铝合金和热处理
热处理对铝合金的影响及其应用
热处理对铝合金的影响及其应用铝合金是一种常见的金属材料,具有重量轻、强度高、导热性能好等多种优点,因此在工业制造和生活中得到了广泛的应用。
然而,铝合金的力学性能和耐蚀性等方面仍然有提升的空间。
通过热处理技术对铝合金进行改性处理,可以显著提高其性能并拓展其应用领域。
本文将探讨热处理对铝合金的影响以及其在不同领域的应用。
一、热处理对铝合金的影响热处理是一种通过控制铝合金的加热和冷却过程来改变其晶体结构和力学性能的方法。
常见的热处理包括固溶处理、时效处理和变形热处理等。
这些热处理方法可以使铝合金的晶体发生变化,从而改变其硬度、强度和耐蚀性等性能。
1. 固溶处理固溶处理是将铝合金加热至固溶温度,保持一定时间后迅速冷却。
固溶处理的目的是使合金中的固溶体达到均匀分布,提高其强度和硬度。
此外,固溶处理还可以消除铝合金中的内应力,提高材料的稳定性和耐蚀性。
2. 时效处理时效处理是在固溶处理后将铝合金再次加热至一定温度,保持一段时间后进行冷却。
时效处理的目的是使铝合金中的固溶体和析出物相互作用,形成细小均匀的析出相,提高合金的强度和稳定性。
时效处理的时间和温度是影响合金性能的关键参数,需要经过实验确定最佳处理工艺。
3. 变形热处理变形热处理是将铝合金进行塑性变形,然后进行热处理的一种方法。
通过变形处理,可以引入晶界、位错和应变等缺陷,增加合金晶粒的形变能量,进而提高合金的强度和硬度。
变形热处理通常与固溶处理或时效处理相结合,以获取更好的性能提升效果。
二、热处理在不同领域的应用热处理技术对铝合金的改性处理可以广泛应用于各个领域,以下为几个典型应用案例:1. 航空航天领域铝合金作为轻质高强材料,在航空航天领域有着广泛的应用。
通过热处理可以提高铝合金的强度、硬度和耐蚀性,满足飞机、卫星等空间器件对材料性能的要求。
热处理后的铝合金可以用于制造飞机机身、发动机部件、航天器结构等。
2. 汽车制造领域铝合金在汽车制造领域具有重要的应用价值。
铝及铝合金的热处理
铝及铝合金的热处理退火及淬火时效是铝合金的基本热处理形式。
退火是一种软化处理。
其目的是使合金在成分及组织上趋于均匀和稳定,消除加工硬化,恢复合金的塑性。
淬火时效则属强化热处理,目的是提高合金的强度,主要应用于可热处理强化的铝合金。
第一节 退火根据生产需求的不同,铝合金退火分铸锭均匀化退火、坯料退火、中间退火及成品退火几种形式。
一、铸锭均匀化退火铸锭在快速冷凝及非平衡结晶条件,必然存在成分及组织上的不均匀,同时也存在很大的内应力。
为了改变这种状况,提高铸锭的热加工工艺性,一般需进行均匀化退火。
为促使原子扩散,均匀化退火应选择较高的退火温度,但不得超过合金中低熔点共晶熔点,一般均匀化退火温度低于该熔点5~40℃,退火时间多在12~24h之间。
二、坯料退火坯料退火是指压力加工过程中第一次冷变形前的退火。
目的是为了使坯料得到平衡组织和具有最大的塑性变形能力。
例如,铝合金热轧板坯的轧制终了温度为280~330℃,在室温快速冷却后,加工硬化现象不能完全消除。
特别是热处理强化的铝合金,在快冷后,再结晶过程未能结束,过饱和固溶体也未及彻底分解,仍保留一部分加工硬化和淬火效应。
不经退火直接进行冷轧是有困难的,因此需进行坯料退火。
对于非热处理强化的铝合金,如LF3,退火温度为370~470℃,保温1.5~2.5H后空冷,用于冷拉伸管加工的坯料、退火温度应适当高一些,可选上限温度。
对于可热处理强化的铝合金,如LY11及LY12,坯料退火温度为390~450℃,保温1~3H,随后在炉中以不大于30℃/h的速度冷却到270℃以下再出炉空冷。
三、中间退火中间退火是指冷变形工序之间的退火,其目的是为了消除加工硬化,以利于继续冷加工变形。
一般来说,经过坯料退火后的材料,在承受45~85%的冷变形后,如不进行中间退火而继续冷加工将会发生困难。
中间退火的工艺制度基本上与坯料退火相同。
根据对冷变形程度的要求,中间退火可分为完全退火(总变形量ε≈60~70%),简单退火(ε≤50%)和轻微退火(ε≈30~40%)三种。
铝合金及热处理
9000系列:备用合金组。
5000 6000 7000 8000 9000
2000系列:以铜为主要合金元 素的铝合金 。
4000系列:以硅为主要合金 元素的铝合金 。
6000系列:以镁、硅为主要合金元素, 并以Mg2Si相为强化相的铝合金 。
8000系列:以其他合金元素为主要元 素态,仅适用于经固溶热处理后,室温下自然
时效的合金,该状态代号仅表示产品处于自然时效阶段)
T 热处理状态
态的产品)
(适用于执处理后,经过(或不经过)加工硬化达到稳定状
固溶处理:指将合金加热到高温单相区恒温保持,使过剩 相充分溶解到固溶体中后快速冷却(水冷),以得到过饱和固 溶体的热处理工艺。
不完全人工时效:采用比较低的时效温度或较短的保温时 间 , 获得优良的综合力学性能 , 即获得比较高的强度 , 良好的 塑性和韧性 , 但耐腐蚀性能可能比较低。
完全人工时效:采用较高的时效温度和较长的保温时间 , 获得最大的硬度和最高的抗拉强度 , 但伸长率较低。 稳定化处 理:为使工件在长期服役的条件下形状和尺寸变化能够保持在 规定范围内的热处理。
2系代表合金2011 以铜为主要合元素的含铝合金。也会添加锰、镁、铅和铋,切削性优秀、高强
度、 耐蚀性不强、杜拉铝总称、切削材、零件螺丝等结构材、飞机材、锻造用素材、 汽机车油压零件、运动用品 。
