的平均平动动能J 102162321k -⨯==./kT ε(4) 氧气分子的平均距离m 10453193-⨯==./n d通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.12 -10 2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105Pa 时,氢气分子的平均平动动能为多大?分析 理想气体的温度是由分子的平均平动动能决定的,即23k /kT =ε.因此,根据题中给出的条件,通过物态方程pV =m/MRT ,求出容器内氢气的温度即可得k ε.解 由分析知氢气的温度mRMPV T =,则氢气分子的平均平动动能为 ()8932323k ./===mR pVMk kT ε12 -11 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV ,气体的温度需多高?解 分子在0℃和100 ℃时平均平动动能分别为J 10655232111-⨯==./kT εJ 10727232122-⨯==./kT ε由于1eV =1.6×10-19 J ,因此,分子具有1eV 平均平动动能时,气体温度为K 10737323k ⨯==./k T ε这个温度约为7.5 ×103 ℃.12 -12 某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?分析 将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度 i =3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系2/32/2kT m =v ,可得方均根速率2v .解 (1) 由分析可得质子的平均动能为 J 1007.22/32/3152k -⨯===kT m εv(2) 质子的方均根速率为1-62s m 1058.132⋅⨯==mkT v 12 -13 试求温度为300.0 K 和2.7 K(星际空间温度)的氢分子的平均速率、方均根速率及最概然速率.分析 分清平均速率v 、方均根速率2v 及最概然速率p v 的物理意义,并利用三种速率相应的公式即可求解.解 氢气的摩尔质量M =2 ×10-3kg·mol -1 ,气体温度T 1 =300.0K ,则有 1-31s m 1078.18⋅⨯==M πRT v 1-312s m 1093.13⋅⨯==M RT v 1-31p s m 1058.12⋅⨯==MRT v 气体温度T 2=2.7K 时,有 1-31s m 1069.18⋅⨯==M πRT v 1-322s m 1083.13⋅⨯==MRT v1-31p s m 1050.12⋅⨯==MRT v 12 -14 如图所示,Ⅰ、Ⅱ两条曲线分别是氢气和氧气在同一温度下的麦克斯韦分子速率分布曲线.试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2) 两种气体所处的温度;(3) 若图中Ⅰ、Ⅱ分别表示氢气在不同温度下的麦克斯韦分子速率分布曲线.则哪条曲线的气体温度较高?分析 由MRT 1p 2=v 可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率v p 也就不同.因22O H M M <,故氢气比氧气的v p 要大,由此可判定图中曲线Ⅱ所标v p =2.0 ×103 m·s -1 应是对应于氢气分子的最概然速率.从而可求出该曲线所对应的温度.又因曲线Ⅰ、Ⅱ所处的温度相同,故曲线Ⅰ中氧气的最概然速率也可按上式求得.同样,由M RT2p =v 可知,如果是同种气体,当温度不同时,最概然速率v p 也不同.温度越高,v p 越大.而曲线Ⅱ对应的v p 较大,因而代表气体温度较高状态.解 (1) 由分析知氢气分子的最概然速率为()13H p s m 100.222H 2-⋅⨯==M RT v利用M O2 /M H2 =16 可得氧气分子最概然速率为()()12H p O p s m 100.54/22-⋅⨯==v v (2) 由M RT2p =v 得气体温度K 1081.42/22p⨯==R M T v (3) Ⅱ代表气体温度较高状态.12 -15 日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能.解 方均根速率16e2s m 105.93-⋅⨯==m kT v 平均动能J 10142317k -⨯==./kT ε 12 -16 在容积为2.0 ×10-3m 3 的容器中,有内能为6.75 ×102J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022 个,求分子的平均平动动能及气体的温度.分析 (1) 一定量理想气体的内能RT i M m E 2=,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =mM RT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.解 (1) 由RT i M m E 2=和pV =mM RT 可得气体压强 ()Pa 1035125⨯==./iV E p(2) 分子数密度n =N/V ,则该气体的温度()()Pa 106235⨯===.//nk pV nk p T气体分子的平均平动动能为J 104972321k -⨯==./kT ε12 -17温度相同的氢气和氧气,若氢气分子的平均平动动能为6.21×10-21J ,试求(1) 氧气分子的平均平动动能及温度;(2) 氧气分子的最概然速率. 分析 (1) 理想气体分子的平均平动动能23k /kT ε=,是温度的单值函数,与气体种类无关.因此,氧气和氢气在相同温度下具有相同的平均平动动能,从而可以求出氧气的温度.(2) 知道温度后再由最概然速率公式M RT 2p =v 即可求解v p . 解 (1) 由分析知氧气分子的平均平动动能为J 102162321k -⨯==./kT ε,则氧气的温度为:K 30032k ==k εT /(2) 氧气的摩尔质量M =3.2 ×10-2 kg·mol -1 ,则有 12p s m 1095.32-⋅⨯==M RTv12 -18 声波在理想气体中传播的速率正比于气体分子的方均根速率.问声波通过氧气的速率与通过氢气的速率之比为多少? 设这两种气体都是理想气体并具有相同的温度.分析 由题意声波速率u 与气体分子的方均根速率成正比,即2v ∝u ;而在一定温度下,气体分子的方均根速率M /12∝v ,式中M 为气体的摩尔质量.因此,在一定温度下声波速率M u /1∝.解 依据分析可设声速M A u /1=,式中A 为比例常量.则声波通过氧气与氢气的速率之比为2502222O H O H .==M M u u12 -19 已知质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径.(1) 若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2) 说明大气层中为什么氢气比氧气要少.