第九章 功能陶瓷材料的烧结 PPT
合集下载
陶瓷烧结
目前,微波烧结技术已经被广泛用于多种陶瓷复合 材料的试验研究材料直接耦合导致整体加热。
(2)微波烧结升温速度快,烧结时间短。 (3)安全无污染。 (4)能实现空间选择性烧结。
材料与微波场的作用类型
材料与微波的作用方式示意图
微波烧结系统
5 )反应烧结
反应烧结(reaction-bonded sintering)是让原料混合 物发生固相反应或原料混合物与外加气(液)体发生 围—气(液)反应,以合成材料,或者对反应后的反应 体施加其它处理工艺以加工成所需材料的一种技术 。
是将粉末压坯或装入包套的粉料装入高压容器中,使粉 料经受高温和均衡压力的作用,被烧结成致密件。
其基本原理是:以气体作为压力介质,使材料(粉 料、坯体或烧结体)在加热过程中经受各向均衡的压力, 借助高温和高压的共同作用促进材料的致密化。 目前,热等静压技术的主要应用有:金属和陶瓷的 固结,金刚石刀具的烧结,铸件质量的修复和改善,高 性能磁性材料及靶材的致密化。
(2)具备快熔快冷性,有利于保持粉末的优异特性;
(3)可以使 Si3N4,SiC 等非热熔性陶瓷在无需添加
烧结助剂的情况下 发生烧结。
间接法爆炸烧结装置(a.单面飞片; b.单活塞;c.双活塞)
直接法爆炸烧结装置
谢谢大家!
1)热压烧结
热压烧结(hot pressing)是在烧结过程中同时对
坯料施加压力,加速了致密化的过程。所以热压 烧结的温度更低,烧结时间更短。
热压技术已有70年历史,最早用于碳化钨和钨粉致密件的 制备。现在已广泛应用于陶瓷、粉末冶金和复合材料的生 产。
热压烧结的优点
(1)所需的成型压力仅为冷压法的1/10
烧结装置
烧结系统大致由 四个部分组成:真空 烧结腔(图中6), 加压系统(图中3), 测温系统(图中7) 和控制反馈系统。图 中1示意石墨模具,2 代表用于电流传导的 石墨板,4是石墨模 具中的压头,5是烧 结样品。
陶瓷烧结PPT课件
未来研究方向与展望
新材料与新工艺的开发
跨学科合作与技术融合
智能化与数字化技术的 应用
未来,研究者们将继续探索新型陶瓷 材料,研究新的烧结工艺和技术,以 满足各种应用需求。同时,如何实现 陶瓷材料的绿色生产和降低成本也是 未来的重要研究方向。
陶瓷烧结技术涉及到材料科学、物理 学、化学等多个学科领域,未来的研 究将更加注重跨学科的合作和技术融 合,以推动陶瓷材料的发展和应用。
还原气氛
可以还原杂质,提高陶瓷的纯度。
压力的影响
常压烧结
是最常见的烧结方式,适用于大多数 陶瓷材料。
加压烧结
在加压条件下,可以促进陶瓷的致密 化,提高其性能。
05
陶瓷烧结的质量控制与检测
质量控制方法
原料质量控制
对原料的化学成分、粒度、含水 率等指标进行严格检测和控制,
确保原料质量稳定。
工艺参数控制
在烧结过程中,对温度、压力、气 氛等工艺参数进行精确控制,以获 得最佳的烧结效果。
设备维护与校准
定期对烧结设备进行维护和校准, 确保设备运行稳定,提高产品的重 复性和可靠性。
性能检测与评价
物理性能检测
检测产品的密度、气孔率、热膨 胀系数等物理性能指标,确保产
品性能符合要求。
力学性能检测
通过抗弯强度、抗压强度等力学 性能试验,评估产品的机械性能
和可靠性。
耐腐蚀性能检测
对产品的耐酸、耐碱、耐热等性 能进行检测,以适应不同环境下
的使用要求。
缺陷分析与改进
缺陷识别
通过外观检查、无损检测等方法,识别产品中的 缺陷和问题。
原因分析
对缺陷产生的原因进行深入分析,找出根本原因 并制定相应的改进措施。
《功能陶瓷材料》PPT课件
《材料物理导论》
第7章
功能陶瓷材料物理
编辑ppt
1
前言
材料可以分成三大类,金属、陶瓷、有机高分子。
金属材料的基本特征是:由金属元素原子构成,原子之间 的结合是金属键,含有许多自由电子。
有机高分子材料的基本特征是:主要由碳、氧、氢、硅等 非金属元素原子构成,原子之间的结合主要是共价键,一般 没有自由电子。
为了提高陶瓷质量,人们对粉料制备进行了许 多研究,发明了多种制备超细陶瓷粉料的方法。其 中,湿化学法尤其重要。
编辑ppt
14
1、共沉淀法
共沉淀是指溶液中一种不溶或难溶成分在形成沉淀过程中, 将共存的某些其它组分一起带着沉淀下去的现象。
共沉淀的原理基于表面吸附、形成混晶、异电核胶态物质相 互作用及包藏等。
金属蒸汽真空弧离子源离子注入离子束增强辅助沉积等离子源离子注入激光表面合金化激光化学气相沉积等离子体辅助化学气相沉积双层辉光等离子体表面合金化脉冲高能量等离子体表面改性技术离子注入装置举例离子注入材料表面改性的强化机理离子注入后能显著提高材料表面的硬度耐磨性耐疲劳性抗腐蚀和抗氧化等性能其改性的机理认为主要有以下几种
高度均匀性,高纯性,可降低烧结温度,可在分子水平上进
行组元控制。
编辑ppt
17
例: YSZ粉的Sol-Gel法制备 异丙醇锆 醋酸钇
↓混合搅拌 均匀溶液