如:合金,在熔练过程中要注意安全防护(会产生有害气体)。2014合金用天 航空工业,强度高。2017合金比2014合金强度低一点,但比较容易加工。2014可热 处理强化。缺点:晶间腐蚀倾向严重。应用范围:航空工业(2014合金),螺丝 (2011合金)和使用温度较高的行业(2017合金)。
6061热处理
6061热处理6061热处理引言:6061热处理是一种常见的金属处理方法,用于改善6061铝合金的力学性能和耐腐蚀能力。
在本文中,我们将深入探讨6061热处理的多个方面。
我们将从简单介绍6061铝合金和热处理的基本概念开始,然后逐步深入研究不同的热处理过程,并分析其对6061铝合金性能的影响。
最后,我们将总结本文的关键点,并分享对6061热处理的观点和理解。
第一部分:6061铝合金和热处理的基本概念在这部分中,我们将简要介绍6061铝合金和热处理的基本概念,以便对后续内容有一个基本的了解。
6061铝合金是一种常见的热可加工铝合金,由铝、镁、硅、铜等元素组成。
它具有良好的可加工性、优异的强度和抗腐蚀性能,在航空航天、汽车和建筑等领域得到广泛应用。
热处理是通过对材料进行加热和冷却来改变其性能的过程。
在热处理过程中,材料的晶粒结构和各种力学性能会发生变化,从而使材料具有所需的性能。
第二部分:6061热处理的不同过程及其影响在这部分中,我们将深入研究6061热处理的不同过程,包括固溶处理、时效处理和人工时效处理,并分析每个过程对6061铝合金性能的影响。
1. 固溶处理:是指将6061铝合金加热到固溶温度,使合金中的硅和铜等固溶元素进入铝基固溶体中。
这样可以将合金中的硬度降低,提高可加工性,但会降低合金的强度。
2. 时效处理:是指在固溶处理后,将6061铝合金加热到合适的温度,保持一段时间后再进行冷却。
时效处理可以使合金中形成硬度较高的Al-Mg-Si相,并增强6061铝合金的强度、硬度和耐腐蚀能力。
3. 人工时效处理:是指将6061铝合金加热到固溶温度进行固溶处理后,再人工调整时效温度和时效时间。
人工时效处理可以进一步提高合金的强度和硬度,同时保持合金的韧性。
第三部分:总结和回顾在本部分中,我们将对前两个部分的内容进行总结和回顾,以帮助您对6061热处理有更全面、深刻和灵活的理解。
6061热处理是通过固溶处理和时效处理,可以改变6061铝合金的晶粒结构,从而提高合金的强度、硬度和耐腐蚀能力。
金属热处理铝合金的热处理课件
铝合金的时效处理
时效处理是铝合金热处理的另一个重要环节 ,通过在室温或低温下长时间放置,使过饱 和固溶体发生分解,形成弥散分布的强化相 ,进一步提高材料的强度和硬度。
时效处理过程中,过饱和固溶体在室温或低 温下长时间放置,会发生分解。随着时间的 推移,强化相逐渐从过饱和固溶体中析出, 形成弥散分布的状态。这种弥散分布的强化 相可以有效地阻碍位错运动,提高材料的强 度和硬度。时效处理是铝合金热处理中不可 或缺的一环,对于提高铝合金的性能具有重
02 铝合金热处理原理
铝合金特性
密度低
铝合金的密度远低于钢铁,具有更好的轻量化 效果。
良好的塑性
铝合金在加工过程中具有良好的塑性,容易形 成各种形状。
良好的导电性和导热性
铝合金具有优良的导电和导热性能,广泛应用于电子和散热器行业。
铝合金热处理原理
加热
01Biblioteka 将铝合金加热到一定温度,使其原子TDM活跃度增加。
加热时间控制
根据铝合金的厚度和热处 理工艺要求,控制加热时 间,确保铝合金材料均匀 受热。
冷却方式选择
根据铝合金的种类和热处 理要求,选择适当的冷却 方式,如风冷、水冷等, 以获得所需的机械性能。
铝合金热处理的质量检测与控制
硬度检测
通过硬度测试,检测铝合金材料的硬度是否达到 要求。
金相组织观察
通过金相显微镜观察,检测铝合金材料的金相组 织是否符合要求。
金属热处理铝合金的热处理课件
• 金属热处理概述 • 铝合金热处理原理 • 铝合金热处理工艺 • 铝合金热处理设备与工艺控制
• 铝合金热处理的发展趋势与未来 展望
• 案例分析:某铝合金产品的热处 理工艺流程
01 金属热处理概述
铸造铝合金的热处理代号
铸造铝合金的热处理代号铝合金热处理是指通过加热和冷却对铝合金进行热处理,以改善其力学性能和耐腐蚀性能。
根据处理温度和时间的不同,铝合金的热处理可分为多种不同的代号,下面将逐一介绍这些热处理方法。
1. T1热处理:T1热处理是指对铝合金进行固溶处理,即将合金加热至固溶温度,保持一定时间后迅速冷却。
这种处理方法可以增强铝合金的强度和硬度,提高其耐腐蚀性能。
T1热处理常用于纯铝和铝合金的初级加工过程中。
2. T2热处理:T2热处理是在T1热处理的基础上进行人工时效处理。
在固溶处理后,将铝合金再次加热至一定温度,保持一段时间后再进行冷却。
T2热处理可以进一步提高铝合金的强度和硬度,同时改善其耐磨性能和耐蚀性能。
这种处理方法常用于航空航天和汽车制造等领域。
3. T3热处理:T3热处理是指对铝合金进行固溶处理后再进行人工时效处理。
固溶处理的温度和时间与T1热处理相同,但人工时效处理的温度和时间较长。
T3热处理可以使铝合金的强度达到最大值,并且具有良好的耐腐蚀性能和抗应力腐蚀性能。
这种处理方法常用于航空航天和车辆制造等高要求领域。
4. T4热处理:T4热处理是指对铝合金进行固溶处理后进行自然时效处理。
固溶处理的温度和时间与T1热处理相同,但自然时效处理是将合金在室温下自然冷却一段时间。