(取r =6.40 ×106 m)分析 气体分子热运动的平均速率MπRT 8=v ,对于摩尔质量M 不同的气体分子,为使v 等于逃逸速率v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容易达到逃逸速率.解 (1) 由题意逃逸速率gr 2=v ,而分子热运动的平均速率M πRT 8=v .当v v = 时,有RMrg πT 4= 由于氢气的摩尔质量13H mol kg 10022--⋅⨯=.M ,氧气的摩尔质量12O mol kg 10232--⋅⨯=.M ,则它们达到逃逸速率时所需的温度分别为K 10891K,101815O 4H 22⨯=⨯=..T T(2) 根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率.从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子.故大气层中氢气比氧气要少.12 -20 容积为1m 3 的容器储有1mol 氧气,以v =10m·s -1 的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少.分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为m v 2/2.按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:()T R M m mv E Δ25%80Δ2⋅=⋅=成立,从而可求ΔT .再利用理想气体物态方程,可求压强的增量. 解 由分析知T R M m m E Δ252/8.0Δ2⋅==v ,其中m 为容器内氧气质量.又氧气的摩尔质量为12m ol kg 1023--⋅⨯=.M ,解得ΔT =6.16 ×10-2 K当容器体积不变时,由pV =mRT/M 得Pa 51.0ΔΔ==T VR M m p 12 -21 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义. ()v v d /d N N f =,题中纵坐标()v v d /d N Nf =,即处于速率v 附近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0=⎰∞v v f .在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.解 (1) 由于分子所允许的速率在0 到20v 的范围内,由归一化条件可知图中曲线下的面积()1d 0=⎰∞v v f 即曲线下面积表示系统分子总数N .(2 ) 从图中可知, 在0 到0v 区间内,()0/v v v a Nf ;而在0 到20v 区间,()αNf =v .则利用归一化条件有v v v v v ⎰⎰+=000200d d v v a a N (3) 速率在0v /2到30v /2间隔内的分子数为12/7d d Δ2/300000N a a N =+=⎰⎰v v v v v v v (4) 分子速率平方的平均值按定义为()v v f v v v d /d 02022⎰⎰∞∞==N N 故分子的平均平动动能为20220302K 3631d d 2121000v v v v v v v v v v m N a N a m m ε=⎥⎦⎤⎢⎣⎡+==⎰⎰ 12 -22 试用麦克斯韦分子速率分布定律导出方均根速率和最概然速率. 分析 麦克斯韦分子速率分布函数为()⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=kT m kT m f 2exp π2π4222/3v v v 采用数学中对连续函数求自变量平均值的方法,求解分子速率平方的平均值,即⎰⎰=N Nd d 22v v , 从而得出方均根速率.由于分布函数较复杂,在积分过程中需作适当的数学代换.另外,最概然速率是指麦克斯韦分子速率分布函数极大值所对应的速率,因而可采用求函数极值的方法求得.解 (1) 根据分析可得分子的方均根速率为2/1242/302/1022d 2exp π2π4/d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎰⎰∞v v v v v kT m kT m N N N令222/x kT m =v ,则有 2/12/12/104273.13d 2π42⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=⎰∞-m RT m kT x e x m kT x v(2) 令()0d d =v v f ,即 02exp 222exp 2π2π42222/3=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛kT m kT m kT m T k m v v v v v 得 2/12/141.12⎪⎭⎫ ⎝⎛≈⎪⎭⎫ ⎝⎛==m RT m kT P v v12 -23 导体中自由电子的运动可看作类似于气体分子的运动(故称电子气).设导体中共有N 个自由电子,其中电子的最大速率为v F (称为费米速率).电子在速率v v v d ~+之间的概率为()()⎪⎩⎪⎨⎧>>>=v v v v v v 0,0 d π4d F 2A N A N N (1)画出分布函数图;(2) 用N 、v F 定出常数A ;(3) 证明电子气中电子的平均动能53F /εε=,其中22F F /mv =ε.分析 理解速率分布函数的物理意义,就不难求解本题.速率分布函数()vv d d 1N N f =,表示在v 附近单位速率区间的粒子数占总粒子数的百分比.它应满足归一化条件()()⎰⎰=∞F 00d d v v v v v f f , 因此根据题给条件可得()v v ~f 的函数关系,由此可作出解析图和求出A .在()v v ~f 函数关系确定的情况下,由()v v v v d 22f ⎰=可以求出v2 ,从而求出2/2v m ε=. 解 (1) 由题设可知,电子的速率分布函数()()()⎪⎩⎪⎨⎧>>>=F F 2 00 π4v v v v v v N A f ,其分布函数图如图所示. (2) 利用分析中所述归一化条件,有1d π4F02=⎰v v v NA 得 3F π4/3v N A = (3) ()53d N 4ππd 2F 20022F v v v v v v v v ===⎰⎰∞f 5/32/F 2εm ε==v12 -24 一飞机在地面时,机舱中的压力计指示为Pa 100115⨯.,到高空后压强降为Pa 101184⨯..设大气的温度均为27.0 ℃.问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 ×10-2 kg·mol -1 )分析 当温度不变时,大气压强随高度的变化主要是因为分子数密度的改变而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式()kT mgh p p /ex p 0-=,即可求得飞机的高度h .式中p 0 是地面的大气压强.解 飞机高度为 ()()m 1093.1/ln /ln 300⨯===p p MgRT p p mg kT h 12 -25 在压强为Pa 1001.15⨯下,氮气分子的平均自由程为6.0×10-6cm,当温度不变时,在多大压强下,其平均自由程为1.0mm 。