↓吸水;水解-聚合反应 溶胶 ↓干燥 凝胶
↓ 煅烧
↓ YSZ粉末 纳米级大小
编辑ppt
18
三、一些特殊的烧结方法:
1、热压烧结:
就是在对样品施加压力的条件下烧结。
吸附共沉淀:特征是主沉淀成分表面积大、吸附力强, 故吸附和富集效率高。
混晶共沉淀:两种金属离子和一种沉淀剂形成的晶形、 晶核相似的晶体,称为混晶。如PbSO4-SrSO4混晶。
第7章
功能陶瓷材料物理
编辑ppt
1
前言
材料可以分成三大类,金属、陶瓷、有机高分子。
金属材料的基本特征是:由金属元素原子构成,原子之间 的结合是金属键,含有许多自由电子。
有机高分子材料的基本特征是:主要由碳、氧、氢、硅等 非金属元素原子构成,原子之间的结合主要是共价键,一般 没有自由电子。
为了提高陶瓷质量,人们对粉料制备进行了许 多研究,发明了多种制备超细陶瓷粉料的方法。其 中,湿化学法尤其重要。
编辑ppt
14
1、共沉淀法
共沉淀是指溶液中一种不溶或难溶成分在形成沉淀过程中, 将共存的某些其它组分一起带着沉淀下去的现象。
共沉淀的原理基于表面吸附、形成混晶、异电核胶态物质相 互作用及包藏等。
金属蒸汽真空弧离子源离子注入离子束增强辅助沉积等离子源离子注入激光表面合金化激光化学气相沉积等离子体辅助化学气相沉积双层辉光等离子体表面合金化脉冲高能量等离子体表面改性技术离子注入装置举例离子注入材料表面改性的强化机理离子注入后能显著提高材料表面的硬度耐磨性耐疲劳性抗腐蚀和抗氧化等性能其改性的机理认为主要有以下几种
高度均匀性,高纯性,可降低烧结温度,可在分子水平上进
行组元控制。
编辑ppt
17
例: YSZ粉的Sol-Gel法制备 异丙醇锆 醋酸钇
↓混合搅拌 均匀溶液
↓吸水;水解-聚合反应 溶胶 ↓干燥 凝胶
↓ 煅烧
↓ YSZ粉末 纳米级大小
编辑ppt
18
三、一些特殊的烧结方法:
1、热压烧结:
就是在对样品施加压力的条件下烧结。
吸附共沉淀:特征是主沉淀成分表面积大、吸附力强, 故吸附和富集效率高。
混晶共沉淀:两种金属离子和一种沉淀剂形成的晶形、 晶核相似的晶体,称为混晶。如PbSO4-SrSO4混晶。
《陶瓷材料的烧结》课件
资源循环利用
对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装
对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装
功能陶瓷介绍ppt
超导计算机
用超导芯片将大大提高计算机的运算速度,并减少体积。 美国IBM公司研制的一台运算速度为8000万次/秒的超导计 算机,体积只有一部电话机大小,其元件不发热,可长时 间高效率运行。
超导材料的应用实例
电力输送与储存 目前有大约30%的电能损耗在输电线路上 ,采用超导体输电,可大大减少损耗,且省去 了变压器和变电所。 使用巨大的超导线圈,经供电励磁产生磁 场而储存能量。超导磁储能系统所存能量几乎 可以无损耗的储存下去,其转换率可高达95% 。
超导磁悬浮列车
时速 400 ~ 500km.
电阻的现象。 超导体:低于某一温度出现超导电性的物质。
超导电性的基本特征
➢ 完全导电性(零电阻)
➢ 完全抗磁性:迈斯纳 (Meissner)效应
处于超导状态的金属,不 管其经历如何,磁感应强度B始 终为零。
磁力线不能进入 超导体内部
观察迈斯纳效应的磁悬浮试验
在锡盘上放一条永久磁铁,当温度低于锡的 转变温度时,小磁铁会离开锡盘飘然升起, 升至一定距离后,便悬空不动了,这是由于 磁铁的磁力线不能穿过超导体,在锡盘感应 出持续电流的磁场,与磁铁之间产生了排斥 力,磁体越远离锡盘,斥力越小,当斥力减 弱到与磁铁的重力相平衡时,就悬浮不动了。
绝缘陶瓷,它必须具备如下性能: • 体积电阻率ρ ≥ 1012 Ωcm • 相对介电常数ε ≤30 • 损耗因子≤0.001 • 介电强度≥ 5.0KV/mm
➢ 陶瓷存在电子式载流子和离子式载流子。其中 离子式载流子占主要影响。
➢ 离子电导率受离子的荷电量和扩散系数的影响 。荷电量和体积越小越容易扩散,因此碱离子 影响比较大。
钠—硫电池的金属电极容易发生腐蚀,尤其在高温条件下 更是如此。腐蚀作用是多种多样的,除因电极腐蚀而减少导电 能力外,还可能在电极表面形成一种增加接触电阻的表面层, 最终导致电池工作性能变坏,寿命缩短。
用超导芯片将大大提高计算机的运算速度,并减少体积。 美国IBM公司研制的一台运算速度为8000万次/秒的超导计 算机,体积只有一部电话机大小,其元件不发热,可长时 间高效率运行。
超导材料的应用实例
电力输送与储存 目前有大约30%的电能损耗在输电线路上 ,采用超导体输电,可大大减少损耗,且省去 了变压器和变电所。 使用巨大的超导线圈,经供电励磁产生磁 场而储存能量。超导磁储能系统所存能量几乎 可以无损耗的储存下去,其转换率可高达95% 。
超导磁悬浮列车
时速 400 ~ 500km.