T4热处理可以提高铝合金的强度和硬度,同时保持良好的成形性能。
这种处理方法常用于铝合金的铸造和锻造过程中。
5. T5热处理:T5热处理是指对铝合金进行固溶处理后进行人工时效处理。
固溶处理的温度和时间与T1热处理相同,但人工时效处理的温度和时间较短。
T5热处理可以提高铝合金的强度和硬度,并具有较好的耐磨性能和耐蚀性能。
这种处理方法常用于航空航天和汽车制造等领域。
6. T6热处理:T6热处理是指对铝合金进行固溶处理后进行人工时效处理。
固溶处理的温度和时间与T1热处理相同,但人工时效处理的温度和时间较长。
T6热处理可以使铝合金的强度达到最大值,并具有良好的耐磨性能、耐腐蚀性能和抗应力腐蚀性能。
热处理对铝合金材料组织和性能的影响
热处理对铝合金材料组织和性能的影响随着现代科技的飞速发展,铝合金材料越来越被广泛应用于各个领域。
热处理技术作为一种重要的材料处理方法,不仅可以改善铝合金材料的组织性能,也可以提高材料的使用寿命和可靠性。
本文将探讨热处理对铝合金材料组织和性能的影响。
一、热处理对铝合金材料组织的影响1.固溶处理固溶处理是指将铝合金材料加热至温度区间内,使金属中固溶的合金元素逐渐溶解进铝中形成固溶体,进而改善材料的强度和韧性。
固溶处理后,铝合金材料的显微组织比原来更加均匀,晶粒细化,降低了材料的内部应力和晶界能量,进一步提高了材料的塑性和韧性。
2.时效处理时效处理是指在固溶处理完成后,将材料冷却至室温,然后将其再次回火至一定的温度,保持一定的时间,使固溶体溶剂中逐渐析出出新的金属相,引起材料组织的硬化和强化。
经过时效处理后,铝合金材料的显微组织不仅保持了固溶处理晶粒细化的特点,且定向分布了少量的二次相,提高了材料的强度、硬度和耐热性。
二、热处理对铝合金材料性能的影响1.强度和硬度热处理可以使铝合金材料的强度和硬度得到显著提高。
固溶处理通过提高材料的塑性和韧性,使其呈现出一定的初始强度;时效处理能够引起铝合金组织中二次相的析出,使材料的硬度得到进一步的提升。
2.耐腐蚀性铝合金材料在固溶状态下易受到腐蚀的侵蚀,而经过热处理后,由于固溶体中的合金元素已经分散到铝矩阵中形成稳定的统一结构,在固溶状态下较难被腐蚀剂侵蚀,从而使合金材料的耐腐蚀性得到了显著提高。
3.疲劳寿命铝合金材料在长时间使用后易出现疲劳裂纹,进而降低材料的使用寿命和稳定性。
经过热处理后,铝合金材料的组织得到了改善,内部应力得到一定的缓解,从而使其具有更好的疲劳寿命和韧性。
综上所述,热处理是一种非常有效的材料处理技术,能够改善铝合金材料的组织和性能。
但是,在实际应用中需要根据不同的铝合金材料和使用要求,合理选择热处理工艺和参数,以充分发挥其优点,并保证材料的使用寿命和可靠性。
铝合金及热处理
第5页
各铝牌号代表合金
1系代表有1050:0.3Si 0.4Fe 0.1Cu 0.1Mn 0.1Mg 0.1Zn 0.1V 。 高纯铝(含铝量99.9%以上)主要用于科学试验,化学工业及特殊用途。 抗拉强度 σb (MPa)95~125 ,条件屈服强度 σ0.2 (MPa)≥75,1050主要
特性 为纯铝中添加少量铜元素形成,具有极佳的成形加工特性,高耐腐蚀 性,良好的焊接性和导电性。热处理工艺 热处理规范1)完全退火:加热 390~430℃,随材料有效厚度不同,保温时间30~120min,以30~50℃/h速 度随炉冷至300℃下,再空冷。2)快速退火,加热350~370℃,随材料有效 厚度不同,保温时间30~120min。空或水冷。 3)淬火和时效:淬火500~ 510℃,空冷,人工时效 95~105℃,3h,空冷,自然时效。应用举例 :广 泛用于对强度要求不高的产品,如化工仪器,薄板加工件,深拉或旅压凹形 器皿,焊接零件,热交换器,钟表面及盘面,铭牌,厨具,装饰品。
变质处理:变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质 剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒, 达到提高材料性能的目的。
孕育处理:在凝固过程中,向液态金属中添加少量其它物质,促进形核、抑制生长, 达到细化晶粒的目的。 习惯上,向铸铁中加入添加剂称为孕育处理;向有色合金中加入 添加剂则称变质处理。 从本质上说,孕育处理主要影响形核和促进晶粒游离;而变质处 理则是改变晶体的生长机理(抑制长大),从而影响晶体形貌。
铝合金热处理及牌号基本概念
铝合金热处理代号--(名称)
F 自由加工状态 (适用于在成型过程中对于加工硬化和热处理条件无特殊要求
的产品,该状态产品的力学性能不作规定)
铝合金分类可热处理
铝合金分类可热处理
铝合金可以根据其成分、结构以及热处理方式进行分类。
以下是一些可进行热处理的铝合金分类:
1. 铸造铝合金:铸造铝合金是通过铸造工艺生产出的铝合金制品。
常见的铸造铝合金有铝硅合金、铝铜合金、铝镁合金等。
铸造铝合金的热处理主要包括退火、固溶处理、时效处理和循环处理等。
2. 变形铝合金:变形铝合金是通过轧制、拉伸等加工工艺制成的铝合金板、棒、线等制品。
常见的变形铝合金有纯铝、铝锰合金、铝锂合金等。
变形铝合金的热处理主要包括退火、冷作硬化处理、热变形处理等。
3. 铝合金结构材料:这类铝合金主要用于制造航空航天、汽车、轨道交通等领域的结构零件。
常见的铝合金结构材料有7075、6061、2024等牌号。
