培优专题 一次函数与方程不等式实际应用问题共18页

合集下载

人教版-2018年-七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版-2018年-七年级数学下册-一元一次不等式应用题-培优练习(含答案)

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,3种,分别为:方案甲车乙车运费① 2 6 2×4000+6×3600=29600② 3 5 3×4000+5×3600=30000③ 4 4 4×4000+4×3600=30400所以方案①运费最少,最少运费是29600元.7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱. 11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册

第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册

人教版数学八年级下册第19章《一次函数》实际应用解答题培优(一)1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.在防疫工作稳步推进的过程中,复工复产工作也在如火如荼进行.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?收费方式月使用费(元)包时通话(分钟)超时通话(元/分钟)A12 0 0.2B18 40 0.34.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y 元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A 商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:5 10 15 …一次购买数量/个A商店花费/元500 …B商店花费/元600 …(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:2 5 10 12 20 30 …购买种子的数量/千克10 a50 58 b130 …付款金额/元(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x ﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y=;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y =200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克,根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h),故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲=k1x,由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y乙=k2x+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y乙=5x+20;当0≤x≤2时,设y乙与x的函数解析式为y乙=kx,可得2k=30,解得k=15,即y=15x;乙∴y乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m,开挖6小时,甲、乙两队挖的河渠的长度相差10m;故答案为:10;10;(4)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.11.解:(1)由图可知,升级前A生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A生产线每天生产口罩4×(1+20%)=4.8(万个),故答案为:4.8;(2)A生产线技术升级后,A生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B生产线从第8天开始生产到第15天的产能为56万个,所以每条B生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B生产线有x条,根据题意得:15×4.8+8x=136,解得:x=8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元),∴150+40﹣182=8(元),答:一起购买可省8元.。

专题18 一次函数与方程(组)、不等式(解析版)

专题18 一次函数与方程(组)、不等式(解析版)

专题18 一次函数与方程(组)、不等式(专题测试-基础)学校:___________姓名:___________班级:___________考号:___________一、 填空题(共12小题,每小题4分,共计48分)1.(2019·定边县期中)如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( ) A .x >2 B .x <2C .x >﹣1D .x <﹣1【答案】D 【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.2.(2019·襄阳市期末)如图,直线y=kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是( ) A .x >2 B .x <2C .x≥2D .x≤2【答案】B 【详解】由一次函数图象可知关于x 的不等式kx+3>0的解集是x<2 故选B.3.(2020·织金县期末)一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( ) A .0个 B .1个C .2个D .3个【答案】B 【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;②a ,b 看y 2=x+a ,y 1=kx+b 与y 轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.4.(2018·成都市期中)如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+\过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.5.(2019·保定市期末)如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A.x=-3 B.x=4 C.x=43-D.x=34-【答案】A【分析】根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【详解】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,故选A.6.(2019·青岛市期中)观察下列图象,可以得出不等式组的解集是()A.x<13B.﹣13<x<0C.0<x<2D.﹣13<x<2【答案】D 【解析】根据图象得到,3x+1>0的解集是:x>﹣13,第二个不等式的解集是x<2,∴不等式组的解集是﹣13<x<2.故选D.7.(2020·泰安市期末)如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.B.C.D.【答案】C【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.8.(2020·泰安市期末)如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3 D.x<3【答案】B【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.9.(2019·海门市期中)如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个【答案】A【分析】根据一次函数的性质对①②③进行判断;利用一次函数与一元一次方程的关系对④进行判断.【详解】∵一次函数y1=kx+b经过第一、二、三象限,∴k<0,b>0,所以①③正确;∵直线y2=x+a的图象与y轴的交点在x轴,下方,∴a<0,所以②错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴x=3时,kx+b=x-a,所以④正确.综上所述,错误的个数是1. 故选A .10.(2018·重庆市期末)若直线y =2x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ) A .1k > B .12k <C .1k >或12k <D .112k << 【答案】D 【分析】由题意可列方程组,求出交点坐标,由交点在第四象限可求k 的取值范围. 【详解】设交点坐标为(x ,y ), 根据题意可得: , 解得:,∴交点坐标(1-k ,1-2k ) ∵交点在第四象限, ∴, ∴12<k <1, 故选D .11.(2019·达州市期末)已知直线2y x =与y x b =-+的交点的坐标为(1,a ),则方程组的解是( ) A . B .C .D .【答案】A 【解析】将交点(1,a)代入两直线: 得:a=2, a=-1+b ,因此有a=2,b=a+1=3, 即交点为(1,2),而交点就是两直线组成的方程组的解, 即解为x=1,y=2, 故选A.12.(2019·泰安市期末)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论中正确的个数是()①y2随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y2;④当x>3时,y1<y2.A.3 B.2 C.1 D.0【答案】B【分析】根据图像逐项分析即可.【详解】对于y2=x+a,y2随x的增大而增大,所以①错误;∵x=3时,y1=y2,∴3k+b=3+a,所以②正确;当x<3时,y1>y2;所以③错误;当x>3时,y1<y2;所以④正确.故选B.二、填空题(共5小题,每小题4分,共计20分)13.(2019·佛山市期末)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.【答案】x>3.【详解】∵直线y=x+b与直线y=kx+6交于点P(3,5),∴由图象可得,当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.14.(2020达州市期末)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.【答案】x=2【详解】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2,故答案为x=2.15.(2019·昌平区期末)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.【答案】x>1【解析】由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;16.(2020·兴化市期末)在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.【答案】.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.17.(2018·赤峰市期末)如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.其中说法正确的有_________(把你认为说法正确的序号都填上).【答案】①②③【解析】①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;③因为一次函数的图象与x轴的交点为(2,0),所以当y=0时,x=2,即关于x的方程kx+b=0的解为x=2,故本项正确;④由图象可得不等式kx+b>0的解集是x<2,故本项是错误的.故正确的有①②③.三、解答题(共4小题,每小题8分,共计32分)18.(2019·乐平市期末)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.【答案】(1)x>3(2)y=-x+5(3)9.5【详解】(1)根据图象可得不等式2x-4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=-x+5;(3)把x=0代入y=-x+5得:y=5,所以点B(0,5),把y=0代入y=-x+5得:x=2,所以点A(5,0),把y=0代入y=2x-4得:x=2,所以点D(2,0),所以DA=3,所以S四边形BODC=S△AOB-S△ACD=11553222⨯⨯-⨯⨯=9.5.19.(2019·揭阳市期末)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值【答案】(1)-1;(2)53或13.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=13或a=53,∴a=13或a=53.20.(2019·临沂市期末)正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.【答案】(1) k=5;(2) 5 3 .【解析】(1)∵正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),∴把点P(1,m)代入得m=2,m=-3+k,解得k=5;(2)由(1)可得点P的坐标为(1,2),∴所求三角形的高为2.∵y=-3x+5,∴其与x轴交点的横坐标为53,∴S=12×53×2=53.21.(2019·怀化市期末)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.【答案】(1)2.5小时;(2)y=﹣100x+550;(3)175千米.【解析】试题分析:(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.试题解析:(1)300÷(180÷1.5)=2.5(小时).答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米.答:乙车到达A地时甲车距A地的路程是175千米.。