电阻的现象。 超导体:低于某一温度出现超导电性的物质。
超导电性的基本特征
➢ 完全导电性(零电阻)
➢ 完全抗磁性:迈斯纳 (Meissner)效应
处于超导状态的金属,不 管其经历如何,磁感应强度B始 终为零。
磁力线不能进入 超导体内部
观察迈斯纳效应的磁悬浮试验
在锡盘上放一条永久磁铁,当温度低于锡的 转变温度时,小磁铁会离开锡盘飘然升起, 升至一定距离后,便悬空不动了,这是由于 磁铁的磁力线不能穿过超导体,在锡盘感应 出持续电流的磁场,与磁铁之间产生了排斥 力,磁体越远离锡盘,斥力越小,当斥力减 弱到与磁铁的重力相平衡时,就悬浮不动了。
绝缘陶瓷,它必须具备如下性能: • 体积电阻率ρ ≥ 1012 Ωcm • 相对介电常数ε ≤30 • 损耗因子≤0.001 • 介电强度≥ 5.0KV/mm
➢ 陶瓷存在电子式载流子和离子式载流子。其中 离子式载流子占主要影响。
➢ 离子电导率受离子的荷电量和扩散系数的影响 。荷电量和体积越小越容易扩散,因此碱离子 影响比较大。
钠—硫电池的金属电极容易发生腐蚀,尤其在高温条件下 更是如此。腐蚀作用是多种多样的,除因电极腐蚀而减少导电 能力外,还可能在电极表面形成一种增加接触电阻的表面层, 最终导致电池工作性能变坏,寿命缩短。
稀土功能陶瓷材料-课件
气敏传感器
稀土功能陶瓷材料的表面活性和 气敏性能使其在气体传感器中具 有广泛应用。
储氢材料
稀土功能陶瓷材料的孔结构和特 殊吸附性能使其成为理想的储氢 材料。
生物医学材料
稀土功能陶瓷材料的生物相容性 和药物传输性能使其在生物医学 领域具有潜在应用。
市场前景
1 全球市场概览
稀土功能陶瓷材料市场正在迅速增长,预计 未来几年将保持良好发展态势。
2 发展趋势与前景
随着新技术的不断涌现和应用领域的扩大, 稀土功能陶瓷材料有望在未来发展中发挥更 大的作用。
总结
稀土功能陶瓷材料具有独特的特点和广泛的应用领域,但也存在一些挑战。 未来发展的重点将是提高材料性能和拓宽应用领域。
制备方法
1 热处理制备法
通过高温烧结和热处理将稀土氧化物与其他 化合物反应得到陶瓷材料。
2 溶胶-凝胶法
通过溶胶和凝胶的形成过程控制陶瓷材料的 结构和性能。
3 液相制备法
通过液相反应得到稀土功能陶瓷材料。
4 物理-化学合成法
结合物理和化学方法制备稀土功能陶瓷材料。
性能表征
1
结构表征
使用X射线衍射和扫描电子显微镜等技术分析稀土功能陶瓷材料的结构。
稀土功能陶瓷材料-课件
欢迎来到稀土功能陶瓷材料的课件!在本课件中,我们将了解稀土功能陶瓷 材料的特点、制备方法、性能表征、应用领域和市场前景。
概述
稀土功能陶瓷材料是一类具有特殊功能和优异性能的材料。它们具有高温稳 定性、电学性能、机械性能等特点,广泛应用于储能器件、光伏电池、气敏 传感器、储氢材料和生物医学材料等领域。
2
物理性质表征
通过测量热膨胀系数、热导率和电阻率等参数来评估稀土功能陶瓷材料的物理性 能。
工程材料学第9章 陶瓷材料
四、陶瓷的典型组织结构
包括三种相:晶体相、玻璃相、 包括三种相:晶体相、玻璃相、气相 1.晶体 1.晶体 晶体相是陶瓷的主要组成相, 晶体相是陶瓷的主要组成相,主要有 硅酸盐、氧化物和非氧化合物等。 硅酸盐、氧化物和非氧化合物等。它们 的结构、数量、形态和分布, 的结构、数量、形态和分布,决定陶瓷 的主要性能和应用。 的主要性能和应用。硅酸盐是是陶瓷组 织中重要的晶体相, 织中重要的晶体相,结合为离子键与共 价键的混合键。 价键的混合键。 陶瓷在室温下的组织
(1)原料制备 矿物原料经拣选、粉粹后配料、混合、磨细得到坯料。 矿物原料经拣选、粉粹后配料、混合、磨细得到坯料。 (2)坯料成形 ) 将坯料加工成一定形状和尺寸并有一定机械强度和致密度的半成 包括可塑成形(如传统陶瓷) 注浆成形(如形状复杂、 品 。 包括可塑成形 ( 如传统陶瓷 ) , 注浆成形 ( 如形状复杂 、 精 度要求高的普通陶瓷)和压制成形(如特种陶瓷和金属陶瓷) 度要求高的普通陶瓷)和压制成形(如特种陶瓷和金属陶瓷)。 (3)烧成与烧结 ) 干燥后的坯料加热到高温,进行一系列的物理、 干燥后的坯料加热到高温,进行一系列的物理、化学变化而成瓷 的过程。 烧成是使坯件瓷化的工艺( 的过程 。 烧成是使坯件瓷化的工艺 ( 1250℃~ 1450℃) ; 烧结是 ℃ ℃ 指烧成的制品开口气孔率极低、而致密度很高的瓷化过程。 指烧成的制品开口气孔率极低、而致密度很高的瓷化过程。 (4) 陶瓷烧结的后处理 ) 表面施釉:是通过高温加热, 表面施釉:是通过高温加热,在陶瓷表面烧附一层玻璃状物质使 其表面具有光亮、美观、绝缘、防水等优异性能的工艺方法。 其表面具有光亮、美观、绝缘、防水等优异性能的工艺方法。 (5)陶瓷的加工 ) 为改善烧结后的陶瓷制件的表面光洁度、 为改善烧结后的陶瓷制件的表面光洁度、精确尺寸或去除表面 缺陷等,常利用磨削、激光以及超声波等加工方法对其进行处理 工方法对其进行处理。 缺陷等 , 常利用磨削 、 激光以及超声波等加 工方法对其进行处理 。
特种陶瓷烧结工艺课件
800 600 400 200
0
CONVENTIONAL HEATING MICROWAVE HEATING
100
200
300
400
500
600
TIME, MIN.
•特种陶瓷烧结工艺
•42
2 烧结工艺
•特种陶瓷烧结工艺
•43
2 烧结工艺
无添加剂 1700oC, 10 min in H2
添加氧化铬 1700oC, 10 min in H2
5)放电等离子体烧结(SPS)
2 烧结工艺
•特种陶瓷烧结工艺
•37
2 烧结工艺
•特种陶瓷烧结工艺
•38
2 烧结工艺
•特种陶瓷烧结工艺
•39
6)微波烧结
2 烧结工艺
•特种陶瓷烧结工艺
•40
2 烧结工艺
•特种陶瓷烧结工艺
•41
2 烧结工艺
TEMPERATURE, °C
1400 1200 1000
1 烧结理论
•特种陶瓷烧结工艺
•11
1.3 烧结影响因素
1 烧结理论
•特种陶瓷烧结工艺
•12
1.4 烧结阶段
1 烧结理论
•特种陶瓷烧结工艺
•13
1.4 烧结阶段
1 烧结理论
颗粒重排,接触处产生键合,
烧结初期
空隙变形缩小,但固-气总表面
积没有变化。
烧
结
的
传质开始,粒界增大,空隙进
三
烧结中期
一步变形缩小,但保持连同,
•特种陶瓷烧结工艺
•31
2)热压烧结
2 烧结工艺
•热压烧结促进致密化的机 理大概有以下几种: (1) 由于高温下的塑性流动, (2)由于压力使颗粒重排, 使颗粒碎裂以及晶界滑移 而形成空位浓度梯度,(3) 由于空位浓度梯度的存在 而加速了空位的扩散。
0
CONVENTIONAL HEATING MICROWAVE HEATING
100
200
300
400
500
600
TIME, MIN.