气体动理论习题解答

气体动理论习题解答

习题8-1 设想太阳就是由氢原子组成得理想气体,其密度可当成就是均匀得。

若此理想气体得压强为1、35×1014 Pa 。

试估计太阳得温度。

(已知氢原子得质量m = 1、67×10-27 kg ,太阳半径R = 6、96×108 m ,太阳质量M = 1、99×1030 kg )解:mR MVm M mn 3π)3/4(===ρK 1015.1)3/4(73⨯===Mkm R nk p T π8-2 目前已可获得1、013×10-10 Pa 得高真空,在此压强下温度为27℃得1cm 3体积内有多少个气体分子?解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8-3 容积V =1 m 3得容器内混有N 1=1、0×1023个氢气分子与N 2=4、0×1023个氧气分子,混合气体得温度为 400 K ,求: (1) 气体分子得平动动能总与;(2)混合气体得压强。

解:(1)J1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT t ε (2)Pa kT n p i323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8-4 储有1mol 氧气、容积为1 m 3得容器以v =10 m/s 得速率运动。

设容器突然停止,其中氧气得80%得机械运动动能转化为气体分子热运动动能。

问气体得温度及压强各升高多少?(将氧气分子视为刚性分子)解:1mol 氧气得质量kg 10323-⨯=M ,5=i 由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒TT R V p RT pV ∆=⋅∆⇒=ννpa 52.0102.631.82=⨯⨯=∆=∆∴-VTR p 8-5 一个具有活塞得容器中盛有一定量得氧气,压强为1 atm 。