经典一次函数培优题含答案及讲解

经典一次函数培优题含答案及讲解

一次函数培优讲解已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,0),则不等式ax大于b的解集为()A.x>2. B.x<2. Cx>-2. D.x<-2此题正确选项为A解析:∵一次函数的图像过一、二、三象限∴有a>0将(-2,0)代入一次函数解析式则b=2a∴ax>b可化为ax>2a又a>0∴原不等式的解集为x>2在直角坐标系中,纵、横坐标都是整数的点,称为整点.设k为整数,当直线y=x+2与直线y=kx-4的交点为整点时,k的值可以取()个.因为直线y=x+2与直线y=kx-4的交点为整点,让这两条直线的解析式组成方程组,求得整数解即可.由题意得:{y=x+2y=kx-4,解得:{x=6k-1y=6k-1+2,∴k可取的整数解有0,2,-2,-1,3,7,4,-5共8个.若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是()绝对值的一元一次不等式.算题;分类讨论.类讨论:当x<1或1≤x≤3或x>3,分别去绝对值解x的不等式,然后根据x对应的取值范围得到a的不等式或不等式组,确定a的范围,最后确定a的最小值.≥<1,解得a>6当1≤x≤3,原不等式变为:2x-2+9-3x≤a,解得x≥7-a,∴1≤7-a≤3,解得4≤a≤6;当x>3,原不等式变为:2x-2+3x-9≤a,解得x<>3,解得a>4;综上所述,实数a最小值是4.已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?这个题目不需要证明,只需要判断即可。

首先,令x=0,则y=-3显然只要k>0 则,过1,3,4象限。

只要k<0 则,过2,3,4象限。

由a/b+c=b/c+a=c/a+b=k,显然a=b=c=1的时候,满足所有条件,而此时k》0所以过1,3,4象限。

再如a=b=c=-1的时候,也满足,此时k=0 , 那么y = -3 ,只过3、4象限。

专题训练4: 一次函数与方程、不等式的实际应用

专题训练4: 一次函数与方程、不等式的实际应用

小专题(十四) 一次函数与方程、不等式的实际应用一、利用两个函数的比较列不等式求值或多个函数的比较画函数图象比较求值1.“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1(元),租用乙公司的车所需费用为y2(元),分别求出y1,y2关于x的函数解析式;(2)请你帮助小明计算并选择哪个出游方案合算.2、德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A 30 25 0.1B 50 50 0.1C 100 不限时(1)123函数解析式;(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为_____________;若选择方式B最省钱,则月通话时间x的取值范围为_______________________;若选择方式C最省钱,则月通话时间x的取值范围为______________________________;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.3、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动: A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A 和y B 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.4、某商家到梧州市一茶厂购买茶叶,购买茶叶数量为x 千克(x>0),总费用为y 元,现有两种购买方式。