•特种陶瓷烧结工艺
•42
2 烧结工艺
•特种陶瓷烧结工艺
•43
2 烧结工艺
无添加剂 1700oC, 10 min in H2
添加氧化铬 1700oC, 10 min in H2
5)放电等离子体烧结(SPS)
2 烧结工艺
•特种陶瓷烧结工艺
•37
2 烧结工艺
•特种陶瓷烧结工艺
•38
2 烧结工艺
•特种陶瓷烧结工艺
•39
6)微波烧结
2 烧结工艺
•特种陶瓷烧结工艺
•40
2 烧结工艺
•特种陶瓷烧结工艺
•41
2 烧结工艺
TEMPERATURE, °C
1400 1200 1000
1 烧结理论
•特种陶瓷烧结工艺
•11
1.3 烧结影响因素
1 烧结理论
•特种陶瓷烧结工艺
•12
1.4 烧结阶段
1 烧结理论
•特种陶瓷烧结工艺
•13
1.4 烧结阶段
1 烧结理论
颗粒重排,接触处产生键合,
烧结初期
空隙变形缩小,但固-气总表面
积没有变化。
烧
结
的
传质开始,粒界增大,空隙进
三
烧结中期
一步变形缩小,但保持连同,
•特种陶瓷烧结工艺
•31
2)热压烧结
2 烧结工艺
•热压烧结促进致密化的机 理大概有以下几种: (1) 由于高温下的塑性流动, (2)由于压力使颗粒重排, 使颗粒碎裂以及晶界滑移 而形成空位浓度梯度,(3) 由于空位浓度梯度的存在 而加速了空位的扩散。
《陶瓷烧结方法》课件
2
在高温同时施加高电压脉冲电流,使粉
末快速烧结,常用于制作钢和超硬合金。
3
微波烧结法
通过粉末中所含的微波吸收剂,在微波 炉中快速烧结制造新材料和高性能金属 陶瓷复合材料。
激光烧结法
利用激光加热粉末,使其迅速熔融并结 合成材料。被广泛应用于制造新型复合 材料。
陶瓷烧结过程中的关键技术
烧结温度与时间控制
控制烧结温度和时间对陶瓷 组织和性能有着至关重要的 影响。
热压强度控制
热压强度对陶瓷烧结的瓷砖 干缩和密度均有着重要的影 响。
等温氧化控制
等温氧化是一种重要的表面 处理方法,它可以提高材料 的表面质量和性能。
陶瓷烧结的应用领域
电子领域
陶瓷烧结技术被广泛用于制造电 路板和其他电子元器件,其特性 适合各种高频应用。
传统烧结方法
短时高温烧结法
在高温下以较短时间使粉末结合 成实体,常用于制造建筑材料和 骨科植入物。
长时间低温烧结法
在较低的温度下以较长时间使粉 末结合成实体,常用于制作砖、 陶器等。
合成烧结法
先将粉末中的化学物质反应生成 所需物质,再进行高温烧结,常 用于制造高性能功能材料。
现代烧结方法
1
脉冲电流烧结法
陶瓷烧结方法
在制造陶瓷制品时,陶瓷烧结方法是其中至关重要的一环。本课程将介绍传 统和现代烧结方法,以及烧结过程中的关键技术和应用领域。
概述
陶瓷烧结是一种用高温使粉末结合成坚硬材料的方法。它主要用于制造各种陶瓷制品。传统烧结方法主要有三 种:短时高温、长时间低温和合成烧结法。现代烧结方法则主要有微波烧结造关节、种植义齿 和其它骨科植入物,因其生物相 容性和高强度而广泛应用。
环保领域
陶瓷烧结过程【共23张PPT】
氧化锆,(<2000C)
– 钟罩窑、梭式窑 室温就高吸收:CaCO3、Fe2O3、Cr2O3、SiC等
以高压气体作为压力介质作用于陶瓷材料(包封的粉体和素坯,或烧结体),使其在高温环境下受到等静压而达到高致密化 氧化锆,(<2000C)
• 连续式: 氮化硅无熔点、高温分解(1900C)
硅钼棒,MoSi2(<1700C)
• 整体均匀加热 低温吸收小,高于某温度急剧增加:Al2O3、MgO、ZrO2、Si3N4等
利用微波与材料的相互作用,其介电损耗导致陶瓷坯体自身发热而烧结
• 无热惯性,烧成周期短 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
管式气氛炉:电热丝、硅碳、硅钼 为了抑制氮化物分解,在N2气压力1-10MPa高压下烧成。
Al2O3-SiO2)
• 采用α氮化硅为原料,1420C相变为β相,有利烧结, 且该β相为柱状晶,力学性能好。
• 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
氮化硅的气压烧结 (Gas Pressure Sintering GPS)
• 为了抑制氮化物分解,在N2气压力110MPa高压下烧成。
• 对于氮化硅常压烧成温度要低于1800C, 而气压烧结温度可提高到2100-2390C。
热压烧结(Hot Pressing, HP)
• 加热的同时施加机械压力 ,增加烧结驱动力,促进 烧结
– 粘性流动 – 塑性变形 – 晶界滑移 – 颗粒重排
• 一般采用石墨模具,表面 涂覆氮化硼,防止反应
热等静压 (Hot Isostatic Pressing, HIP)
陶瓷烧结过程
烧结的驱动力
• 粉体表面能与界面能的差 • 传质过程
– 钟罩窑、梭式窑 室温就高吸收:CaCO3、Fe2O3、Cr2O3、SiC等
以高压气体作为压力介质作用于陶瓷材料(包封的粉体和素坯,或烧结体),使其在高温环境下受到等静压而达到高致密化 氧化锆,(<2000C)
• 连续式: 氮化硅无熔点、高温分解(1900C)
硅钼棒,MoSi2(<1700C)
• 整体均匀加热 低温吸收小,高于某温度急剧增加:Al2O3、MgO、ZrO2、Si3N4等
利用微波与材料的相互作用,其介电损耗导致陶瓷坯体自身发热而烧结
