常微分方程的发展史

合集下载

常微分方程的发展史 毕业论文

常微分方程的发展史  毕业论文

常微分方程的发展史摘要:常微分方程是17世纪与微积分同时诞生的一门理论性极强且应用广泛的数学学科之一,本文从常微分方程的起源谈起,分四个时期介绍其发展过程。

本文从常微分方程的起源发展、理论知识及基本原理、应用等方面出发,系统地介绍常微分方程的发展史和在数学发展中的重要意义。

引言:随着科技进步和工业现代化的发展,物理、化学、生物、工程、航空航天、医学、经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程,如牛顿的运动定律、万有引力定律、机械能守恒定律,能量守恒定律、人口发展规律、生态种群竞争、疾病传染、遗传基因变异、股票的涨伏趋势、利率的浮动、市场均衡价格的变化等。

而数学建模通常是针对生产、管理、社会、经济等领域中提出的原始问题进行解决的过程。

这些问题基本上没有经过任何的加工处理,也没有固定的形式,也看不出明确的解决方法,因此,数学建模的过程是一项培养我们大学生创造能力和创新思维能力的“实践”,通过数学建模,把生活中的具有实际的现实意义的问题结合上所学的理论知识当中,真正做到学有所用,学以致用。

对这些问题的描述、认识和分析就归结为对相应的常微分方程描述的数学模型的研究。

因此,常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学的各个领域。

关键词:常微分方程起源发展一、常微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式,微分方程理论的发展是随着微积分理论的建立发展起来的。

一般地, 客观世界的事件的联系是服从一定的客观规律的, 而这种联系, 用数学语言表述出来, 即抽象为微分方程,一旦求出其解或研究清楚其动力学行为, 变量之间的规律就一目了然了。

例如在物体运动中,位移的计算就与瞬时速度之间有着紧密的联系,其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为,就明确掌握了物体的运动规律。

1.1 常微分方程的产生背景随着微积分的建立,微分方程理论也发展起来。

常微分方程第三版全文

常微分方程第三版全文
设镭的衰变规律与该时刻现有的量成正比, 且已知t 0时, 镭元素的量为R0克,试确定在 任意t时该时镭元素的量.
解 设t时刻时镭元素的量为R(t),
依题目中给出镭元素的衰变律可得 :
dR dt
kR,
R(0) R0
这里k 0,是由于R(t)随时间的增加而减少.
解之得 :
例2 RLC电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源 e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当 开关K合上后,电路中电流强度I与时间t之间的关系.
沃特拉把所有的鱼分为两类:被食鱼 与捕食鱼,设t时刻被食鱼的总数为x(t),而 捕食鱼的总数为y(t).

Volterra
dx
被捕食-捕食模型:
dt dy
x(a by), y(c dx)
dt
Volterra
dx
模型:
dt dy
x(a bx cy), y(d ex fy)
dt
欧拉 (1707 – 1783)
瑞士数学家. 他写了大量数学经典 著作, 如《无穷小分析引论 》, 《微 分学原理 》, 《积分学原理》等, 还 写了大量力学, 几何学, 变分法教材. 他在工作期间几乎每年都完成 800 页创造性的论文. 他的最大贡献是扩展了微积分的领域, 为分析学的重 要分支 (如无穷级数, 微分方程) 与微分几何的产生和 发展奠定了基础. 在数学的许多分支中都有以他的名 字命名的重要常数, 公式和定理.
一、什么是微分方程?
方程对于学过中学数学的人来说是比较熟悉的; 在初等数学中就有各种各样的方程,比如线性方 程、二次方程、高次方程、指数方程、对数方程、 三角方程和方程组等等。这些方程都是要把研究 的问题中的已知数和未知数之间的关系找出来, 列出包含一个未知数或几个未知数的一个或者多 个方程式,然后取求方程的解。

常微分方程的发展史

常微分方程的发展史

常微分方程的发展史摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”.关键词:常微分方程,发展,起源正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。

17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。

但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。

1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。

雅可比·伯努利自己解决了前者。

翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。

有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。

常微分方程的发展史毕业论文

常微分方程的发展史毕业论文

常微分方程的发展史毕业论文常微分方程(Ordinary Differential Equations,ODE)是描述自变量只有一个的函数与其导数之间关系的数学方程。