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

八年级数学培优——一次函数与方程、不等式

八年级数学培优——一次函数与方程、不等式

八年级数学培优——一次函数与方程、不等式考点·方法·破译1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数;k ≠0)的形式;可见一元一次方程是一次函数的一个特例.即在y =kx +b 中;当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数;且a ≠0;b ≠0)都可以化为y =a c x b b -+的形式;因而每个二元一次方程都对应一个一次函数; ⑵从“数”的角度看;解方程组相当于求两个函数的函数值相等时自变量的取值;以及这个函数值是什么;从“形”的角度看;解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数;a ≠0)的形式;所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时;求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示;则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无【变式题组】01.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象与例题相同;则关于x 的不等式k 2x >k 1x +b 的解集为________.第2题图第3题图 第3题图02.一次函数y 1=kx +b 与y 2=x +a 的图象如图;则下列结论:①k <0;②a >0;③当x <3时;y 1<y 2中;正确的个数是( ) A .0 B .1 C .2 D .303. 如图;已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2;-5);则根据图象可得不等式2x +b >ax -3的解集是________.04.如图;直线y =kx +b 经过A (2;1);B (-1;-2)两点;则不等式错误!x >kx +b >-2的解集为_________.【例2】若直线l1:y=x-2与直线l2:y=3-mx在同一平面直角坐标系的交点在第一象限;求m的取值范围.【变式题组】01.如果直线y=kx+3与y=3x-2b的交点在x轴上;当k=2时;b等于()A.9 B.-3 C.3 2 -D.9 4 -02.若直线122y x=-与直线14y x a=-+相交于x轴上一点;则直线14y x a=-+不经过()A.第四象限B.第三象限C.第二象限D.第一象限03.两条直线y1=ax+b;y2=cx+5;学生甲解出它们的交点坐标为(3;-2);学生乙因抄错了c而解出它们的交点坐标为(34;14);则这两条直线的解析式为____________.04.已知直线y=3x和y=2x+k的交点在第三象限;则k的取值范围是________.【例3】在直角坐标系中;若一点的纵横坐标都是整数;则称该点为整点;设k为整数;当直线y=x-2与y=kx+k的交点为整点时;k的取值可以取()A.4个B.5个C.6个D.7个【变式题组】01.从2;3;4;5这四个数中;任取两个数p和q(p≠q);构成函数y=px-2和y=x+q;并使这两个函数图象的交点在直线x=2的右侧;则这样的有序数对(p;q)共有()A.12对B.6对C.5对D.3对02.直线l:y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数);那么满足条件的直线l有()A.6条B.7条C.8条D.无数条03.点A、B分别在一次函数y=x;y=8x的图像上;其横坐标分别是a、b(a>0;b>0).若直线AB为一次函数y=kx+m的图象;则当ba是整数时;求满足条件的整数k的值.【例4】已知x、y、z都为非负数;满足x+y-z=1;x+2y+3z=4;记ω=3x+2y+z.求ω的最大值与最小值.【变式题组】01.已知x满足不等式:31752233x xx-+--≥;|x-3|-|x+2|的最大值为p;最小值为q;则pq的值是()A.6 B.5 C.-5D.-102.已知非负数a、b、c满足条件:3a+2b+c=4;2a+b+3c=5.设S=5a+4b+7c的最大值为m;最小值为n;则n-m=________.03.若x+y+z=30;3x+y-z=50;x、y、z均为非负数;则M=5x+4y+2z的取值范围是()A.100≤M≤110 B.110≤M≤120 C.120≤M≤130 D.130≤M≤140【例5】已知直线l1经过点(2;5)和(-1;-1)两点;与x轴的交点是点A;将直线y =-6x+5的图象向上平移4个单位后得到l2;l2与l1的交点是点C;l2与x轴的交点是点B;求△ABC的面积.【变式题组】01.已知一次函数y=ax+b与y=bx+a的图象相交于A(m;4);且这两个函数的图象分别与y轴交于B、C两点(B上C下);△ABC的面积为1;求这两个一次函数的解析式.02.如图;直线OC、BC的函数关系式为y=x与y=-2x+6.点P(t;0)是线段OB上一动点;过P作直线l与x轴垂直.⑴求点C坐标;⑵设△BOC中位于直线l左侧部分面积为S;求S与t⑶当t为何值时;直线l平分△COB面积.第2题图演练巩固·反馈提高01.已知一次函数y=32x+m;和y=12x+n的图象交点A(-2;0);且与y轴分别交于B、C两点;那么△ABC的面积是()A.2 B.3 C.4D.602.已知关于x的不等式ax+1>0(a≠0)的解集是x<1;则直线y=ax+1与x轴的交点是()A.(0;1) B.(-1;0) C.(0;-1) D.(1;0)第3题图第6题图03.如图;直线y=kx+b与x轴交于点A(-4;0);则y>0时;x的取值范围是() A.x>-4 B.x>0 C.x<-4D.x<004.直线kx-3y=8;2x+5y=-4交点的纵坐标为0;则k的值为() A.4 B.-4 C.2D.-205.直线y=kx+b与坐标轴的两个交点分别为A(2;0)和B(0;-3).则不等式kx+b +3≥0的解集为()A.x≥0 B.x≤0 C.x≥2D.x≤206.如图是在同一坐标系内作出的一次函数y1、y2的图象l1、l2;设y1=k1x+b1;y2=k2x+b2;则方程组111222y k x by k x b⎧⎨⎩=+,=+的解是()A.22xy=-⎧⎨=⎩B.23xy=-⎧⎨=⎩C.33xy=-⎧⎨=⎩D.34xy=-⎧⎨=⎩07.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点;则a=_________.08.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2;0);且与y轴分别交于B、C两点;则S△ABC=_________.09.已知直线y=2x+b和y=3bx-4相交于点(5;a);则a=___________.10.已知函数y=-x+m与y=mx-4的图象交点在x轴的负半轴上;则m的值为__________.11.直线y=-2x-1与直线y=3x+m相交于第三象限内一点;则m的取值范围是___________.12.若直线122ay x=-+与直线31544y x=-+的交点在第一象限;且a为整数;则a=_________.13.直线l1经过点(2;3)和(-1;-3);直线l2与l1交于点(-2;a);且与y轴的交点的纵坐标为7.⑴求直线l2、l1的解析式;⑵求l2、l1与x轴围成的三角形的面积;⑶x取何值时l1的函数值大于l2的函数值?14.如图;直线l1的解析式为y=-3x+3;l1与x轴交于点D;直线l2经过点A(4;0);B(3;32-).⑴求直线l2的解析式;⑵求S△ADC;⑶在直线l2上存在异于点C的另一点P;使得S△ADP=S△ADC;求P点坐标.l2第14题图15.已知一次函数图象过点(4;1)和点(-2;4).求函数的关系式并画出图象.⑴当x为何值时;y<0;y=0;y>0?⑵当-1<x≤4时;求y的取值范围;⑶当-1≤y<4时;求x的取值范围.16.某医药研究所开发了一种新药;在实验药效时发现;如果成人按规定剂量服用;那么服药后2h时血液中含药量最高;达每毫升6μg(1μg=10-3mg);接着就逐步衰减;10h 后血液中含药量为每毫升3μg;每毫升血液中含药量y(μg)随时间x(h)的变化如图所示;当成人按规定剂量服药后;⑴分别求x≤2和x≥2时;y与x之间的函数关系式;⑵如果每毫升血液中含药量在4μg或4μg以上时;治疗疾病才是有效的;那么这个有效时间是多长?第16题图。