• 无热惯性,烧成周期短 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
管式气氛炉:电热丝、硅碳、硅钼 为了抑制氮化物分解,在N2气压力1-10MPa高压下烧成。
Al2O3-SiO2)
• 采用α氮化硅为原料,1420C相变为β相,有利烧结, 且该β相为柱状晶,力学性能好。
• 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
氮化硅的气压烧结 (Gas Pressure Sintering GPS)
• 为了抑制氮化物分解,在N2气压力110MPa高压下烧成。
• 对于氮化硅常压烧成温度要低于1800C, 而气压烧结温度可提高到2100-2390C。
热压烧结(Hot Pressing, HP)
• 加热的同时施加机械压力 ,增加烧结驱动力,促进 烧结
– 粘性流动 – 塑性变形 – 晶界滑移 – 颗粒重排
• 一般采用石墨模具,表面 涂覆氮化硼,防止反应
热等静压 (Hot Isostatic Pressing, HIP)
陶瓷烧结过程
烧结的驱动力
• 粉体表面能与界面能的差 • 传质过程
功能陶瓷材料PPT课件
2021
9
先进陶瓷(Advanced ceramics)又称现代陶瓷, 是为了有别于传统陶瓷而言的。
先进陶瓷有时也称为精细陶瓷(Fine Ceramics)、 新型陶瓷(New Ceramics)、特种陶瓷(Special Ceramics)和高技术陶瓷(High-Tech. Ceramics)等。
目前,功能陶瓷主要用于电、磁、光、声、热
和化学等信息的检测、转换、传输、处理和存储等,
并已在电子信息、集成电路、计算机、能源工程、
超声换能、人工智能、生物工程等众多近代科技领
域显示出广阔的应用前景。
2021
22
根据功能陶瓷组成结构的易调性和可控性,可 以制备超高绝缘性、绝缘性、半导性、导电性和超 导电性陶瓷;
2021
30
黏土作用概括为五个方面:
1)黏土的可塑性是陶瓷坯泥赖以成形的基础。 2)黏土使注浆泥料与釉料具有悬浮性与稳定性。 3)黏土一般呈细分散颗粒,同时具有结合性。 4)黏土是陶瓷坯体烧结时的主体,黏土中的Al2O3含量和杂质含
量是决定陶瓷坯体的烧结程度、烧结温度和软化温度的主要 因素; 5)黏土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。
黏土的组成:黏土的组成可从几个方面来分析,一般可 从矿物组成、化学组成和颗粒组成三个方面来进行分析。
2021
29
黏土的性质 黏土的性质对陶瓷的生产有很大的影响。它主要包括可塑 性、结合性、离子交换性、触变性、干燥收缩和烧成收缩、烧 结温度与烧结范围和耐火度等。
黏土的工艺性质 主要取决于黏土的矿物组成、化学组成与颗粒组成。其中, 矿物组成是基本因素。 黏土在加热过程中的变化包括两个阶段:脱水阶段与脱水 后产物的继续转化阶段。
第九章--新型无机非金属材料PPT课件
晶内:气孔、孪晶界、层错、位错等 a、 气孔率对强度的影响 强度随气孔率的增加近似按指数规律下降。 Ryskewitsch公式:σ=σ0exp(-αP) P—气孔率,σ0—P=0时的强度,α—常数,在4~7之间。 当P=10%时,σ下降到σ0的一半。硬瓷P=3%, 陶器 P=10%~15%。 ∴为获得高强度,应制备接近理论密度的无气孔陶瓷材料。
Va——原子体积或分子体积。
Va
E与kTm/Va之间成线性关系。
Tm↑,E↑ 氧化物<氮化物<硼化物<碳化物
陶瓷的弹性模量数据
温度对弹性模量的影响
弹性模量与kTm/Va之间的关系
(4)E与致密度的关系 随气孔率增加,E急剧下降。 即致密度提高,E提高。
E=EOexp(-BP) P——气孔率
气孔率对Al2O3陶瓷弹性模量的影响
自增韧陶瓷:烧结或热处理使其内部自生出 增韧相。
外加第二相增韧:纤维、晶粒、颗粒
9.1.4.1 相变韧化
(1)ZrO2同素异构转变及相变韧化的概念
ZrO2同素异构转变: 液相(L)→立方相(c)→正方相(t)→单斜相(m) 其中t→m转变时将产生3%~5%的体积膨胀,属M相变。 相变韧化:将ZrO2的t→m相变Ms点稳定到比室温稍低, 而Md(形变M点)点比室温高,使其在承载时由应力诱发产生 t→m相变,由于相变产生的体积效应和形状效应而吸收大量的 能量,从而表现异常高的韧性。
(2)温度对强度的影响
陶瓷的最大特点:高温强度比金属高得多。有三区: A区:T < 0.5 Tm,无塑变,σf基本保持不变; B区:T > 0.5 Tm,有塑变,σf随T上升明显降低; C区:T继续升高,二维滑移系开动,有交滑移产生,松 弛了应力集中,σf随T升高而上升。
Va——原子体积或分子体积。
Va
E与kTm/Va之间成线性关系。
Tm↑,E↑ 氧化物<氮化物<硼化物<碳化物
陶瓷的弹性模量数据
温度对弹性模量的影响
弹性模量与kTm/Va之间的关系
(4)E与致密度的关系 随气孔率增加,E急剧下降。 即致密度提高,E提高。
E=EOexp(-BP) P——气孔率
气孔率对Al2O3陶瓷弹性模量的影响
自增韧陶瓷:烧结或热处理使其内部自生出 增韧相。
外加第二相增韧:纤维、晶粒、颗粒
9.1.4.1 相变韧化