这些铝合金的热处理方式
主要包括固溶处理、时效处理、双重时效处理等。
4. 铝合金功能材料:这类铝合金具有特殊功能,如导电、导热、电磁屏蔽等。
常见的铝合金功能材料有铝镍合金、铝铜合金等。
这些铝合金的热处理方式与其他铝合金类似,主要包括退火、时效处理等。
5. 铝合金复合材料:铝合金复合材料是通过复合工艺将两种或多种铝合金组合在一起,以实现特定性能要求的材料。
常见的铝合金复合材料有铝基复合材料、铝锂复合材料等。
这类材料的热处理方式因复合方式的不同而有所差异。
总之,铝合金热处理方式多种多样,针对不同类型的铝合金和应用场景,可以选择适当的热处理工艺来提高合金的力学性能、耐腐蚀性能和加工性能。
在实际应用中,根据铝合金的成分、结构和性能要求选择合适的热处理方法至关重要。
热处理对铝合金材料的热导率的影响
热处理对铝合金材料的热导率的影响热处理是一种通过加热和冷却的过程来改善材料性能的方法。
在铝合金材料中,热处理可以对其热导率产生影响。
本文将探讨热处理对铝合金材料热导率的影响,并分析其原因。
第一部分:热处理的定义和作用热处理是指通过控制材料的加热和冷却过程,改变其晶体结构和组织,以改善材料的性能。
热处理可以提高材料的强度、硬度、延展性等多种性能指标,并对热导率产生影响。
第二部分:铝合金材料的热导率热导率是指单位时间内单位面积的热量流过材料的能力。
铝合金材料因其优良的导热性能而被广泛应用于热传导和散热领域。
铝合金的热导率与其微观结构、晶体缺陷、晶格定向和合金元素等因素密切相关。
第三部分:热处理对铝合金材料热导率的影响机制热处理过程中,铝合金材料经历了加热和冷却的过程,这会对其晶体结构和晶界状态产生重要影响,从而影响热导率。
具体影响机制有以下几点:1. 晶体结构的调整:热处理可以改变铝合金材料的晶体结构,例如通过固溶处理形成固溶体或沉淀析出相等方式来调整晶界和晶粒尺寸,从而影响热导率。
2. 晶界状态的调控:热处理可以改变铝合金材料的晶界状态,如晶界的迁移、再结晶等,进而影响热导率。
晶界的数量、形态和晶界能量等因素都会对热导率产生影响。
3. 合金元素的加入:铝合金中常常需加入其他金属元素来改善其性能。
热处理对合金元素的分布和相互作用有重要影响,进而影响热导率。
不同元素的溶解度、互溶度以及形成相等等因素都会对热导率产生影响。
第四部分:热处理方法对铝合金材料热导率的影响热处理方法包括固溶处理、时效处理等。
这些处理方法会对铝合金材料的晶界、晶格和相互作用产生影响,从而对热导率产生影响。
不同的热处理方法会导致不同的晶体结构和晶界状态,进而影响热导率的大小和方向。
第五部分:案例分析以铝合金7000系列为例,介绍了通过热处理对其热导率的影响。
该系列铝合金常用于航空航天和汽车等领域,热处理可以显著提高其强度和硬度,同时改变其热导率。
铝合金及热处理
铝合金的热处理铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面: 1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力; 2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能; 3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化; 4)消除晶间和成分偏析,使组织均匀化。
二、热处理方法 1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。
其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。
铝合金热处理标准
铝合金热处理标准铝合金是一种轻质、高强度的金属材料,广泛应用于航空航天、汽车制造、建筑等领域。
然而,铝合金的热处理对其性能和用途至关重要。
本文将介绍铝合金热处理的标准及相关知识。
首先,铝合金的热处理标准主要包括时效硬化、固溶处理和淬火。
时效硬化是指在固溶处理后,将合金在较低的温度下保温一段时间,通过析出细小的析出相颗粒来提高合金的硬度和强度。
固溶处理是将合金加热至固溶温度,使合金中的溶解相完全溶解,然后迅速冷却到室温。
淬火是指将固溶处理后的合金快速冷却,以获得高强度和硬度。
其次,铝合金热处理的温度控制非常关键。
不同种类的铝合金对应不同的固溶温度和时效温度,温度控制的不当将导致合金的性能下降甚至失效。
因此,在进行热处理时,必须严格按照标准要求进行温度控制,以确保合金的性能达到设计要求。
另外,热处理过程中的冷却速度也需要严格控制。
过快或过慢的冷却速度都会对合金的性能产生不利影响。
合金的淬火速度要根据具体合金的性能要求进行合理选择,以确保合金在热处理后能够达到设计要求的硬度和强度。
最后,热处理过程中的环境条件也需要重视。
合金的热处理通常在控制气氛炉或真空炉中进行,以避免合金表面的氧化和污染。
此外,热处理过程中还需要注意处理工艺中的气氛气体成分和气氛气氛流速等因素,以确保合金表面的质量和性能。
综上所述,铝合金热处理标准涉及到时效硬化、固溶处理、淬火等多个方面,温度、冷却速度和环境条件都对合金的性能产生重要影响。
只有严格按照标准要求进行热处理,才能确保铝合金的性能达到设计要求,从而保证其在各个领域的应用安全可靠。
2a12铝合金h112和t4热处理