专题训练:一次函数与方程不等式【精品】

专题训练:一次函数与方程不等式【精品】

专题:一次函数与方程、不等式知识点1 一次函数与一元一次方程1.直线y=kx+b与x轴交于点A(-4,0),则kx+b=0的解为( ) A.x=-4 B.x=0 C.x=b D.无解2.若一次函数y=ax+b(a,b为常数,且a≠0)满足下表,则方程ax+b=0的解是( )A.x=1 .x=3 3.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.4.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可得到关于x的方程kx+b=4的解为.5.已知2x +b =0的解为x =-12,则一次函数y =2x +b 的图象与x轴交点的坐标为 . 知识点2 一次函数与一元一次不等式(组)6.如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是( )A .x >2B .x <2C .x ≥2D .x ≤27.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为( )A .x >-1B .x <-1C .x ≥3D .x ≥-18.如图,直线l 1:y =ax +b 与直线l 2:y =mx +a 交于点A(1,3),那么不等式ax +b <mx +n 的解集是( )A .x >3B .x <3C .x >1D .x <19.画出函数y =2x +6的图象,利用图象回答下列问题: (1)求方程2x +6=0的解; (2)求不等式2x +6>0的解集; (3)若-2≤y ≤2,求x 的取值范围.知识点3 一次函数与二元一次方程(组)10.若直线y =3x +6与直线y =2x +4的交点坐标为(a ,b),则解为⎩⎪⎨⎪⎧x =a ,y =b的方程组是( ) A.⎩⎪⎨⎪⎧y -3x =62x +y =4 B.⎩⎪⎨⎪⎧3x +6+y =02x -4-y =0 C.⎩⎪⎨⎪⎧3x +6-y =02x +4-y =0 D.⎩⎪⎨⎪⎧3x -y =62x -y =411.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组⎩⎪⎨⎪⎧y -k 1x =b 1,y -k 2x =b 2的解是 .12.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(1,b). (1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请你直接写出它的解.参考答案: 1.A 2.A 3.x =2 4.x =35.⎝ ⎛⎭⎪⎫-12,0 6.B 7.D 8.D9.解:y =2x +6的图象如图所示.(1)直线y =2x +6与x 轴交点的横坐标为-3. ∴方程2x +6=0的解为x =-3. (2)当x >-3时,y >0,∴不等式2x +6>0的解集为x >-3. (3)当-2≤y ≤2时,-4≤x ≤-2. 10.C11. ⎩⎪⎨⎪⎧x =2y =112.解:(1)∵P(1,b)在直线l 1上,∴b =1+1=2.(2)⎩⎪⎨⎪⎧x =1,y =2.。