(1)ZrO2同素异构转变及相变韧化的概念
ZrO2同素异构转变: 液相(L)→立方相(c)→正方相(t)→单斜相(m) 其中t→m转变时将产生3%~5%的体积膨胀,属M相变。 相变韧化:将ZrO2的t→m相变Ms点稳定到比室温稍低, 而Md(形变M点)点比室温高,使其在承载时由应力诱发产生 t→m相变,由于相变产生的体积效应和形状效应而吸收大量的 能量,从而表现异常高的韧性。
(2)温度对强度的影响
陶瓷的最大特点:高温强度比金属高得多。有三区: A区:T < 0.5 Tm,无塑变,σf基本保持不变; B区:T > 0.5 Tm,有塑变,σf随T上升明显降低; C区:T继续升高,二维滑移系开动,有交滑移产生,松 弛了应力集中,σf随T升高而上升。
陶瓷材料及其制备烧结工艺培训课件:粉体的制备、烧结后处理与加工
物种类很多,部分以硅酸盐化合物的状态存在,构成各种矿 物、岩石。另一部分则以独立状态存在,成为单独的矿物实 体,其中结晶态二氧化硅统称为石英。
a.水晶
b.脉石英
c.砂岩
d.石英岩
e.石英砂
石英
水晶
3.长石类原料 长石是陶瓷生产中的主要熔剂性原料,一般用作坯料、釉
料、色料熔剂等的基本成分,用量较大,是日用陶瓷的三大原 料之一。自然界中长石的种类很多,归纳起来都是由以下四种 长石组合而成:
3)放电等离子体烧结
4)微波烧结 5)反应烧结 6)爆炸烧结
帮助理解
常压烧结:常压 热压烧结:加压 热等静压烧结:高温恒压 气氛烧结:防氧化、加气 反应烧结:加入气相或者液相以 获得一 定强度和精度
热压烧结
2.热压烧结 包括
热压烧 (在10~ 重排与致密 设备与模具 的烧制。
热等 复杂制品生 轴承、反射 亦可采用此
五、烧结原理与工艺
(一) 概念
烧结是指多孔状陶瓷坯体在高温条件下,表面积减 小、孔隙率降低、机械性能提高的致密化过程。
陶瓷烧结示意图
(a)颗粒间的松散接触;(b)颗粒间形成颈部; (c)晶界向小晶粒方向移动并逐渐消失,晶粒逐渐长大; (d)颗粒互相堆积形成多晶聚合体
(一) 概念
陶瓷的烧结类型可以分 固相烧结、液相烧结。
2. 陶瓷的分类 (1) 按陶瓷概念和用途来分类:
陶瓷
普通陶瓷
特种陶瓷
日用陶瓷
(包括艺术 陈列陶瓷)
建筑卫 生陶瓷
化工陶瓷
电瓷 化学瓷 及其它 结构陶瓷 功能陶瓷
工业用陶瓷
结构陶瓷主要是用于耐磨损、高强度、耐热、耐热 冲击、硬质、高刚性、低热膨胀性和隔热等结构陶瓷 材料;
a.水晶
b.脉石英
c.砂岩
d.石英岩
e.石英砂
石英
水晶
3.长石类原料 长石是陶瓷生产中的主要熔剂性原料,一般用作坯料、釉
料、色料熔剂等的基本成分,用量较大,是日用陶瓷的三大原 料之一。自然界中长石的种类很多,归纳起来都是由以下四种 长石组合而成:
3)放电等离子体烧结
4)微波烧结 5)反应烧结 6)爆炸烧结
帮助理解
常压烧结:常压 热压烧结:加压 热等静压烧结:高温恒压 气氛烧结:防氧化、加气 反应烧结:加入气相或者液相以 获得一 定强度和精度
热压烧结
2.热压烧结 包括
热压烧 (在10~ 重排与致密 设备与模具 的烧制。
热等 复杂制品生 轴承、反射 亦可采用此
五、烧结原理与工艺
(一) 概念
烧结是指多孔状陶瓷坯体在高温条件下,表面积减 小、孔隙率降低、机械性能提高的致密化过程。
陶瓷烧结示意图
(a)颗粒间的松散接触;(b)颗粒间形成颈部; (c)晶界向小晶粒方向移动并逐渐消失,晶粒逐渐长大; (d)颗粒互相堆积形成多晶聚合体
(一) 概念
陶瓷的烧结类型可以分 固相烧结、液相烧结。
2. 陶瓷的分类 (1) 按陶瓷概念和用途来分类:
陶瓷
普通陶瓷
特种陶瓷
日用陶瓷
(包括艺术 陈列陶瓷)
建筑卫 生陶瓷
化工陶瓷
电瓷 化学瓷 及其它 结构陶瓷 功能陶瓷
工业用陶瓷
结构陶瓷主要是用于耐磨损、高强度、耐热、耐热 冲击、硬质、高刚性、低热膨胀性和隔热等结构陶瓷 材料;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双球(中心距 变)
x2/2r 2x3/r x4/2r x2/4r 2x3/2r x4子与含水的沙 子的行为变化。形成了水膜的 沙子的可以粘附而堆积成型。
被水膜包裹的两 固体球的粘附
➢ 粘附作用是烧结初始阶段,导致粉体颗粒间产生键合、靠拢 和重排.并开始形成接触区的一个原因。
三种烧结模型:平面-球模型和双球模型。双球模型中:(1)颈 部的增长不引起两球间中心距离的缩短,(2)颈部增长导致两
球间中心距离缩短
假设烧结初期,粒径r变化很小,仍为球形,颈部半径 x很小,则颈部体积V、表面积A和表面曲率与r、x的 关系如表所示
平面-球
x2/2r
A x3/r
V x4/2r
双球(中心距 不变)
金属粉末Ts≈(0.3-0.4)Tm 无机盐类Ts≈ 0.57 Tm 硅酸盐类Ts≈(0.8-0.9)Tm
3、烧结与固相反应 相同点:均在低于材料熔点或熔融温度之下进行的;
过程自始至终都至少有一相是固态 不同点:固相反应至少有两组元参加,并发生化学反应。
烧结只有单组元或两组元参加,且不发生化学反应。
➢ 烧结后期:传质继续进行,粒子长大,气孔变成孤立闭气孔,密 度达到95%以上,制品强度提高。
(二)烧结推动力
能量差(具体表现为:压力差、空位浓度差、溶解度差)