2a12铝合金h112和t4热处理2A12铝合金H112和T4热处理引言:2A12铝合金是一种热处理强化型铝合金,具有优异的力学性能和耐腐蚀性能。
其中,H112是该合金的一种状态,T4则是经过热处理后的状态。
本文将分别介绍2A12铝合金H112和T4热处理的特点和应用。
一、2A12铝合金H112状态1. 特点:2A12铝合金H112状态是指经过自然时效处理(即室温时效处理)后的合金状态。
在这种状态下,2A12铝合金具有较高的强度和硬度,但其塑性和韧性相对较低。
同时,H112状态下的2A12铝合金具有良好的耐腐蚀性能和良好的可焊性。
2. 应用:由于2A12铝合金H112状态具有较高的强度和硬度,常用于航空航天、交通运输和机械制造等领域。
特别是在航空航天领域,2A12铝合金H112状态常用于制造飞机结构件、发动机零部件等。
二、2A12铝合金T4热处理1. 特点:2A12铝合金T4热处理是指在固溶处理后,经过人工时效处理得到的合金状态。
在T4状态下,2A12铝合金具有较高的强度和良好的塑性和韧性。
同时,T4状态下的2A12铝合金也具有良好的耐腐蚀性能和可焊性。
2. 应用:2A12铝合金T4状态具有较高的强度和良好的塑性和韧性,常用于航空航天、交通运输和机械制造等领域。
在航空航天领域,2A12铝合金T4状态常用于制造飞机翼、舵面等结构件。
此外,2A12铝合金T4状态也广泛应用于汽车制造、船舶制造和轨道交通等领域。
三、2A12铝合金H112和T4热处理的比较1. 强度和硬度:2A12铝合金H112状态相对于T4状态具有更高的强度和硬度,适用于对强度要求较高的场合。
而T4状态下的2A12铝合金则具有较好的塑性和韧性,适用于要求较高的冲压和成形加工。
2. 耐腐蚀性能:无论是2A12铝合金H112状态还是T4状态,均具有良好的耐腐蚀性能,可以适应多种环境下的使用要求。
3. 可焊性:2A12铝合金H112状态和T4状态均具有良好的可焊性,便于加工和制造。
热处理对铝合金材料的硬度的影响
热处理对铝合金材料的硬度的影响热处理是一种常用的金属加工方法,通过对材料进行加热和冷却处理,从而改变其组织和性能。
铝合金作为一种重要的结构材料,广泛应用于航空航天、汽车制造等领域。
本文将探讨热处理对铝合金材料硬度的影响,并分析其中的机理。
一、热处理对铝合金材料硬度的影响热处理是通过材料的加热和冷却过程来改变其组织和性能的方法。
在铝合金材料的热处理过程中,主要采用固溶处理和时效处理两种方式。
固溶处理是将铝合金材料加热到固溶温度,使其内部的元素溶解在铝基体中,然后通过快速冷却固定组织和性能。
时效处理则是在固溶处理后,将材料加热至一个较低的温度,在一定时间内保持稳定,从而形成稳定的强化相。
热处理对铝合金材料的硬度有明显的影响。
经过固溶处理后,铝合金材料的硬度明显降低。
这是因为固溶处理使材料的强化相溶解,在晶界和晶内形成均匀的固溶体。
由于固溶体的形成,晶界的位错和间隙缺陷被视界填补,从而使材料的硬度降低。
另外,固溶处理还能使材料的塑性提高,这是因为固溶体的形成降低了晶界的能量,使材料更容易发生位错滑移和塑性变形。
然而,对于铝合金材料来说,单纯的固溶处理并不能满足实际应用的要求,需要通过时效处理来进一步提高其硬度。
时效处理能够使固溶体中的溶质元素重新析出,形成新的强化相。
这些强化相在晶界和晶内形成弥散的位错散弹器,有效地阻碍位错的滑移和晶粒的生长,从而提高了材料的硬度。
此外,时效处理还能使材料的强度和耐热性提高,同时保持一定的塑性。
二、热处理对铝合金材料硬度的机理热处理对铝合金材料硬度的影响主要与相变、析出、弥散强化等机制密切相关。
在固溶处理过程中,材料的强化相溶解,晶内的位错和间隙缺陷被填补,导致材料的硬度降低。
这是因为固溶体的形成改变了原始的晶粒结构和位错分布,使材料的变形机制由位错滑移变为晶粒边界的滑移。
与此同时,固溶处理还使材料的晶界能量降低,晶界间的塑性变形增加,从而提高了材料的塑性。
而时效处理通过改变材料的温度和时间,促使固溶体中的溶质元素重新析出,形成新的强化相。
热处理对铝合金的影响
热处理对铝合金的影响热处理是一种通过改变材料的热力学状态和组织结构来改善材料性能的方法。
在铝合金材料的加工中,热处理常常被用于提高材料的力学性能、耐热性能和耐腐蚀性能。
本文将探讨热处理对铝合金的影响。
1. 强化效果热处理是铝合金强化的重要方法之一。
通过热处理,可以通过固溶处理和时效处理来改变铝合金的组织结构,从而提高其强度和硬度。
固溶处理通过在高温下加热铝合金,使得合金中的溶质原子均匀溶解在基体中,从而形成固溶体。
而时效处理则是在固溶处理的基础上,通过在适当的时间和温度下保持材料,促进溶质原子形成弥散的致密沉淀物,从而进一步提高材料的强度。
2. 塑性和韧性铝合金经过热处理后,其塑性和韧性也会有所改善。
固溶处理能够提高铝合金的塑性,使其在加工过程中更加容易变形。
与此同时,时效处理可以使铝合金的晶界处形成高密度的位错,从而提高材料的强韧性,使其在承受外力时更加耐用。
3. 耐热性能热处理还可以提高铝合金的耐热性能。
在合适的温度下进行热处理,可以使铝合金形成相对稳定的高温组织结构,从而提高材料的耐高温性。
这极大地扩展了铝合金在高温环境下的应用领域。
4. 耐腐蚀性能铝合金经过热处理后,其耐腐蚀性能也得到了改善。
通过热处理,铝合金可以形成致密的氧化层,该氧化层能够在一定程度上阻止外部腐蚀介质的侵蚀。
此外,热处理还能提高铝合金晶界的稳定性,减少晶界处的腐蚀敏感性,从而进一步提高材料的耐腐蚀性能。