它是应用数学中的重要分支,广泛应用于物理、工程、生物等领域。

本文将介绍常微分方程的发展史,并探讨其在数学和应用方面的重要性。

常微分方程的历史可以追溯到17世纪。

当时,牛顿的《自然哲学的数学原理》(Principia Mathematica)的出版,为微分方程的研究奠定了基础。

著名的数学家欧拉和拉普拉斯也做出了许多对微分方程的重要贡献。

19世纪,微分方程的研究取得了突破性进展。

拉格朗日、拉普拉斯和普朗克等学者提出了一些重要的微分方程理论。

其中,拉普拉斯将微分方程的理论发展为一个完整的科学,提供了定义、分类和解法。

此外,阿贝尔、亥姆霍兹和斯托克斯等学者对微分方程的特殊类型进行了深入研究。

20世纪初,随着数值计算和计算机的发展,微分方程的研究进入了一个新的阶段。

数值方法的出现使得人们能够求解更加复杂的微分方程。

例如,飞机设计需要解决空气动力学方程,而人们使用数值方法来模拟空气流动。

另一个重要的进展是变分法和泛函分析在微分方程研究中的应用,使得人们能够处理更加一般的微分方程。

随着数学和应用领域的发展,常微分方程的研究也取得了新的进展。

例如,关于常微分方程的稳定性和周期性解的研究,为深入理解动力系统的稳定性提供了理论基础。

人们还将常微分方程的方法推广到偏微分方程的研究中,为更多实际问题的建模和求解提供了工具。

在应用方面,常微分方程广泛应用于物理学、工程学和生物学等领域。

物理学中的力学、电磁学和量子力学等问题都可以用微分方程来描述。

工程学中,微分方程被用于建模和控制系统的研究与设计。

而生物学中,微分方程被用于描述生物体内的生物化学反应、人口增长和疾病传播等问题。

总之,常微分方程作为数学的重要分支,在数学理论和应用研究上都有着重要的地位。

它的发展史见证了人类对于自然界的认识和技术能力的提升,为解决复杂实际问题提供了有力的工具。

常微分方程发展简史—经典阶段

常微分方程发展简史—经典阶段

第一讲 常微分方程发展简史——经典阶段一、引 言Newton 和Lebinitz 创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家.Newton 和Lebinitz 都处理过与常微分方程有关的问题. 微积分的产生的一个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律 很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了.在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题.作为例子, 我们介绍著名的Malthus 模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型. 给定一个种群, 我们的目的是确定种群的数量是如何随着时间而发展变化的. 为此,我们作出如下假设:模型假设:121()H 初始种群规模已知00()x t x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;221()H 种群在空间分布均匀,没有迁入和迁出 (或迁入和迁出平衡);321()H 种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等.421()H 环境资源是无限的.确定变量和参数: 为了把问题转化为数学问题, 我们首先确定建模中需要考虑的变量和参数:t: 自变量, x(t): t 时刻的种群密度,b: 瞬时出生率, d: 瞬时死亡率.模型的建立与求解:考查时间段[,]t t t +∆ (不失一般性, 设0t ∆>), 由物质平衡原理,在此时间段内种群的数量满足: t t ∆+时刻种群数量 – t 时刻种群数量 = t ∆内新出生个体数 – t ∆内死亡个体数,即()()()(),x t t x t bx t t dx t t +∆-=∆-∆亦即()()()(),x t t x t b d x t t+∆-=-∆ 令0t ∆→,可得()()():()dx t b d x t rx t dt=-= 满足初始条件0(0)N N =的解为()00().b d t rt x t x ex e -== 于是有0r >,即 b d >,则有 lim (),t x t →∞=+∞ 0r =,即 b d =,则有 0lim (),t x t N →∞= 0r <,即 b d <,则有 lim ()0.t x t →∞= Malthus 模型的积分曲线 ()x t 呈“J ”字型, 因而种群的指数增长又称为“J ”型增长.二、常微分方程发展简史常微分方程是伴随着微积分发展起来的, 微积分是它的母体, 生产生活实践是它生命的源泉. 300年来,常微分方程诞生于数学与自然科学(物理学、力学等)进行崭新结合的16、17世纪,成长于生产实践和数学的发展进程,表现出强大的生命力和活力,蕴含着丰富的数学思想方法。

常微分方程的发展史

常微分方程的发展史

常微分方程的发展史摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。

17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。

但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。

1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。

雅可比·伯努利自己解决了前者。

翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。

有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。

常微分方程的形成与发展

常微分方程的形成与发展

常微分方程的形成与发展常微分方程(Ordinary Differential Equations,ODEs)是数学中的一个重要分支,它以其广泛的应用领域和深刻的理论基础而备受关注。