培优专题(四) 一次函数与方程、不等式的实际应用问题

培优专题(四) 一次函数与方程、不等式的实际应用问题

数学
人教版八年级下册
课件目录




2.某市出租车计费方法如图1所示,x(km)表示行驶里程,y(元)表 示车费,请根据图象回答下列问题:
图1 (1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析 式;
数学
人教版八年级下册
课件目录




(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的 里程.
数学
人教版八年级下册
课件目录 首 页 末 页
8.[2014· 番禺]某化妆品公司每月付给销售人员的工资有两种方 案. 方案一:没有底薪,只拿销售提成; 方案二:底薪加销售提成. 已知每件商品的销售提成方案二比方案一少7元.设销售人员 月销售x件商品时的月工资为y元.如图4,l1表示方案一中y与x
函数关系的图象,l2表示方案二中y与x函数关系的图象.解答
(2)若某人计划在商场购买价格为5880元的电视机一台,请分析选 哪种方案更省钱. 解:(1)方案一:y=0.95x;方案二:y=0.9x+300; (2)∵0.95×5880=5586(元),0.9×5880+300=5592(元),∴选择方
案一更省钱.
数学
人教版八年级下册
课件目录 首 页 末 页
12
22
30
设按计划全部售出后的总利润为y百元,其中批发量为x吨,且 加工销售量为15吨.
(1)求y与x之间的函数关系式;
(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售 完荸荠后获得的最大利润.
数学
人教版八年级下册
课件目录 首 页 末 页
解: (1)依题意可知零售量为 (25- x)吨,则 y= 12x+ 22(25- x)+ 30×15, ∴ y=- 10x+ 1 000; (2)依题意有: x≥ 0, 25- x≥0, 解得:5≤x≤25, 25- x≤4x, ∵- 10< 0,∴ y 随 x 的增大而减小. ∴当 x= 5 时, y 有最大值,且 y 最大值= 950. ∴最大利润为 950 百元.

专题5:一次函数、方程和不等式综合(含答案)

专题5:一次函数、方程和不等式综合(含答案)