总结:热处理对铝合金具有重要影响。
通过固溶处理和时效处理,可以提高铝合金的强度、硬度、塑性和韧性。
此外,热处理还能提高材料的耐热性和耐腐蚀性。
因此,在铝合金的加工和应用过程中,合理使用热处理技术,能够使铝合金发挥出更好的性能,满足各种工程需求。
铝及铝合金的热处理退火处理
铝及铝合金的热处理退火处理
铝及铝合金的热处理退火处理
目的:
展伸用材料包括压延用材料,挤压用材料及锻造用材料,通常其制造程序为:
熔铸→热加工→冷加工→材料成品
在热加工或冷加工的过程中,材料发生加工硬化的情况,使强度变大或导致加工硬化的情况,使强度变大或导致加工性减低。
为消除这些加工硬化,于冷加工前,中或后所施的热处理即为退火处理,其目的在使材料具有使用上所需要的程度。
分类:
由于退火条件的不同而分:
1、部分退火:
仅消除部份加工硬化,处理温度在再结晶温度以下,实际温度则视强度而定,强度愈高则处理温度较低。
2、完全退火:
处理温度在材料的再结晶温度或稍高使材料发生再结晶而完全消除加工硬化,亦使强度达到最低的状态。
退火处里就时机而分:
1、中间退火:
再冷加工开始之前或冷加工过程中,所加的退火处理,通常为完全退火,其目的在恢复其加工性,使接下去的加功能较顺利,及控制其组织状态,俾能适合于最终成品的要求。
2、最终退火:
主要目的再调整成品最后的强度水平亦即调整炼度。
-1/1-。
铝合金热处理硬度
铝合金热处理硬度
铝合金是一种具有良好机械性能和耐腐蚀性能的金属材料。
在工
业应用中,铝合金常常需要经过热处理才能达到所需的硬度和强度。
热处理是通过控制材料的加热和冷却过程,改变其晶体结构,从而改
善其性能。
一般来说,铝合金的热处理可以分为时效处理和固溶处理两种方式。
时效处理是先进行固溶处理,然后再经过一段时间的恒温保持。
固溶处理是将铝合金加热至固溶温度,使其中的溶解相尽量溶解,并
形成均匀的固溶体。
然后,通过快速冷却将固溶体固化。
热处理对铝合金的影响主要体现在硬度上。
随着固溶温度的升高,固溶度增加,溶解相的数量也增多,使得合金的硬度提高。
而时效处
理则使得合金中的溶解相重新析出,形成一种弥散的强化相,从而提
高材料的硬度和抗拉强度。
对于铝合金的热处理,我们需要注意以下几点。
首先,合金化元
素的含量和种类对热处理的影响很大。
不同种类的铝合金在热处理过
程中会出现不同的相变行为。
其次,热处理温度和时间的选择也很重要。
温度过高或时间过长可能会导致过量的溶解相析出,从而影响材
料的性能。
最后,冷却速度对热处理的效果也具有一定影响。
合适的
冷却速度可以使固溶相均匀地固化,提高材料的硬度。
总之,铝合金的热处理硬度是通过控制温度、时间和冷却速度来
实现的。
正确的热处理方法可以使铝合金达到所需的硬度和强度,提
高其工程应用价值。
因此,我们在实际应用中应根据具体合金的成分和要求,选择合适的热处理工艺,以确保铝合金具备良好的机械性能和耐腐蚀性能。
铝及铝合金热处理工艺讲解学习
铝及铝合金热处理工艺1. 铝及铝合金热处理工艺1.1 铝及铝合金热处理的作用将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。
1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1)图1 铝及铝合金热处理分类1.2.2 铝及铝合金热处理基本作用原理(1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。
通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。
①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。
②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。
③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。
(2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。
但此时材料塑性较高,可进行冷加工或矫直工序。
①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。
②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。
铝及铝合金热处理工艺
铝及铝合金热处理工艺1.1铝及铝合金热处理的作用将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。
1.2铝及铝合金热处理的主要方法及其基本作用原理1.2.1铝及铝合金热处理的分类(见图1)均匀化退火中间退火退火成品退火在线淬火立式淬火离线淬火铝固溶淬火卧式淬火及一次淬火铝合阶段淬火金热自然时效处过时效理人工时效时效欠时效多级时效回归图1铝及铝合金热处理分类1.2.2铝及铝合金热处理基本作用原理(1)退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。
通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可提高材料的塑性,但强度会降低。