本文将介绍常微分方程的形成与发展,并探讨其在科学和工程领域的应用。

常微分方程的历史可以追溯到17世纪,当时数学家牛顿和莱布尼茨独立地发现了微积分学。

微积分学为解决实际问题提供了强有力的工具,但对于涉及变化率的问题,如天体运动、物体受力等,微积分的基本概念似乎无法直接应用。

为了解决这些问题,数学家们开始研究变化率的微分方程,并逐渐发展出了常微分方程的理论。

常微分方程描述了未知函数的导数与自变量之间的关系。

最简单的一阶常微分方程形式为dy/dx = f(x),其中y是未知函数,f(x)是已知函数。

这个方程的解即是函数y = f(x)在给定条件下满足导数关系的解。

通过求解常微分方程,可以获得函数的具体形式,从而预测和分析系统的行为。

在常微分方程的研究中,数学家们提出了许多重要的理论和方法。

例如,欧拉和拉格朗日在18世纪提出了变分法和最优控制理论,用于求解常微分方程的极值问题。

拉普拉斯和傅里叶则发展了傅里叶级数和傅里叶变换,用于求解常微分方程的周期性和频域特性。

这些理论和方法不仅为常微分方程的研究提供了强大的工具,也推动了数学、物理、工程等学科的发展。

常微分方程在科学和工程领域有广泛的应用。

例如,物理学中的牛顿运动定律可以用常微分方程来描述。

工程学中的控制系统、电路和机械振动等问题也可以通过常微分方程进行建模和分析。

生物学中的生态系统、遗传学和神经科学等问题也涉及到常微分方程的应用。

此外,在金融学、经济学、流体力学等领域,常微分方程也扮演着重要的角色。

随着计算机技术的发展,数值方法成为求解常微分方程的重要手段。

数值方法通过将微分方程转化为差分方程,并利用计算机进行近似计算,可以得到方程的数值解。

这种方法在实际问题中具有很大的应用价值,例如天气预报、飞行器设计和药物动力学等领域。

常微分方程发展简史

常微分方程发展简史

常微分方程发展简史在17世纪初,牛顿和莱布尼茨的微积分发现为常微分方程的研究提供了基础。

他们建立了微分和积分的概念,并发展了微积分的基本原理。

这些成果为后来的常微分方程的研究奠定了基石。

在17世纪晚期,丹麦数学家欧拉(Euler)对常微分方程做出了很大贡献。

他提出了一阶常微分方程的解可以用指数函数来表示,并且解决了许多具体的微分方程问题。

欧拉还提出了欧拉方程,为后来的常微分方程研究奠定了基础。

在18世纪,数学家拉普拉斯(Laplace)和拉格朗日(Lagrange)继续推进了微分方程的研究。

他们提出了许多常微分方程的解法,如分离变量法、变换法和齐次化方法等。

这些方法为常微分方程的求解提供了有效的途径。

19世纪初,高斯(Gauss)提出了可微分曲线的理论,为微分方程的几何解释提供了基础。

同时,柯西(Cauchy)建立了常微分方程的数学理论,给出了数学上严格的解决方法。

他提出了柯西问题,即通过给定初始条件求解微分方程的问题。

这一问题成为后来微分方程理论的核心。

19世纪中期,数学家魏尔斯特拉斯(Weierstrass)和韦伊斯特拉斯(Weierstrass)进一步发展了微分方程的理论,提出了广义解和李普希茨条件等概念。

他们的工作为微分方程的研究提供了更加严密的数学基础。

20世纪初,数学家波安卡列(Poincaré)对常微分方程的稳定性和周期性做出了重要贡献。

他提出了位相空间和奇点的概念,并研究了常微分方程在位相空间中的变化规律。

这一工作为后来的动力系统理论的发展奠定了基础。

20世纪后期,随着计算机的发展,常微分方程的数值解法得到了广泛应用。

数学家和工程师利用计算机模拟和迭代求解的方法,可以更加准确地求解含有复杂边界条件的常微分方程。

这一进展使得常微分方程的应用领域得到了大大的拓展,包括物理学、工程学和经济学等。

总结起来,常微分方程的研究经历了几个重要的阶段,从17世纪初的微积分基础,到18世纪的解法发展,再到19世纪的理论建立,最后到20世纪的计算机应用。

微分方程——基本概念和常微分方程的发展史

微分方程——基本概念和常微分方程的发展史

微分⽅程——基本概念和常微分⽅程的发展史1.2 基本概念和常微分⽅程的发展史⾃变量、未知函数均为实值的微分⽅程称为实值微分⽅程;未知函数取复值或变量及未知函数均取复值时称为复值微分⽅程。