专题5:一次函数、方程和不等式综合(含答案)考点1 一次函数与一元一次方程1. 一次函数y kx b =+的图像如图所示,则方程0kx b +=的解为( )A.2x =B.2x =-C.1x =-D.1x =2. 已知一元一次方程的解为3x =,则函数y ax b =-的图像与x 轴的交点坐标为( )A.(3,0)B.(3,0)-C.(,0)aD.(,0)b - 3. 已知方程102x b +=的解是2x =-,下列是函数12y x b =+的图像的是( )4. 一次函数y kx b =+(,k b 为常数且0k ≠)的图像如图所示,根据图像可知关于x 的方程3kx b +=的解为 .考点2 一次函数与一元一次不等式5. 如图,直线y kx b =+与坐标轴交于A ,B 两点,则不等式0kx b +<的解集是 .6. 将一次函数12y x =的图像向上平移2个单位长度后,当0y >时,x 的取值范围是( ) A.4x > B.4x >- C.2x > D.2x >-7. 如图,函数2y x =与4y ax =+的图像相交于点(,3)A m ,则不等式24x ax ≥+的解集为( ) A. 32x ≥B. 3x ≤C.32x ≤ D. 3x ≥8. 如图,直线a 反映了某公司产品的销售收入y (元)与销售量x (吨)的关系,直线b 反映了该公司产品的销售成本y (元)与销售量x (吨)的关系,根据图像判断该公司盈利(即收人大于成本)时x 的取值范围是 .9. 如图,直线1y x n =+与x 轴交于点A ,与y 轴交于点Q ,直线2y x m =-+与x 轴交于点B ,两直线交于点P .根据图中信息解决下列问题: (1) 求,m n 的值; (2) 求点P 的坐标;(3) 当x 为何值时,x n x m +>-+10. 作出函数24y x =-的图像,并根据图像解决下列问题:(1) 当24x -≤≤时,求y 的取值范围;(2) 分别求当0y <,0y =,0y >时,x 的取值范围; (3) 求当42y -<<时,x 的取值范围.11. 一家小型放映厅的盈利额y (元)与售票数x (张)之间的关系如图所示,其中售票数超过150张时,要缴纳公安消防保险费50元,试根据图像回答下列问题: (1) 当0150x <≤时,求y 与x 之间的函数表达式;(2) 当x 取何值时,放映厅不赔不赚?当x 取何值时,放映厅赔本?若放映厅要获得利润200元时,x 的值应为多少?【巩固练习】 1. 如图,直线32y x =+与直线1y kx =-相交于点P ,点P 的纵坐标为12,则关于x 的不等式312x kx +>-的解集在数轴上表示正确的是( )2. 如图,函数1y x =和21433y x =+的图像相交于(1,1)-,(2,2)两点.当12y y >时,x 的取值范围是( )A.1x <-B.12x -<<C.2x >D.1x <-或2x > 3. 已知一次函数y ax b =+(,a b 是常数),x 与y 的部分对应值如表所示,则下列说法错误的是( )A.方程0ax b +=的解是1x =-B.不等式0ax b +>的解集是1x >-C.y ax b =+的函数值y 随x 的增大而增大D. y ax b =+的函数值y 随x 的增大而减小4. 如图,经过点(2,0)B -的直线y kx b =+与直线42y x =+相交于点(1,2)A --,则420x kx b +<+<的解集为 .5. 一次函数111y k x b =+与222y k x b =+的图像如图所示.则不等式组11220k x b k x b +>⎧⎨+<⎩的解集为 .6. 直线a :2y x =+和直线b :4y x =-+相交于点A ,直线,a b 分别与x 轴相交于点,B C ,与y 轴相交于点,D E .(1) 在同一平面直角坐标系中画出两直线; (2) 求ABC ∆的面积;(3) 观察图像,直接写出不等式24x x +≤-+的解集和不等式40x -+≤的解集.7. 某办公用品销售商店推出两种优惠方案:①购买1个书包,赠送1支水性笔;①购买书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元,小丽和同学需购买4个书包,若干支水性笔(不少于4支).(1) 分别写出两种优惠方案购买费用y (元)与所买水性笔数量x (支)之间的函数表达式; (2) 对x 的取值情况进行分析,说明按哪种优惠方案购买比较划算;(3) 小丽和同学需购买这种书包4个和水性笔12支,请你设计购买最实惠的方案.8. 