1、能量差 粉状物料的表面能大于多晶烧结体的晶界能,即能量差是烧结的 推动力,但较小。烧结不能自发进行,必须对粉料加以高温,才 能促使粉末体转变为烧结体
多相反应和熔融、溶解、烧结等,其包括范围较宽。 ➢ 烧结:仅是粉料经加热而致密化的简单过程,是烧成过程的一个
重要部分。
2、烧结与熔融
相同点:都是由原子热振动而引起的 不同点:熔融时-全部组元都转变为液相
烧结时-至少有一组元是处于固态 ➢ 烧结是在远低于固态物质的熔融温度下进行的。 ➢ 泰曼指出,烧结温度Ts与其熔点Tm之间关系如下一般规律:
一、烧结定义及分类
1、烧结的定义
➢ 烧结——成型的粉末坯体, 经加热收缩,在低于熔点温 度下变成致密、坚硬的烧结 体的过程。
➢ 烧结过程为物理过程。
通常用烧结收缩率、强度、相对密度、气孔率等物理 指标来衡量物料烧结质量的好坏。
2、烧结的分类
1)常规烧结(是否出现液相)
➢ 固相烧结:在烧结温度下基本上无液相出现的烧结。
➢ 粘附力的大小直接取决于物质的表面能和接触面积,故粉状 物料间的粘附作用特别显著。
二、物质的传递—传质过程
气相传质 — 蒸发-凝聚传质
P
扩散传质
C
流动传质 塑性流动 粘性流动
f
dv
dx
F dv
S dx
溶解-沉淀传质
Cf
固 相 烧 结 液 相 烧 结
三、烧结过程及推动力
(一)烧结过程
1、烧结温度对烧结体性质的影响 1)随 T↑,电阻率↓、强度↑,表明: 在颗粒空隙被填充之前(即气孔率显著下降以前),颗粒接触处就 已产生某种键合,使得电子可以沿着键合的地方传递,故电导率 和强度增大 2)随 T 继续↑,物质开始向空隙传递,密度↑
大家应该也有点累了,稍作休息
第九章 功能陶瓷材料的制备
----烧结过程
➢ 概述 ➢ 烧结机理 ➢ 晶粒生长与二次再结晶 ➢ 影响烧结的因素
第一节 概 述
烧结过程是一门古老的工艺。现在,烧结过 程在许多工业部门得到广泛应用,如陶瓷、耐火 材料、粉末冶金、超高温材料等生产过程中都含 有烧结过程。
烧结的目的是把粉状材料转变为致密体。 研究物质在烧结过程中的各种物理化学变化。 对指导生产、控制产品质量,研制新型材料显得 特别重要。
价烧结的程度。对模型(B),烧结收缩是因颈部长大,两球心距离
缩短所引起的。故可用球心距离的缩短率
L L0
来表示线收缩率(L0-
烧结前两球心距离,L-烧结后缩短值):
Lr(r)cos
L0
r
烧结初期很小,cos1,故: L
L0
r
由 模 型 (B) 知 :
L x2
L0
r
4r2
➢ 上述模型及几何参数仅适应于烧结初期,随烧结 的进行,球形颗粒会逐渐变形,故在烧结中后期 需采用其它模型。
2、压力差:颗粒的弯曲表面上存在有压力差
P 2 r
或 P (1 1)
r1 r2
3、空位差:颗粒表面上的空位浓度与内部浓度之差
3 C kT C0
四、烧结模型
➢ 库津斯基提出粉末压块是由等径球体作为模型。随烧 结进行,各接触点处开始形成颈部,并逐渐扩大,最 后烧结成一个整体。
➢ 因各颈部所处环境和几何条件相同,故只需确定二颗 粒形成的颈部的成长速率就基本代表了整个烧结初期 的动力学关系。
如:高纯氧化物之间的烧结过程
➢ 液相烧结:有液相参与下的烧结。
如:多组分物系在烧结温度下常有液相出现,< 45%
2)非常规烧结(特种烧结) a、反应烧结 b、热压烧结 d、等静压烧结 e、活化烧结
c、电火花烧结 f、 微波烧结
二、与烧结有关的一些概念
1、烧结与烧成 ➢ 烧成:包括多种物理、化学变化,如:脱水、坯体内气体分解、
大家有疑问的,可以询问和交流
2、烧结过程的示意图
粉状成型体的烧结过程示意图
a)烧结初期
b)烧结后期 铁粉烧结的SEM照片
烧结过程可以分为三个阶段:烧结初期、中期和后期。
➢ 烧结初期:坯体中颗粒重排,接触处产生键合,空隙变形、缩小 (即大气孔消失),固-气总表面积变化不大 。
➢ 烧结中期:传质开始,粒界增大,空隙进一步变形、缩小,但仍 然连通,形如隧道。
➢ 烧结时,由于传质机理各异而引起颈部增长的方式不 同。因此,双球模型的中心距有如下二种情况:
颈部曲率半径ρ、颈部体积V、颈部表面积A、颗粒半径r、颈部半径x
双球模型
特征: 中心距L不变 坯体无收缩
中心距L缩短 坯体收缩
适用: 蒸发-凝聚传质
扩散传质
球体-平板模型
扩散传质
➢ 烧结会引起体积的收缩和致密度增加,常用线收缩率或密度值来评
例如: 粒度为1m的材料烧结后,G降低约8.3J/g(无机材料
等效于0.5 -1.5 KJ/mol); α-石英与β-石英之间的多晶转变时,G为1.7 KJ/mol; 一般化学反应前后能量变化超过200 KJ/mol。
烧结的难易可以用GB晶界能/SV表面能比值来衡量: GB/SV越大,烧结越困难
x2/2r 2x3/r x4/2r x2/4r 2x3/2r x4子与含水的沙 子的行为变化。形成了水膜的 沙子的可以粘附而堆积成型。
被水膜包裹的两 固体球的粘附
➢ 粘附作用是烧结初始阶段,导致粉体颗粒间产生键合、靠拢 和重排.并开始形成接触区的一个原因。
三种烧结模型:平面-球模型和双球模型。双球模型中:(1)颈 部的增长不引起两球间中心距离的缩短,(2)颈部增长导致两
球间中心距离缩短
假设烧结初期,粒径r变化很小,仍为球形,颈部半径 x很小,则颈部体积V、表面积A和表面曲率与r、x的 关系如表所示
平面-球
x2/2r
A x3/r