若⽆特别声明,以下均指实变量的实值微分⽅程。

1.2.1 常微分⽅程基本概念(1) 常微分⽅程和偏微分⽅程微分⽅程就是联系⾃变量、未知函数及其的关系式。

如果在微分⽅程中,⾃变量的个数只有⼀个,则称这种微分⽅程为常微分⽅程;⾃变量的个数为两个或两个以上的微分⽅程为偏微分⽅程。

⼀般的n阶常微分⽅程具有形式:F x,y,dydx,⋯,d n ydx n=0(1.38)微分⽅程中出现的未知函数最⾼阶的阶数称为微分⽅程的阶数。

此后,我们把常微分⽅程称为“微分⽅程”,有时更简称为“⽅程”。

(2) 线性和⾮线性如果⽅程(1.38)的左端为未知函数及其各阶导数的⼀次有理整式,则称(1.38)为n阶线性微分⽅程。

⼀般n阶线性微分⽅程具有形式不是线性⽅程的⽅程称为⾮线性⽅程。

例如⽅程(3) 解和隐式解如果函数y=φ(x)代⼊⽅程(1.38)后,能使它变为恒等式,则称函数y=φ(x)为⽅程(1.38)的解。

如果关系式Φ(x,y)=0决定的函数y=φ(x)是⽅程(1.38)的解,称为称Φ(x,y)=0为⽅程(1.38)的隐式解,隐式解也称为“积分”。

为了简单起见,以后我们不把解和隐式解加以区别,统称为⽅程的解。

(4) 通解和特解我们把含有n个独⽴的任意常数c1,c2,⋯,c n的解称为n阶⽅程(1.38)的通解。

为了确定微分⽅程⼀个特定的解,我们通常给出这个解所必须的条件,这就是所谓的定解条件。

常见的定解条件是初值条件和边值条件。

求微分⽅程满⾜定解条件的解,就是所谓定解问题。

当定解条件为初值条件时,相应的定解问题,就称为初值问题。

我们主要讨论初值问题。

我们把满⾜初值条件的解称为微分⽅程的特解。

初值条件不同,对应的特解也不同。

⼀般来说,特解可以通过初值条件的限制,从通解中确定任意常数⽽得到。

常微分方程发展简史—经典阶段

常微分方程发展简史—经典阶段

常微分方程发展简史—经典阶段微分方程是数学的一个重要分支,它研究函数与其导数之间的关系。

常微分方程是其中的一类,它描述了一个未知函数与其导数之间的关系。

常微分方程的研究历史可以追溯到古代,但其经典阶段始于17世纪,并且在18世纪达到了高峰。

下面将简要介绍常微分方程发展的经典阶段。

17世纪是微积分学的发展时期,许多数学家开始研究微分方程。

其中最重要的是牛顿和莱布尼茨的工作,他们独立地发现了微积分的基本原理,并将其应用于物理问题的求解。

牛顿发展了牛顿运动定律,并通过微分方程的形式来描述物体的运动。

他的工作使常微分方程成为了解决物理问题的重要工具。

18世纪是常微分方程研究的黄金时期。

数学家们开始系统地研究微分方程的性质和解法。

最著名的数学家之一是欧拉,他在微分方程领域做出了巨大贡献。

他研究了线性和非线性常微分方程,并提出了解这些方程的方法。

他的工作奠定了常微分方程的基础理论,并推动了后续的研究。

欧拉之后,许多数学家对常微分方程进行了进一步的研究。

拉普拉斯、拉格朗日和傅里叶等数学家都为微分方程的理论和解法作出了贡献。

拉普拉斯提出了一种新的解微分方程的方法,即变量分离法。

这种方法被广泛应用于解常微分方程的各种形式。

拉格朗日则研究了经典力学中的变分原理,并将其应用于解微分方程。

傅里叶的贡献是将常微分方程的解表示为正弦和余弦函数的形式,这被称为傅里叶级数展开。

此外,拉普拉斯和拉格朗日还提出了一种新的方法,即变换法。

这种方法将一个复杂的微分方程转化为一个更简单的形式,从而易于求解。

这为后来的研究提供了重要的思路。

到了19世纪,常微分方程的研究越来越深入。

高斯、庞加莱和魏尔斯特拉斯等数学家在微分方程的解法和理论方面取得了重要进展。

高斯研究了二阶常微分方程的解法,提出了高斯超几何函数的概念。

这个函数在物理学和工程学中有广泛的应用。

庞加莱提出了一种新的方法,即微分方程的数值解法。

他的工作为计算机模拟和数值计算奠定了基础。

常微分方程发展简史--适定性理论阶段

常微分方程发展简史--适定性理论阶段

第二讲 常微分方程发展简史——适定性理论阶段高阶方程● 1734年12月, Bernoulli Daniel 在给当时在圣彼得堡的Euler 的信中说, 他已经解决了一端固定在墙上而另一端自由的弹性横梁的横向位移问题, 他得到了一个四阶线性常微分方程444,d y k y dx = 其中k 是常数, x 是横梁上距自由端的距离, y 是在x 点的相对于横梁为弯曲位置的垂直位移. Euler 在1735年6月前的回信中说道, 他也已经发现了这个方程, 对这个方程, 除了用级数外无法积分. 他确实得到了四个级数解, 这些级数代表圆函数和指数函数, 但在当时Euler 没有了解到这一点.1739年9月, Euler 在给Bernoulli John 的信中指出, 上述方程的解可以表示成1[(cos cosh )(sin sinh )],x x x x y a k k b k k=+-- 其中b 可由条件()0y l =来确定.● 弹性问题促使Euler 考虑求解常系数一般线性方程的数学问题. 1739年9月, Euler 在给BernoulliJohn 的信中首次提到了常系数齐次常微分方程, 并说他已取得了成功.● 在1743年至1750年间, Euler 考虑了$n$阶常系数齐次线性方程()(1)11(),n n n n y a y a y a y f x --'++⋅⋅⋅++=第一次引入了特解、通解的概念, 指出通解必包含n 个任意常数, 而且是由n 个特解分别乘以任意常数后相加而成的, 创立了求解$n$阶常系数线性齐次微分方程的完整解法--特征方程法. 讨论了特征根是单根、重根、共轭复根和复重根的情形, 这样Euler 完整解决了常系数线性齐次方程求解问题.● 1750年至1751年, Euler 讨论了n 阶常系数线性非齐次方程, 他又提出了一种降低方程阶的解法.Euler 还是微分方程近似解的创始人, 他提出了的``欧拉折线法"不仅解决了常微分方程解的存在性的证明, 而且也是常微分方程数值计算的最主要的方法之一. 1750年, Euler 又给出了求解微分方程的级数解法. 1768年至1769年, Euler 还将积分因子法推广到高阶方程, 以及利用变换可以将变系数的Euler 方程化为常系数线性方程.● 在Euler 工作的基础上, 1763年D'Alembert 给出了求非齐次线性方程通解的方法, 即非齐次方程的通解等于齐次方程的通解加上一个非齐次方程的特解.● 1762年至1765年间, Lagrange J 对高阶变系数线性齐次方程的研究也迈出了一步, 并引出伴随方程(这个名字是1873年Fuchs Lazarus 取的, Lagrange 并未给它取名), 同时发现一个定理: 非齐次线性常微分方程的伴随方程的伴随方程, 就是原来方程对应的齐次方程. Lagrange 把Euler L 在1743年至1750年间关于常系数线性齐次微分方程的某些结果推广到了变系数线性齐次方程. Lagrange 发现, 齐次方程的通解是由一些独立的特解分别乘以任意常数后相加而成的, 而且若已知高阶方程的m 个特解就可以将方程降低m 阶.● 1774-1775年, Lagrange 提出了“常数变易法”, 解出了一般$n$阶变系数非齐次线性常微分方程. 这是18世纪微分方程求解的最高成就.● Newton I 在创建微积分时就给出了求解微分方程的“级数展开法”和“待定系数法”; 1842年CauchyA 完善了“待定系数法”.探索常微分方程的一般积分方法大概到1775年就停止了, 此后100年没有出现新的重大的新方法, 直到19世纪末才引进了Laplace 变换法和算子法.从总体上看, 17世纪的微分方程仍然是微积分的一部分, 并未单独形成一个分支学科. 在18世纪, 由解决一些具体物理问题而发展起来的微分方程, 已经成为有自己的目标和方法的新的数学分支. 这段时期, 数学家把注意力主要集中在求常微分方程的解上, 并且取得了一系列重大进展. 对解的理解和寻求, 在本质上逐渐起了变化. 最初, 数学家们用初等函数找解, 接着是用一个没有积出的积分来表示解. 在用初等函数及其积分来寻求解的巨大努力失败之后, 数学家们转向用无穷级数求解了. 但后来人们逐渐发现, 很多常微分方程求解是非常困难的, 甚至是不可能的.2、常微分方程适定性理论:19世纪初期和中期19世纪初期和中期是数学发展史上的一个转变时期。