某中学九年级甲、乙两班商定举行一次远足活动,A ,B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地,两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,12,y y 与x 的函数图像如图所示.根据图像解答下列问题: (1) 直接写出12,y y 与x 的函数表达式.(2) 求甲、乙两班学生出发几小时后相遇?相遇时乙班距离A 地多少千米? (3) 甲、乙两班首次相距4千米时所用时间是多少小时?参考答案1. C2. A3. C4. 2x =5. 3x <-6. B7. A8. 3x >9. (1) ①直线1y x n =+过点(0,1)①1n =①直线2y x m =-+过点(3,0) ①30m -+= ①3m =(2)由(1)知,11y x =+,23y x =-+ ①点P 为两直线的交点, ①13x x +=-+,①1x = 把1x =代入11y x =+,得12y = ①(1,2)P(3)当函数1y x n =+的图像在2y x m =-+的上方时,x n x m +>-+,此时1x > ①当1x >时,x n x m +>-+ 10. 函数24y x =-的图像如图所示. (1)当2x =-时,8y =- 当4x =时,4y =①当24x -≤≤时,Y 的取值范围为84y -≤≤(2)由图像可知,函数24y x =-的图像与x 轴的交点为(2,0) 当0y =时,2x =当0y <时,2x < 当0y >时,2x > (3①当4y =-时,0x = 当2y =时,3x =①当42y -<<时,x 的取值范围为03x <<11. (1)当0150x <≤时,由题图可设y kx b =+把(0,200)-,(150,100)代入可得200100150bk b -=⎧⎨=+⎩解得2200k b =⎧⎨=-⎩①当0150x <≤时,y 与x 之间的函数表达式为2200y x =-(2)由题图,可知函数2200y x =-(0150x <≤)的图像与x 轴的交点坐标为(100,0) ①当100x =,即售票数为100张时,放映厅不赔不赚 当0100x <<,即售票数小于100张时,放映厅赔本 由题图可知,当200y =时,200x = ①放映厅要获得利润200元时,x 的值应为200.【巩固练习】1. A2. D3. D4. 21x -<<-5. 3x >6. (1)两直线如图所示.(2)由(1)中图像知(2,0)B -,(4,0)C①点A 直线a :2y x =+和直线b :4y x =-+的交点①24y x y x =+⎧⎨=-+⎩解得13x y =⎧⎨=⎩①(1,3)A ①113[4(2)]3922ABC S BC ∆=⨯=⨯--⨯= (3)观察(1)中图像,可知当1x <时,直线a 在直线b 的下方 ①不等式24x x +≤-+的解集为1x ≤ 当4x >时,直线b 在x 轴的下方 ①不等式40x -+≤的解集为4x ≥7. (1)设按优惠方案①购买的费用为1y 元,按优惠方案①购买的费用为2y 元则1(4)5204560y x x =-⨯+⨯=+ 2(5204)0.9 4.572y x x =+⨯⨯=+ (2)当12y y >,即560 4.572x x +>+时 解得24x >①当24x >时,选择优惠方案①比较划算; 当24x >时, 解得24x =①当24x =时,选择优惠方案①,①均可;当12y y <,即560 4.572x x +<+时 由题意得424x ≤<①当424x ≤<时,选择优惠方案①比较划算. (3)①需要购买4个书包和12支水性笔,而1224<①购买方案一:用优惠方案①购买,需55051260120x +=⨯+= (元); 购买方案二:采用两种购买方案用优惠方案①购买4个书包.需42080⨯= (元),同时获赠4支水性笔 用优惠方案①购买8支水性笔,需8590%36⨯⨯= (元) 共需80 + 36二1168036116+=(元) 显然116120<①最佳购买方案是用优惠方案①购买4个书包,获赠4支水性笔,再用优惠方案①购买8支水性笔.8. (1) 14(0 2.5)y x x =≤≤,2510(02)y x x =-+≤≤ (2)根据题意可知,两班相遇时,两班离A 地的距离相等 令12y y = 即4510x x =-+解得109x =当109x =时,2104051099y =-⨯+=答:甲、乙两班学生出发109小时后相遇,相遇时乙班距离A 地409千米(3)根据题意,得214y y -= 即51044x x -+-= 解得23x =答:甲、乙两班首次相距4千米时所用时间是23小时。