①铸锭均匀化退火:在高温下历久保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与机能均匀化,可进步材料塑性20%左右,降低挤压力20%左右,进步挤压速度15%左右,同时使材料表面处置惩罚质量进步。
②中央退火:又称部分退火或工序间退火,是为了进步材料的塑性,消除材料内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种机能的组合。
③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。
(2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。
但此时材料塑性较高,可进行冷加工或矫直工序。
①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。
②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝合金的热处理铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面: 1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力; 2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能; 3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化; 4)消除晶间和成分偏析,使组织均匀化。
二、热处理方法 1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。
其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。
2、淬火淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。
然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。
这种过程叫做淬火,也叫固溶处理或冷处理。
3、时效处理时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。
合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。
时效处理又分为自然时效和人工时效两大类。
自然时效是指时效强化在室温下进行的时效。
人工时效又分为不完全人工时效、完全人工时效、过时效3种。
1)不完全人工时效:把铸件加热到150-170℃,保温3-5h,以获得较好抗拉强度、良好的塑性和韧性,但抗蚀性较低的热处理工艺; 2)完全人工时效:把铸件加热到175-185℃,保温5-24h,以获得足够的抗拉强度(即最高的硬度)但延伸率较低的热处理工艺; 3)过时效:把铸件加热到190-230℃,保温4-9h,使强度有所下降,塑性有所提高,以获得较好的抗应力、抗腐蚀能力的工艺,也称稳定化回火。
4、循环处理把铝合金铸件冷却到零下某个温度(如-50℃、-70℃、-195℃)并保温一定时间,再把铸件加热到350℃以下,使合金中度固溶体点阵反复收缩和膨胀,并使各相的晶粒发生少量位移,以使这些固溶体结晶点阵内的原子偏聚区和金属间化合物的质点处于更加稳定的状态,达到提高产品零件尺寸、体积更稳定的目的。
这种反复加热冷却的热处理工艺叫循环处理。
这种处理适合使用中要求很精密、尺寸很稳定的零件(如检测仪器上的一些零件)。
一般铸件均不作这种处理。
5、铸造铝合金热处理状态代号及含义代号合金状态热处理的作用或目的说明T1 人工时效在金属型或湿砂型铸造的合金,因冷却速度较快,已得到一定程度的过饱和固溶体,即有部分淬火效果。
再作人工时效,脱溶强化,则可提高硬度和机械强度,改善切削加工性。
对提高Zl104、ZL105等合金的强度有效。
T2 退火主要作用在于消除铸件的内应力(铸造应力和机加工引起的应力),稳定铸件尺寸,并使Al-Si系合金的Si晶体球状化,提高其塑性。
对Al-Si系合金效果比较明显,退火温度280-300℃,保温时间为2-4h。
T4 固溶处理(淬火)加自然时效通过加热保温,使可溶相溶解,然后急冷,使大量强化相固溶在α固溶体内,获得过饱和固溶体,以提高合金的硬度、强度及抗蚀性。
对Al-Mg系合金为最终热处理,对需人工时效的其它合金则是预备热处理。
T5 固溶处理(淬火)加不完全人工时效用来得到较高的强度和塑性,但抗蚀性会有所下降,非凡是晶间腐蚀会有所增加。
时效温度低,保温时间短,时效温度约150-170℃,保温时间为3-5h。
T6 固溶处理(淬火)加完全人工时效用来获得最高的强度,但塑性和抗蚀性有所降低。
在较高温度和较长时间内进行。
适用于要求高负荷的零件,时效温度约175-185℃,保温时间5h以上。
T7 固溶处理(淬火)加稳定化回火用来稳定铸件尺寸和组织,提高抗腐蚀(非凡是抗应力腐蚀)能力,并保持较高的力学性能。
多在接近零件的工作温度下进行。
适合300℃以下高温工作的零件,回火温度为190-230℃,保温时间4-9h。
T8 固溶处理(淬火)加软化回火使固溶体充分分解,析出的强化相聚集并球状化,以稳定铸件尺寸,提高合金的塑性,但抗拉强度下降。