常微分方程发展简史——解析理论与定性理论阶段3常微分

常微分方程发展简史——解析理论与定性理论阶段3常微分

常微分方程发展简史——解析理论与定性理论阶段3常微分常微分方程(Ordinary Differential Equations,简称ODEs)作为数学中重要的研究领域之一,早在古代数学家就开始研究。

然而,对于常微分方程的深入研究直到16世纪才真正开始。

定性理论阶段在常微分方程的发展历史中,定性理论阶段是一个重要的里程碑。

在17世纪,欧洲的许多数学家开始对常微分方程进行研究,并取得了一些重要的成果。

其中最著名的数学家是伯努利家族,他们的研究成果对定性理论的发展产生了巨大的影响。

定性理论的主要目标是研究常微分方程的解的性质,而不是具体的解的形式。

欧拉则提出了一种提供常微分方程解单值化的方法,通过引入无穷远点的概念,将复杂的解变为简单的解。

之后,拉普拉斯又发展了一种完全不同的方法,基于群论的观点,用幂级数来表示解,并通过对幂级数的收敛性进行分析。

解析理论阶段19世纪初,解析理论阶段开始。

拉格朗日和伽罗瓦两位法国数学家在解析理论的发展中发挥了关键的作用。

伽罗瓦则通过研究方程的对称性和置换群的理论,将求解常微分方程的问题转化为求解多项式方程的问题。

他的工作对解析理论的发展产生了深远的影响。

除了法国数学家的贡献外,俄罗斯数学家切布雪夫和德国数学家雅可比也做出了重要的贡献。

切布雪夫发展了关于常微分方程解的唯一性和存在性的理论,而雅可比则通过引入雅可比行列式,研究了常微分方程解的特征。

总结总的来说,常微分方程的发展经历了三个阶段:古代数学家的初步研究、定性理论阶段和解析理论阶段。

定性理论阶段主要是研究解的特性,而解析理论阶段则关注具体的解的形式。

这些理论的发展为后来的数学家提供了基础,也为应用数学领域的发展打下了坚实的基础。

常微分方程的发展史

常微分方程的发展史

常微分方程的发展史古希腊时期,数学家们已经开始研究变化率的概念。

柏拉图的学派研究了一些与变化有关的问题,但没有形成完整的理论体系。

欧几里得和阿基米德的工作也涉及到变化率的概念,但不是以微分方程的形式出现。

到了17世纪,微积分的出现为常微分方程的形成奠定了基础。

众所周知,牛顿和莱布尼茨几乎同时独立发现了微积分学,为数学提供了解决变化问题的新方法。

牛顿在《自然哲学的数学原理》中系统地描述了微积分学,这其中就包括了常微分方程的基本概念和方法。

在牛顿和莱布尼茨之后,许多数学家对常微分方程进行了深入研究。

欧拉和拉格朗日都做出了重要贡献。

欧拉在常微分方程的解法中独创地引入了指数函数,并建立了常微分方程的一种通用解法。

拉格朗日则提出了常微分方程的拉格朗日变换方法,使其在特定问题的求解中更加简化。

到了18世纪,高斯和拉普拉斯等数学家对常微分方程的研究取得了突破性进展。

高斯提出了“用有限项解”的概念,选取了特定形式的函数作为常微分方程的解,从而解决了一些常微分方程的特解问题。

19世纪是常微分方程研究的繁荣时期。

该时期的数学家们在解析解法、级数解、特解以及数值解的研究方法上取得了长足进展。

拉普拉斯为生物、物理和天文学中的实际问题提供了常微分方程的解析解。

波利亚和卡尔内斯则为常微分方程的级数解提供了系统的研究方法。

20世纪是常微分方程研究的极其重要时期。

在此期间,常微分方程与控制论、动力系统等领域发生了深入的交叉。

著名数学家皮卡尔引入了皮卡尔定理,研究非线性常微分方程的局部解存在性和唯一性。

此外,20世纪还出现了新的数值方法,例如欧拉法和龙格-库塔法,用于求解常微分方程的数值解。

从西蒙,泰勒爵士到费曼,众多科学家和数学家在其研究中广泛使用常微分方程。

无论是经济学、物理学、工程学,还是生物学、化学等领域,常微分方程都有着重要的应用。

总结起来,常微分方程是以微积分学为基础的数学分支,其发展历史可以追溯到古希腊时期。

从牛顿和莱布尼茨的发现开始,数学家们对常微分方程进行了深入研究并取得了重要进展。

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。

这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展.虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。

这些特殊的方法和问题,将有助于我们解决很多问题。

引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征.比如,我们可以试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。

通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。

最后再通过微分方程求出未知函数.关键字:微分方程起源发展史一、微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式。