8.一次函数与方程不等式培优练习.doc

8.一次函数与方程不等式培优练习.doc

8. 一次函数与方程、不等式培优练习姓名一.选择题01.已知一次函数y=32x+m,和y=12-x+n的图象交点A(-2,0),且与y轴分别交于B、C两点,那么△ABC的面积是( ) A.2 B.3 C.4 D.602.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是( )A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)第3题图第6题图第7题图第2-9题图第2-10题图03.如图,直线y=kx+b与x轴交于点A(-4,0),则y>0时,x的取值范围是( ) A.x>-4 B.x>0 C.x<-4 D.x<004.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k的值为( )A.4 B.-4 C.2 D.-205.直线y=kx+b与坐标轴的两个交点分别为A(2,0)和B(0,-3).则不等式kx+b+3≥0的解集为( ) A.x≥0B.x≤0C.x≥2D.x≤206.如图是在同一坐标系内作出的一次函数y1、y2的图象l1、l2,设y1=k1x+b1,y2=k2x+b2,则方程组111222y k x by k x b⎧⎨⎩=+,=+的解是( ) A.22xy=-⎧⎨=⎩B.23xy=-⎧⎨=⎩C.33xy=-⎧⎨=⎩D.34xy=-⎧⎨=⎩07.(浙江金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是( )A.0 B.1 C.2 D.308.如果直线y=kx+3与y=3x-2b的交点在x轴上,当k=2时,b等于( )A.9 B.-3 C.32-D.94-09.若直线122y x=-与直线14y x a=-+相较于x轴上一点,则直线14y x a=-+不经过( ) A.第四象限B.第三象限C.第二象限D.第一象限二.填空题01.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,则a=_________.02.一次函数y=2x+a与y=-x+b的图象都过A(-2,0),且与y轴分别交于B、C点,则S△ABC=_ _.03.已知直线y=2x+b和y=3bx-4相交于点(5,a),则a=___________.04.已知函数y=-x+m与y=mx-4的图象交点在x轴的负半轴上,则m的值为__________.05.直线y=-2x-1与直线y=3x+m相交于第三象限内一点,则m的取值范围是___________.06.若直线122ay x=-+与直线31544y x=-+的交点在第一象限,且a为整数,则a=_________.07.两条直线y1=ax+b,y2=cx+5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.08.若直线l1:y=x-2与直线l2:y=3-mx在同一坐标系的交点在第一象限,则m的取值范围.09.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式2x +b >ax -3的解集是________.10.(武汉)如图,直线y =kx +b 经过A(2,1),B(-1,-2)两点,则不等式12x >kx +b >-2的解集为_______.三.解答题01.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积;⑶x 取何值时l 1的函数值大于l 2的函数值?02.如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A(4,0),B(3,32).⑴求直线l 2的解析式;⑵求S △ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S △ADP =S △ADC ,求P 点坐标.l 203.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h 时血 液中含药量最高,达每毫升6μg(1μg=10-3mg),接着就逐步衰减,10h 后血液中含药量为每毫升3μg, 每毫升血液中含药量y(μg)随时间x(h)的变化如图所示,当成人按规定剂量服药后,⑴分别求x≤2和x≥2 时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的, 那么这个有效时间是多长?04.已知x 、y 、z 都为非负数,满足x +y -z =1,x +2y +3z =4,记ω=3x +2y +z .求ω的最大值与最小值.05.已知一次函数y=ax+b与y=bx+a的图象相交于A(m,4),且这两个函数的图象分别与y轴交于B、C两点(B上C下),△ABC的面积为1,求这两个一次函数的解析式.06.如图,直线OC、BC的函数关系式为y=x与y=-2x+6.点P(t,0)是线段OB上一动点,过P作直线l与x轴垂直.⑴求点C坐标;⑵设△BOC中位于直线l左侧部分面积为S,求S与t之间的函数关系式;⑶当t为何值时,直线l平分△COB面积.07.某服装厂现有A种布料35m,B种布料26m,现计划用这两种布料生产男、女两款式的时装共40套.已知做一套男时装需要A种布料0.6m、B种布料0.9m,可获利90元;做一套女时装需要A种布料1.lm,B 种布料0.4m,可获利100元,若设生产男时装套数为x套,用这批布料生产这两种时装所获得总利润为y 元.⑴求y与x的函数关系式,并求出x的取值范围;⑵该服装厂生产这批服装中,当生产男时装多少套时,所获得利润最大?最大利润是多少元?08.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机软⑴用含x,y 的式子表示购进C型手机的部数;⑵求出y与x之间的函数关系式;⑶假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额一购机款一各种费用)②求预估利润的最大值,并写出此时购进三款手机各多少部.08.已知直线l1经过点(2,5)和(-1,-1)两点,与x轴的交点是点A,将直线y=-6x+5的图象向上平移4个单位后得到l2,l2与l1的交点是点C,l2与x轴的交点是点B,求△ABC的面积.yxOCBAl2l109.(江苏无锡)某企业在生产甲、乙两种节能产品时需用A、B两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m(万元)与销售量n(吨)之间的函数关系如图所示.已知该企业生产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.⑴.写出x与y满足的关系式;⑵.为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原料多少吨?10.(自贡)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食全部转移到具有较强抗震能力的A、B两个仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨,从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨·千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8⑴若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;⑵当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?。

一次函数与方程、不等式的应用

 一次函数与方程、不等式的应用

2.(2020·福建)某公司经营甲、乙两种特产,其中甲特产每吨成本 价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价 为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之 和都是100吨,且甲特产的销售量都不超过20吨.
(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这 个月该公司分别销售甲、乙两种特产各多少吨?
5.(2020·铜仁)某文体商店计划购进一批同种型号的篮球和同种型 号的排球,每一个排球的进价是每一个篮球的进价的 90%,用 3 600 元购买排球的个数要比用 3 600 元购买篮球的个数多 10 个.
(1)问每一个篮球、排球的进价各是多少元? (2)该文体商店计划购进篮球和排球共 100 个,且排球个数不低于 篮球个数的 3 倍,篮球的售价定为每一个 100 元,排球的售价定为每 一个 90 元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、 排球各多少个才能获得最大利润?最大利润是多少?
则 M=400a+600(40-a)+2×40×100=-200a+32 000, ∵a≤3(40-a),∴a≤30. ∵-200<0,∴M 随 a 的增大而减小. ∴当 a=30 时,M 取得最小值,最小值为 26 000 元. 答:购买甲、乙两种办公桌分别为 30 张、10 张时,费用最少,为 26 000 元.
(2)求该公司一个月销售这两种特产则销售乙种特产(100-x)吨,根据题 意,得
10x+(100-x)×1=235, 解得x=15. ∴100-x=85. 答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.
(2)设利润为w元,销售甲种特产a吨,根据题意,得 w=(10.5-10)a+(1.2-1)×(100-a)=0.3a+20. ∵0≤a≤20, ∴当a=20时,w取得最大值,w最大=26. 答:该公司一个月销售这两种特产所能获得的最大总利润是26万 元.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档