V x4/2r
双球(中心距 不变)
金属粉末Ts≈(0.3-0.4)Tm 无机盐类Ts≈ 0.57 Tm 硅酸盐类Ts≈(0.8-0.9)Tm
3、烧结与固相反应 相同点:均在低于材料熔点或熔融温度之下进行的;
过程自始至终都至少有一相是固态 不同点:固相反应至少有两组元参加,并发生化学反应。
烧结只有单组元或两组元参加,且不发生化学反应。
➢ 烧结后期:传质继续进行,粒子长大,气孔变成孤立闭气孔,密 度达到95%以上,制品强度提高。
(二)烧结推动力
能量差(具体表现为:压力差、空位浓度差、溶解度差)
1、能量差 粉状物料的表面能大于多晶烧结体的晶界能,即能量差是烧结的 推动力,但较小。烧结不能自发进行,必须对粉料加以高温,才 能促使粉末体转变为烧结体
多相反应和熔融、溶解、烧结等,其包括范围较宽。 ➢ 烧结:仅是粉料经加热而致密化的简单过程,是烧成过程的一个
重要部分。
2、烧结与熔融
相同点:都是由原子热振动而引起的 不同点:熔融时-全部组元都转变为液相
烧结时-至少有一组元是处于固态 ➢ 烧结是在远低于固态物质的熔融温度下进行的。 ➢ 泰曼指出,烧结温度Ts与其熔点Tm之间关系如下一般规律:
一、烧结定义及分类
1、烧结的定义
➢ 烧结——成型的粉末坯体, 经加热收缩,在低于熔点温 度下变成致密、坚硬的烧结 体的过程。
➢ 烧结过程为物理过程。
通常用烧结收缩率、强度、相对密度、气孔率等物理 指标来衡量物料烧结质量的好坏。
2、烧结的分类
1)常规烧结(是否出现液相)
➢ 固相烧结:在烧结温度下基本上无液相出现的烧结。
➢ 粘附力的大小直接取决于物质的表面能和接触面积,故粉状 物料间的粘附作用特别显著。
二、物质的传递—传质过程
气相传质 — 蒸发-凝聚传质
P
扩散传质
C
流动传质 塑性流动 粘性流动
f
dv
dx
F dv
S dx
溶解-沉淀传质
Cf
固 相 烧 结 液 相 烧 结
三、烧结过程及推动力
(一)烧结过程
1、烧结温度对烧结体性质的影响 1)随 T↑,电阻率↓、强度↑,表明: 在颗粒空隙被填充之前(即气孔率显著下降以前),颗粒接触处就 已产生某种键合,使得电子可以沿着键合的地方传递,故电导率 和强度增大 2)随 T 继续↑,物质开始向空隙传递,密度↑
大家应该也有点累了,稍作休息
第九章 功能陶瓷材料的制备
----烧结过程
➢ 概述 ➢ 烧结机理 ➢ 晶粒生长与二次再结晶 ➢ 影响烧结的因素
第一节 概 述
烧结过程是一门古老的工艺。现在,烧结过 程在许多工业部门得到广泛应用,如陶瓷、耐火 材料、粉末冶金、超高温材料等生产过程中都含 有烧结过程。
烧结的目的是把粉状材料转变为致密体。 研究物质在烧结过程中的各种物理化学变化。 对指导生产、控制产品质量,研制新型材料显得 特别重要。
价烧结的程度。对模型(B),烧结收缩是因颈部长大,两球心距离
缩短所引起的。故可用球心距离的缩短率
L L0
来表示线收缩率(L0-
烧结前两球心距离,L-烧结后缩短值):
Lr(r)cos
L0
r
烧结初期很小,cos1,故: L
L0
r
由 模 型 (B) 知 :
L x2
L0
r
4r2
➢ 上述模型及几何参数仅适应于烧结初期,随烧结 的进行,球形颗粒会逐渐变形,故在烧结中后期 需采用其它模型。
2、压力差:颗粒的弯曲表面上存在有压力差
P 2 r
或 P (1 1)
r1 r2
3、空位差:颗粒表面上的空位浓度与内部浓度之差
3 C kT C0
四、烧结模型
➢ 库津斯基提出粉末压块是由等径球体作为模型。随烧 结进行,各接触点处开始形成颈部,并逐渐扩大,最 后烧结成一个整体。
➢ 因各颈部所处环境和几何条件相同,故只需确定二颗 粒形成的颈部的成长速率就基本代表了整个烧结初期 的动力学关系。
如:高纯氧化物之间的烧结过程
➢ 液相烧结:有液相参与下的烧结。
如:多组分物系在烧结温度下常有液相出现,< 45%
2)非常规烧结(特种烧结) a、反应烧结 b、热压烧结 d、等静压烧结 e、活化烧结
c、电火花烧结 f、 微波烧结
二、与烧结有关的一些概念
1、烧结与烧成 ➢ 烧成:包括多种物理、化学变化,如:脱水、坯体内气体分解、
大家有疑问的,可以询问和交流
2、烧结过程的示意图
粉状成型体的烧结过程示意图
a)烧结初期
b)烧结后期 铁粉烧结的SEM照片
烧结过程可以分为三个阶段:烧结初期、中期和后期。
➢ 烧结初期:坯体中颗粒重排,接触处产生键合,空隙变形、缩小 (即大气孔消失),固-气总表面积变化不大 。
➢ 烧结中期:传质开始,粒界增大,空隙进一步变形、缩小,但仍 然连通,形如隧道。
➢ 烧结时,由于传质机理各异而引起颈部增长的方式不 同。因此,双球模型的中心距有如下二种情况:
颈部曲率半径ρ、颈部体积V、颈部表面积A、颗粒半径r、颈部半径x
双球模型
特征: 中心距L不变 坯体无收缩
中心距L缩短 坯体收缩
适用: 蒸发-凝聚传质
扩散传质
球体-平板模型
扩散传质
➢ 烧结会引起体积的收缩和致密度增加,常用线收缩率或密度值来评
例如: 粒度为1m的材料烧结后,G降低约8.3J/g(无机材料
等效于0.5 -1.5 KJ/mol); α-石英与β-石英之间的多晶转变时,G为1.7 KJ/mol; 一般化学反应前后能量变化超过200 KJ/mol。
烧结的难易可以用GB晶界能/SV表面能比值来衡量: GB/SV越大,烧结越困难