微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。

例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。

1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。

这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。

1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。

物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。

常微分方程的形成与发展

常微分方程的形成与发展

常微分方程的形成与发展常微分方程(Ordinary Differential Equations, ODEs)是数学中的一个重要分支,它描述了未知函数的导数与自变量之间的关系。

常微分方程的形成与发展涉及了很多数学家的研究工作,下面将从古希腊时期的微分方程雏形开始介绍。

微分方程的雏形可以追溯到公元前250年,亚历山大的狄氏方程(Dido's equation)。

狄氏方程是腓尼基王后狄多在建立迦太基城市时遇到的一个问题。

她希望修建一条半圆形的城墙,使得城墙围起的面积最大。

经过求解,她得到了半圆的解,这是一种具有最大面积的形状。

这个问题可以用微分方程的形式表示,即通过求解方程的极值问题来获得最优解。

在17世纪,微积分的发展促进了微分方程的研究。

众多著名的数学家如牛顿、莱布尼茨、欧拉等都对微分方程进行了深入研究,使得微分方程得到了扎实的理论基础。

牛顿在其《自然哲学的数学原理》中首次提出了微分方程的概念,并利用微分方程来描述物体的运动。

他通过对运动物体的速度进行微分得到了物体的加速度。

牛顿开创性地应用微分方程来建立物理学中的数学模型。

在18世纪,欧拉对微分方程作出了重要贡献。

他通过引入复数来解决了一阶线性常微分方程的问题。

此外,欧拉还开发了许多常见的微分方程求解方法,如变量分离、积分因子等。

欧拉的工作为后来的微分方程的研究奠定了基础。

19世纪,数学家拉普拉斯和拉格朗日进一步推动了微分方程的发展。

拉普拉斯系统地研究了线性常微分方程,并加入了对边界条件的考虑,使得求解微分方程的方法更加完善。

拉格朗日则在变分计算(Calculus of Variations)中提出了最值问题的欧拉-拉格朗日方程,使微分方程研究又进了一步。

20世纪,微分方程得到了更为广泛的应用和深入的研究。

具有代表性的成果包括霍普夫林恩(Heinz Hopf)的动力系统理论、庞加莱(Henri Poincaré)的混沌理论、卡尔曼(Rudolf E. Kálmán)的控制理论等。

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史微分方程是数学中重要的研究对象之一,它是描述自然现象和工程问题的基本语言之一、微分方程的起源可以追溯到古代,发展至今已有几千年的历史。

古代的微分方程研究主要集中在几何和物理问题上。

在古希腊时期,欧几里得首次提出了求直线和圆的切线问题,这是微分方程的基本问题之一、古代数学家阿基米德在其《圆中插入圆》一书中,也解决了一些微分方程,如螺旋线和平面曲线的问题。

同时,古代数学家也研究了曲线的长度、曲率等与微分方程相关的几何问题。

随着科学和数学的不断发展,微分方程的研究进入了一个新的阶段。

16世纪,新科学运动的开始,使得微分方程的研究得到了更大的关注。

数学家如卡尔丹、布鲁诺和卡特曾先后研究了微分方程,为微分方程的发展打下了基础。

17世纪,微积分的发展极大地促进了微分方程的研究。

数学大师牛顿和莱布尼兹独立地发展了微积分学,为微分方程的理论奠定了坚实的基础。

牛顿的《自然哲学的数学原理》和莱布尼兹的《微积分学》对微分方程的研究起到了决定性的作用。

他们提出了微分方程的基本概念和解法,为微分方程的理论与方法奠定了基础。

18世纪,数学家欧拉和拉格朗日使微分方程的理论得到了深入发展。

欧拉在其著作《机械学》中首次引入了微分方程的概念,提出了解微分方程的方法。

拉格朗日则研究了一阶微分方程与变分法之间的关系,创立了变分法的基本原理,为微分方程的进一步研究提供了新的思路和方法。

19世纪,微分方程的研究得到了进一步的发展。

在这一时期,微分方程的研究主要包括:初等微分方程的解法、连续性理论、以及偏微分方程的研究等。

大量的重要研究成果相继问世。

瑞典人新科学的父亲拉普拉斯和法国的康德罗基于前人的研究工作,分别研究了稳定性理论和热传导方程,并成为后来偏微分方程理论的基础。

线性微分方程的部分理论也逐渐形成。

德国数学家尔朗-栗斯等在矩解法的基础上,发展了常微分方程的新解法。

20世纪,微分方程的研究迈入了一个新的阶段。

7.1 常微分方程发展历史

7.1 常微分方程发展历史

常微分方程发展历史常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为几个阶段。

发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代。

莱布尼茨(Leibniz)曾专门研究利用变量变换解决一阶微分方程的求解问题,而欧拉(Euler)则试图用积分因子统一处理,伯努利(Bernoulli)、里卡蒂(Riccati)微分方程就是在研究初等积分时提出后人以他们的名字命名的方程。

早期的常微分方程的求解热潮被刘维尔(Liouville)于1841年证明里卡蒂方程不存在一般的初等解而中断。

加上柯西(Cauchy)初值问题的提出,常微分方程从“求通解”转向“求定解”时代。

首先是对常微分方程定解问题包括初值和边值问题的解的存在性、唯一性等解的性质的研究。

其次,针对线性微分方程,特别是二阶线性微分方程,通过专门定义一些特殊函数以求解特殊方程,如贝塞尔(Bessel)函数、勒让德(Legendre)多项式等,这促成了微分方程与(复变)函数论结合产生微分方程解析理论。