大学物理简明教程陈执平参考解答(完整版)12.气体动理论习题

大学物理简明教程陈执平参考解答(完整版)12.气体动理论习题

12-1在实验室中得到大约Pa 10013.19-⨯的低压。

求温度为K 273室温时,低压区中每立方厘米内有多少个分子? 解: nkT p =,311239m1069.22731038.110013.1kTp n ---⨯=⨯⨯⨯==12-2 一光滑的活塞将截面均匀的封闭圆筒分割成两部分,如果其中的一部分装有0.1kg 某温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度质量为多少的氧气(氢气的摩尔质量为13molkg 1002.2M --⋅⨯=)?解 活塞停留在圆筒的正中央时,两边压强相同; 氢气一边的压强为: 11V /RT P ν=11V /RT 05.0= 故氧气一边的压强为:22V /RT P ν=11V /RT 05.0=又由 21T T = 和 21V V = 得氧气的摩尔数 05.0=ν所以其质量为 kg 1.6M m ==ν12-3 某气体体积为33m 10-,分子数2310N =,每个分子的质量为kg 10526-⨯,分子方均根速率为1s m 400-⋅。

求气体的压强、气体分子的总平动动能以及气体的温度。

解 由压强公式 )v 21(VN 32)v 21(n 32P 22μμ==得 Pa 1067.22103400105102P 5322623⨯=⨯⨯⨯⨯⨯⨯=--气体分子的总平动动能为J 400240010510v 2N w N E 226232k =⨯⨯⨯===-μ由nkT P =,得气体的温度K1931038.110101067.2NkPV nkP T 232335=⨯⨯⨯⨯===--12-4 已知氢气的摩尔质量13H molkg 102M2--⋅⨯=,求温度为K 400的氢气分子的平均速率、方均根速率及最概然速率。

解:氢气的摩尔质量13H mol kg 102M2--⋅⨯=,气体温度K 400T =,则有13Hsm 1006.2M RT8v 2-⋅⨯==π13H 2sm 1023.2M RT 3v2-⋅⨯==13H p sm 1082.1MRT 2v 2-⋅⨯==12-5 已知N 个粒子的速率分布⎪⎪⎩⎪⎪⎨⎧>=≤≤=≤≤=0000v 2v 0)v (f v 2v v a )v (f v v 0v av )v (f试求常数a 、速率大于0v 的粒子数及粒子的平均速率。

物理参考解答12-气体动理论

物理参考解答12-气体动理论
(5)根据内能公式
kT
28 10 3 kg mol -1
23 氮气(N2 )或一氧化碳(CO)气体
E
m i 5 3 RT 0.4 8.31 273J 2.310 J M 2 2
24
4
3. 一密闭房间的体积为5×3×3 m3,室温为20 0C。 空气的密度为 1.29 Kg/m3, 摩尔质量为 29 10 3 Kg/mol, 且空气分子可认为是刚性双原子分子。 求(1)室内空气分子热运动的平均平动动能的总和 是多少? (2)如果气体的温度升高1.0K,体积不变,则 气体的内能变化多少?气体分子的方均根速率增加 多少? 解(1)室内空气分子总的平均平动动能为:
3RT M
(3)分子的平均平动动能:
3 3 kT 1.38 10 23 273 J 5.6 10 21 J 2 2
分子的平均转动动能:
v2
3 0.011.013 105 494m s -1 1.24 10 2
(2)根据状态方程,得
1.24 10 2
2016/12/20 P.4
C
5.设某种气体的分子速率分布函数为 f ( v) ,则速率在 v1~v2区间内的分子平均速率为: v 2 v1 v f ( v ) d v v2 (A) v vf ( v )dv (B) v 2 1 f ( v )dv (C)

v2 v1
v1
Nv f ( v)dv
vf v d v

av 2 dv 7 v0 v v0 0 av 9 f v d v dv 1 v0 v 2 0

1 v0 2
5
等体过程: 等压过程:
v2

马文蔚《物理学》(第6版)(下册)课后习题-第十二章至第十五章【圣才出品】

马文蔚《物理学》(第6版)(下册)课后习题-第十二章至第十五章【圣才出品】

第12章气体动理论一、问题12-1你能从理想气体物态方程出发,得出玻意耳定律、查理定律和盖吕萨克定律吗?答:理想气体物态方程pV=vRT描述了理想气体在某种状态下,p,V,T三个参量所满足的关系式。