适合要求高塑性的铸件,回火温度约230-330℃,保温时间3-6h。
T9 循环处理用来进一步稳定铸件的尺寸外形。
其反复加热和冷却的温度及循环次数要根据零件的工作条件和合金的性质来决定。
适合要求尺寸、外形很精密稳定的零件。
三、热处理工艺1、铸造铝合金热处理工艺参数合金牌号合金代号热处理固溶处理时效处理(保温后空冷)加热温度(℃)保温时间(h)淬火温度(℃)加热温度(℃)保温时间(h)ZAlSi7Mg ZL101 T2 - - - 300±10 2-4T4 535±5 2-6 20-100 - -T5 535±5 2-6 20-100 150±5 2-4T6 535±5 2-6 20-100 200±5 2-5T7 535±5 2-6 80-100 225±5 3-5T8 535±5 2-6 80-100 250±10 3-5T5 二阶段 535±5 2-6 20-100 190±10 0.5 150±5 2ZAlSi7MgA ZL101A T1 - - - 190±5 3-4T2 - - - 300±10 2-4T4 535±5 10-16 20-100 - -T5 535±5 10-16 20-100 175±5 6 ZAlSi12 ZL102T2 - - - 300±10 2-4 ZAlSi9Mg ZL104 T1 - - - 175±5 5-17T6 535±5 2-6 20-100 175±5 10-15ZAlSi5Cu1Mg ZL105 T1 - - - 180±5 5-10T5 525±5 3-5 20-100 175±5 5-10T6 525±5 3-5 20-100 200±5 3-5T7 525±5 3-5 20-100 230±10 3-5ZAlSi5Cu1MgA ZL105A T1 - - - 180±5 5-10T5 525±5 3-5 20-100 175±5 5-10T6 525±5 3-5 20-100 200±5 3-5T7 525±5 3-5 20-100 230±10 3-5T8 525±5 3-5 20-100 250±10 3-5ZAlSi8Cu1Mg ZL106 T1 - - - 200±10 5-8T2 - - - 280±10 5-8T5 515±5 4-8 20-100 170±5 8-16T6 515±5 4-8 20-100 160±5 4-6T7 515±5 4-8 20-100 230±5 3-5ZAlSi7Cu4 ZL107 T6 515±5 5-7 20-100 170±10 5-7 ZAlSi12Cu2Mg1 ZL108 T1 - - - 190±5 8-12T6 515±5 6-8 20-70 175±5 14-18T7 515±5 3-8 20-70 240±10 6-10ZAlSi12Cu1Mg1Ni1 ZL109T1 - - - 205±5 8-12T6 515±5 6-8 20-70 180±5 14-18ZAlSi9Cu2Mg ZL111T6 520±5 4-6 20-70 180±5 6-8 ZAlSi7Mg1A ZL114AT5 535±5 2-7 20-100 150±5 1-3T6 540±5 8-12 65-100 160±5 3-5ZALSi5Zn1Mg ZL115T4 550±5 16 65-100 - -T5 550±5 16 65-100 160±5 4ZAlSi8MgBe ZL116T1 - - - 190±5 3-4T2 - - - 300±10 2-4T4 535±5 10-16 20-100 - -T5 535±5 10-16 20-100 175±5 6T6 535±5 10-16 20-100 160±5 3-8ZAlCu5Mn ZAlCu5MnA ZL201 ZL201AT4 545±5 10-12 20-100 - -T5 545±5 5-9 20-100 175±5 3-6T7 545±5 5-9 20-100 250±10 3-10 ZAlCu10 ZL202 T2 - - - 290±5 3 ZAlCu4 ZL203T4 515±5 10-15 20-100 - -T5 515±5 10-15 20-100 150±5 2-4ZAlCu5MnCdA ZL204AT6 535±5 7-9 40-100 175±5 3-5T7 535±5 7-9 40-100 190±5 3-5ZAlCu5MnCdVA ZL205AT5 535±5 10-15 20-60 155±5 8-10T6 535±5 10-15 20-60 175±5 3-5T7 535±5 10-15 20-60 195±5 3-5ZAlRE5Cu3Si2 ZL207 T1 - - - 200±5 5-10 ZAlMg10 ZL301T4 430±10 20 100(或油) - - ZAlMg8Zn1 ZL305T4 455±5 6-8 80-100 - - ZAlZn11Si7 Zl401 T1 - - - 200±10 5-10 T2 - - - 300±10 2-4 ZAlZn6Mg ZL402T1 - - - 175±5 6-8 T5 - - - 室温 20天 T5 - - - 175±5 6-82、热处理操作技术要点1)热处理前应检查热处理设备、辅助设备、仪表等是否合格和正常,炉膛各处的温度差是否在规定的范围之内(±5℃);2)装炉前应吹砂或冲洗,应无油污、脏物、泥土,合金牌号不应相混;。