同时,由于天文计算的需要促进了常微分方程摄动理论以及小参数、幕级数等近似方法的研究。

19世纪末,天体力学中的太阳系稳定性问题需研究常微分方程解的大范围性态,从而使常微分方程的研究从“求定解问题”转向“求所有解”的新时代。

首先,庞加莱(Poincare)创立了定性理论和方法研究常微分方程解的大范围性态。

由于希尔伯特(Hilbert)提出20世纪23个数学问题中关于极限环个数的第16问题,大大促进了定性理论的发展。

另一方面李雅普诺夫(Lyapunov)提出的运动稳定性理论,用于解决方程解的初值扰动不影响原方程解的趋向问题,在天文、物理及工程技术中得到广泛应用,先后在前苏联、美国受到极大重视。

同时,伯克霍夫(Birkhoff)在20世纪初在动力系统方面开辟了一个新领域,由于拓扑方法的渗入,20世纪50年代后经阿诺德(Arnold)、斯梅尔(Smale)等大数学家的参与而得到蓬勃发展。

常微分方程理论的形成的开题报告

常微分方程理论的形成的开题报告

常微分方程理论的形成的开题报告常微分方程理论是现代数学中的一个分支,它涉及到求解方程的解函数,其中方程中的未知函数是一个自变量的函数,并且其导数只依赖于自变量,而不依赖于其他函数。

虽然常微分方程理论的基础可以追溯到牛顿时代,但其形成是经过了数学家的长期努力和研究而逐渐成熟的。

常微分方程理论的形成主要经历了以下几个阶段:第一阶段:初步研究(17世纪)在17世纪,数学家们开始研究和解决一些简单的常微分方程。

当时,他们主要关注一些特殊形式的方程,如一阶分离变量型方程、二阶齐次线性方程、一阶可化为分离变量型方程等。

牛顿和莱布尼兹是这一阶段的代表性人物,他们的贡献在于提出了一些基本的思想和方法,如微积分学和求解微分方程的变量分离法等。

第二阶段:矢量场与微分形式(19世纪)19世纪初,数学家们开始接受矢量场的观念,这为微分方程理论的发展带来了有力的支持。

同时,微积分学和矢量分析的彻底发展,使得微分形式得到了充分的应用和发展。

在此基础上,拉格朗日和哈密顿等人提出了代数和几何结构的观点,并进一步发展了微分方程的理论和方法。

第三阶段:抽象理论体系的建立(20世纪)20世纪初,在欧几里得几何、代数学和拓扑学等领域,人们开始研究一些抽象的结构和理论,如李群、李代数和纤维丛等,这些理论为微分方程理论的发展提供了全新的方向和思路。

在此基础上,数学家们提出了各种新的概念和工具,如流形、切空间、张量场、微分同胚、动力系统等。

这些概念和工具使得微分方程理论中的经典问题得到更加深刻和广泛的解决。

第四阶段:计算方法的革新与发展(20世纪末)20世纪末,随着计算机技术的迅猛发展,微分方程的数值解法得到了长足的进步,如Euler、Runge-Kutta和Adams等方法被广泛应用。

同时,自适应步长控制、收敛性证明、误差估计和混沌现象等问题得到了更加深入的研究。

这些新的计算方法为微分方程的应用提供了强有力的支持,拓宽了微分方程理论的研究范围和深度。

常微分方程

常微分方程
建立坐标系如图,坐标原点取在水平地面,
它伯的努难 利处(故在Da于n由ie和l 牛B普e通rn顿o的ul极l第i 1大7二0极0-小1定7值82求律)法,得不同质,它点是满要求足出一的个方未知程函数为(曲线),来满足所给的条件。 或 伯常而案努数最例利 的 重 1 [一解要死样称的亡学作功年医微绩代,分是的写方在测了程流定一的体] 遗篇特动体关解力死于.学亡上之,后其,中m体的内“碳dd伯2t努2y利定理m”g就是他的贡献dd。2t 2y g 到他去世通为止过任瑞积士分巴塞容尔大易学得数学出教授。
背景
函数是反映客观世界运动过程中量与量之间的一种关系,寻求函数 关系在实践中具有重要意义。许多实际问题,往往不能直接找出需要的 函数关系,却比较容易列出表示未知函数及其导数(或微分)与自变量之 间关系的等式.这样的等式就是微分方程.1676年詹姆士.贝努利致牛 顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一 门独立的学科.微分方程建立后,立即成为研究、了解和知晓现实世界 的重要工具.1846年,数学家与天文学家合作,通过求解微分方程,发 现了一颗有名的新星——海王星.1991年,科学家在阿尔卑斯山发现一 个肌肉丰满的冰人,据躯体所含碳原子消失的程度,通过求解微分方程, 推断这个冰人大约遇难于5000年以前,类似的实例还有很多.在微分方 程的发展史中,数学家牛顿、莱布尼兹、贝努利家族、拉格朗日、欧拉、 拉普拉斯等等都做出了卓越的贡献.
求其运动方程. 它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
案例1 [死亡年代的测定] 遗体死亡之后,体内碳 第四章 常微分方程
故常由数牛 的顿解第称解二作定微律分建得方质程立点的满特坐足解标的.方系程为如图,坐标原点取在水平地面, y轴铅直向上,设在时刻

常微分方程发展简史

常微分方程发展简史

第三讲常微分方程发展简史——解析理论与定性理论阶段3、常微分方程解析理论阶段:19 世纪19 世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。