对于给定量的气体(不变),经历某一过程后,其初态和末态之间满足关系。

当温度不变时,有,即得玻意耳定律;当体积不变时,有,即得查理定律;当压强不变时,有,就是盖吕萨克定律。

12-2一定量的某种理想气体,当温度不变时,其压强随体积的增大而变小;当体积不变时,其压强随温度的升高而增大。

从微观角度来看,压强增加的原因是什么?答:压强是系统中大量分子在单位时间内对单位面积器壁碰撞的结果。

可由公式定量描述。

式中n为单位体积内的分子数,与一定量气体的体积有关;分子的平均平动动能与温度有关。

当温度不变,体积增大时,n减小,因此压强减小;当体积不变,温度升高时,由温度的升高而增大,从而导致压强增大。

12-3道尔顿(Dalton)分压定律指出:在一个容器中,有几种不发生化学反应的气体,当它们处于平衡态时,气体的总压强等于各种气体的压强之和。

你能用气体动理论对该定律予以说明吗?答:由P=nkT知,单独一种气体充满容器、温度为T时,产生的压强为同样第二种气体温度为T、产生的压强为,…,当几种气体混合处于:平衡态且温度为T时,压强为12-4阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分了数是相等的,与气体的种类无关。

你能用气体动理论予以说明吗?答:由P=nkT知,当温度和压强都相同时,气体的分子数密度n必定相等。

因此相同体积中含有的分子数也是相等的。

这与气体的种类无关。

12-5为什么说温度具有统计意义?讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动剧烈程度的宏观物理量。

由公式可知,分子平均平动动能与气体的温度成正比。

气体温度越高,分子平均平动动能越大,分子运动越剧烈。

由此可见,温度是大量分了热运动的集体表现,是个统计量,对一个分子来说,说它有多少温度是没有意义的。

气体动理论(附答案)

气体动理论(附答案)

气体动理论一、填空题1、(本题3分)某气体在温度为T = 273 K时,压强为p=1、0×10-2atm,密度ρ = 1、24×10-2 kg/m3,则该气体分子得方均根速率为____________。

(1 atm = 1、013×105 Pa)答案:495m/s2、(本题5分)某容器内分子密度为1026m-3,每个分子得质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器得一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁得碰撞为完全弹性得。

则(1)每个分子作用于器壁得冲量ΔP=_____________;(2)每秒碰在器壁单位面积上得分子数n0=___________;(3)作用在器壁上得压强p=_____________;答案:1、2×10-24kgm/s×1028m-2s-14×103Pa3、(本题4分)储有氢气得容器以某速度v作定向运动,假设该容器突然停止,气体得全部定向运动动能都变为气体分子热运动得动能,此时容器中气体得温度上升0、7K,则容器作定向运动得速度v=____________m/s,容器中气体分子得平均动能增加了_____________J。

(普适气体常量R=8、31J·mol-1·K-1,波尔兹曼常k=1、38×10-23J·K-1,氢气分子可视为刚性分子。

)答案::1212、4×10-234、(本题3分)体积与压强都相同得氦气与氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有得热运动动能在系统总热运动动能中所占得百分比为________。

答案:62、5%5、(本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时,(1)一个分子得平均动能为_______。