级数解和特殊函数这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数.常微分方程是17、18 世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特殊是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是目生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程.x 2 y+ xy+ (x2 n2 )y = 0其中参数n 和x 都可以是复的.对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703 年BernoulliJacobi 给 Leibnitz 的信中就已提到, 后来 Bernoulli Daniel 、Euler 、Fourier 、 Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由 Bessel 在研 究行星运动时作出的. 对每一个n , 此方程存在两个独立的基本解, 记作J (x) 和nY (x) , 分别称为第一类 Bessel 函数和第二类 Bessel 函数, 它们都是特殊函数 n或者广义函数(初等函数之外的函数) . Bessel 自 1816 年开始研究此方程, 首 先给出了积分关系式J (x) = q 2j 几 cos(nu 一 x sin u)du.n 2几 01818 年 Bessel 证明了 J (x) 有无穷多个零点. 1824 年, Bessel 对整数n 给出了n递推关系式xJ (x) 一 2nJ (x) + xJ (x) = 0n +1 n n 一1和其他的关于第一类 Bessel 函数的关系式.后来又有众多的数学家(研究天体力学的数学家)独立地得到了 Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微
分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.
命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元
素的解称为“通解”.在很长一段时间里,人们致力于“求通解”.
关键词:常微分方程,发展,起源
正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。

17 世纪,牛顿,英国,1642-1727)和莱布尼兹,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。

但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。

1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。

雅可比·伯努利自己解决了
前者。

翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(,荷兰,1629-1695)独立地解决了后者。

有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。

因此,最初人们的注意力放在某些类型的微分方程的一般解法上。

1691 年,莱布尼兹给出了变量分离法。

他还把一阶齐次方程使其变量分离。

1694 年,他使用了常数变易法把一阶常微分方程化成积分。

1695 年,雅可比·伯努利给出著名的伯努利方程。

莱布尼兹用变换,将其化为线性方程。

约翰和雅可比给出了各自的解法,其本质上都是变量分离法。

1734 年,欧拉,瑞士,1707-1783)给出了恰当方程的定义。

他与克莱罗. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。

那么对非恰当方程如何求解呢1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。

这样,到 18 世纪 40 年代,一阶常微分方程的初等方法都已清楚了,与此相联系,通解与特解的问题也弄清楚了。

1734 年,克莱罗在他的著作中处理了现在以他的名字命名的方程,他给出了一个新的解,从而提出了奇解的问题。

奇解是不能通过给积分常数以一个确定的值由通解来求得。

欧拉、拉普拉斯,法国,1749-1827 )、达朗贝尔,法国,1717-1783) 都涉及奇解这个问题,然而只有拉格朗日,意大利,1736-1813)对奇解与通解的联系作了系统的研究,他给出了从通解消去常数项从而得到奇解的一般方法.但在奇解理论中,有些特殊的困难他并没有认识到。

奇解的完整理论是19 世纪发展起来的。

其中黎曼,德国,1826-1866 )作出了突出的贡献。

1728 年,欧拉由于力学问题的推动,把一类二阶微分方程用变量替换成一阶微分方程组,这标志着二阶方程的系统研究的开始。

此后,欧拉完整地解决了常系数线性齐次方程的求解问题和非齐次的n阶线性常微分方程的求解问题。

拉格朗日在1762 年至1765 年间又对变系数齐次线性微分方程进行了研究。

在18 世纪前半叶,常微分方程的研究重点是对初等函数施行有限次代数运算、变量代换和不定积分把解表示出来:至18 世纪下半叶,数学家们又讨论了求线性常微分方程解的常数变易法和无穷级数解法等方法:至18 世纪末,常微分方程己发展成一个独立的数学分支。

19 世纪,柯西,法国,1789-185)、刘维尔,法国,1809-1882)、维尔斯特拉斯,德国,1815-1879)和皮卡,法国,
1865-1941)对初值问题的存在唯一性理论作了一系列研究,建立了解的存在性的优势函数、逐次逼近等证明方法。

这些方法又可应用于高阶常微分方程和复数域中的微分方程组法国数学家庞加莱,
1854-1912)和俄国的李雅普诺夫(Liapunov,1857-1918)共同奠定了稳定性的理论基础。

自群论引入常微分方程后,使常微分方程的研究重点转向解析理论和定性理论。

19世纪末,法国数学家庞加莱连续发表了4 篇文章,依赖几何拓扑直观对定性理论进行了研究,李雅普诺夫应用十分严密的分析法又进行了研究,从而奠定了微分方程定性理论的基础。

由于行星或卫星轨道的稳定性问题,周期解的重要性提到日程上来。

西格尔,德国,1896-1981)创立了周期系统的线性齐次微分方程的数学理论。

在 1877 年的论文中,他求出了对月球运动的诸微分方程确定一个近似于实际观察到的运动的周期解,并证明了二阶微分方程有周期解.
20 世纪,微分方程进入了广泛深入发展阶段。

随着大量的边缘学科的产生和发展,出现了不少新型的微分方程(组),微分方程在无线电、飞机飞行、导弹飞行、化学反应等方面得到了广泛的应用,从而进一步促进了这一学科的发展,使之不断完善,对它的研究也从定性上升到定量阶段。

像动力系统、泛函微分方程、奇异摄动方程以及复域上的定性理论等等都是在传统微分方程的基础上发展起来的新分支。

参考文献:M·克莱因. 古今数学思想[M].上海:上海科学技术出版社,1979.
李文林. 数学史教程[M].北京:高等教育出版社,2002.王树禾. 数学思想史[M].北京:国防工业出版社,2003.。

相关文档
最新文档