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。

对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。

当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。

由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。

换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。

2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。

3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。

答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。

(2)微观量:描述个别分子运动状态的物理量。

(3)宏观量:表示大量分子集体特征的物理量。

4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。

其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。

可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
专业班级
12.5
学号
5
姓名
一容器内储有氧气,其压强为 1.01 10 Pa ,温度为 300K。求:
(1)气体分子的数密度; (2)氧气的质量密度; (3)氧气分子的平均平动能。 1.01 105 P 2.45 10 25 m 3 kT 1.38 10 23 300 32 10 3 M 25 (2)方法一: nm n 2.45 10 1.3kg / m3 (注意摩尔质量的单位); 23 NA 6.02 10 解: (1) 物态方程 p nkT ,得 n
12.11 在常压下,把一定量的理想气体温度升高 50℃,需要 160J 的热量。在体积不变的情况 下,把此气体温度降低 100℃,将放出 240J 的热量,则此气体分子的自由度是_6_。 分析:本题为第十三章内容。 根据摩尔定体热容和摩尔定压热容公式: CV,m
dQ p i 2 dQV i R 和 C p,m R 得到 2 2 dT dT
m MP 32 10 3 1.01 105 m RT ,得到 1.3kg / m3 M V RT 8.31 300 3 3 (3)氧气分子的平均平动能: k kT 1.38 10 23 300 6.21 10 21 J 2 2 注意:物态方程中的参数都要使用国际单位,因此摩尔质量 M 的单位应该取 kg / mol ,例
专业班级
学号
§12.1~12.3
姓名
12.1 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情 况下气体的状态 【B】 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. 分析:一定量的气体,在不受外界的影响下,经过一定的时间,系统达到一个稳定的宏观 性质不随时间变化的状态称为平衡态.(第十二章复习提纲 P.5) 根据物态方程 pV RT 可知,当一定量的气体各处压强(或者温度)相等时,并不能保证 气体的体积和温度(或者压强)时时不变,因此不能说此时气体达到平衡态。 如果本题改为:一定量的气体,各处压强相同,并且各处温度也都相同,此时气体的体积 也就是确定的值,因此气体达到平衡态。 12.2 若理想气体的体积为 V,压强为 P,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常 量,R 为普适气体常量,则该理想气体的分子数为【B】 (A)
CV,m CP,m

dQV dT
i dQP 240 160 ,得到自由度 i=6 dT 10Байду номын сангаас 50 i 2
3
专业班级
12.12 平均自由程 的变化情况是: (A) z 和 都增大一倍;
学号
姓名
一定量的理想气体,在温度不变的条件下,压强增大一倍时,分子的平均碰撞频率 z 和 (B) z 和 都减为原来的一半; (D) z 减为原来的一半, 增大一倍。

p( H 2 ) M O2 4, p( O2 ) 600m / s 。 p ( O2 ) M H2
M H 2 v2 2 10 3 2400 2 2 RT p(H 2 ) ,得温度 T 693K 2R 2 8.31 M H2
2
(2)以氢气为例 vp(H 2 )


v2
v1
f ( v ) dv 表示 理想气体在平衡状态下,速率位于 v1 到 v2 区间的分子数占总数的
百分比(相对分子数或概率) 。 (参看第十二章复习提纲 P.21) (2)
2

0
v 2 f (v)dv 表示 理想气体在平衡状态下, 大量分子热运动速率平方的统计平均值 。
(即 v ,参看第十二章复习提纲 P.23,方均根速率)
分析:参看第十二章复习提纲 P.15 中温度的物理意义。温度为宏观量,是大量分子集体表 现出来的行为,单个分子的温度没有意义。因此(2)错误,其余的表述准确。 12.7 (A) 温度和压强相同的氧气和氦气,则它们每个分子的平均平动动能 (B)
k 和平均总动能
的关系为: 【C】
k 和 都相等 ; (C) k 相等而 不相等;
气体自由度 i=3(t=3) 。
k 不相等而 相等; (D) k 和 都不相等。
分析:氧气(O2)为双原子分子气体,自由度 i=5(t=3,r=2) ;氦气(He)为单原子分子
3 kT (由能量均分定理知,分子 i 个自由度的平均能量为 2 3 i ,可见与气体 kT ,对于氧气和氦气,他们的平动自由度都为 3,所以平均平动动能都为 kT ) 2 2 的种类无关,而只与温度和平动自由度 t 有关。 i 每个分子的平均总动能 kT ,除了与温度有关外还跟动能的自由度总数 i 有关。 2
2
3kT 3kPV 3kMPV PV , 平均平动动能 k 2 2R 2mR R
其中氢气的摩尔质量 M 2.0 10 3 kg / mol(注意单位) , 玻尔兹曼常量 k 1.38 10 23 J K 1 ,
m 表示气体的质量。代入题干中的数值,得到 k 3.89 1022 J 。 m 3p N 2 N A 可求解 k 。其中 方法二:压强公式 p n k 得到 k ,利用 n , N N A 3 M 2n V 氢气的摩尔质量 M 2.0 10 3 kg / mol (注意单位) ,阿伏伽德罗常数 N A 6.02 10 23 mol 1 。
5
12.14 1.010
2
容 器 内 盛 有 理 想 气 体 , 其 密 度 为 1.24 10
kg m 3 , 温 度 为 273K, 压 强 为
atm。求:
(1) 气体分子的平均速率? (2) 气体的摩尔质量 M,并确定它是什么气体? (3) 气体分子的平均平动动能和平均转动动能各为多少? (4) 容器单位体积内分子的平均总动能为多少? (5 )若该气体共有 0.5 摩尔,其内能是多少? 解:(参看第十二章复习提纲 P.31 例题) m m PM RT , M V RT
(1) PV

8RT 8P 8 1103 453m / s (标准大气压:1 atm 105 Pa ) 2 M 3.14 1.24 10
4
专业班级
RT
学号
姓名
1.24 10 2 8.31 273 (2) M 28 10 3 kg / mol ,气体为 N 2或CO 。 3 P 10 3 2 (3) k kT 5.65 10 21 J , r kT 3.77 10 21 J 。 2 2
方法二:物态方程 pV 如氧气分子的摩尔质量 M O2 32 10 3 kg / mol 。
§12.4~12.8 12.6 关于温度的意义,下列几种说法中正确的是: 【B】 (1)气体的温度是分子平均平动动能的量度。 (2)从微观上看,气体的温度表示每个气体分子的冷热程度。 (3)温度的高低反映物质内部分子运动剧烈程度的不同。 (4)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (A) (1) 、 (2 ) 、 (3) ; (C) (2) 、 (3 ) 、 (4) ; (B) ( 1) 、 (3 ) 、 (4) ; (D)四种说法都正确。
PV ; m
(B)
PV ; kT
(C)
PV ; RT
(D)
PV 。 mT
分析: (参看第十二章复习提纲 P.27 例题) 理想气体物态方程的形式之一为: pV NkT ,可得气体分子数 N
PV kT
12.3 两瓶不同种类的理想气体,设其分子平均平动能相等,但分子数密度不相等,则【D】 (A)压强和温度都相等; (B)压强相等,温度不相等; (C)方均根速率相等; (D)压强不相等,温度相等。 分析:利用气动理论中压强和温度的计算公式分析,可知压强和温度与气体种类无关。 压强公式: p
12.10 300K 时氢分子的最概然速率、平均速率和方均根速率分别为 1579m/s ; 1781m/s ; 1934m/s 。 分析:参看第十二章复习提纲 P.23。最概然速率 vp 速率 vrms
2 RT 8RT ;平均速率 v ;方均根 M πM
3RT ,其中 R 8.31 J mol1 K 1 ,氢气分子的摩尔质量取 M H 2 2 10 3 kg / mol 。 M 注意:摩尔质量取国际单位制 kg / mol 。
每个分子的平均平动动能 k
2
专业班级
12.8
学号
姓名
在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积之比为 1:2,
则其内能之比为【C】 (A) 3:10; (B)1:2; (C) 5:6;
5
(D) 5:3。
分析:气体标准状态为 T0 273K ,P0 1.013 10 Pa 1 atm(标准大气压) 氧气(O2)自由度 i=5;氦气(He)自由度 i=3。 i i ,所以根据题意两气体内 气体的内能公式: E RT PV (利用物态方程 PV RT ) 2 2 EO iO P0VO2 5 1 5 能之比 2 2 。 EHe iHe P0VHe 3 2 6 12.9 在平衡态下,理想气体分子的麦克斯韦速率分布函数为 f (v),试说明下列各式的物理意 义。 (1)
1 2

kT
图中两条曲线是氢气和氧气在同一温度下分子的麦克斯韦速率分布曲线。试由图中
f ( v)
M H2
2400 M O2 , p( H 2 ) p( O2 ) 。 (参看第十二章复习提纲 P.29 例题)
2 RT M
o
v / ms 1

相关文档
最新文档