《统计学》课后思考题
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学课后思考题
统计学课后思考题思考题第一章1.1什么是统计学:统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计:描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点:统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据:答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念:对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类:变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量:离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第五版)贾俊平 课后思考题和练习题答案(最终完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学思考题课后答案
统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
统计学第五版(贾俊平)课后思考题答案(完整版)
第8章思考题8.1假设检验和参数估计有什么相同点和不同点?答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。
参数估计讨论的是用样本统计量估计总体参数的方法,总体参数μ在估计前是未知的。
而在参数假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
8.2什么是假设检验中的显著性水平?统计显著是什么意思?答:显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率和风险。
统计显著等价拒绝H0,指求出的值落在小概率的区间上,一般是落在0.05或比0.05更小的显著水平上。
8.3什么是假设检验中的两类错误?答:假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用β表示,所以也称β错误或取伪错误。
8.4两类错误之间存在什么样的数量关系?答:在假设检验中,α与β是此消彼长的关系。
如果减小α错误,就会增大犯β错误的机会,若减小β错误,也会增大犯α错误的机会。
8.5解释假设检验中的P值答:P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。
(它的大小取决于三个因素,一个是样本数据与原假设之间的差异,一个是样本量,再一个是被假设参数的总体分布。
)8.6显著性水平与P值有何区别答:显著性水平是原假设为真时,拒绝原假设的概率,是一个概率值,被称为抽样分布的拒绝域,大小由研究者事先确定,一般为0.05。
而P只是原假设为真时所得到的样本观察结果或更极端结果出现的概率,被称为观察到的(或实测的)显著性水平8.7假设检验依据的基本原理是什么?答:假设检验依据的基本原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的。
根据这一原理,可以作出是否拒绝原假设的决定。
(完整版)统计学思考题
1.1请举出统计应用的几个例子:1。
用统计识别作者:对于存在争议的论文,通过统计量推出作者 2.用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3。
挑战者航天飞机失事预测1。
2请举出应用统计的几个领域:1.在企业发展战略中的应用2。
在产品质量管理中的应用3。
在市场研究中的应用 4.在财务分析中的应用 5.在经济预测中的应用1.3你怎么理解统计的研究内容:1。
统计学研究的基本内容包括统计对象、统计方法和统计规律. 2 .统计对象就是统计研究的课题,称谓统计总体。
3。
统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
4.统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
1.4举例说明分类变量、顺序变量和数值变量:1.分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业"、“旅游业"等,“学生所在的学院”可能是“商学院"、“法学院"等2。
顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度"等就是顺序变量。
3。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额"、“生活费支出”、“掷一枚骰子出现的点数”。
1。
5获得数据的概率抽样方法有哪些?(1)简单随机抽样,简单随机抽样又称纯随机抽样,是指在特定总体的所有单位中直接抽取n个组成样本。
它最直观地体现了抽样的基本原理,是最基本的概率抽样。
(2)系统抽样,系统抽样也称等距抽样或机械抽样,是按一定的间隔距离抽取样本的方法.(3)分层抽样,分层抽样也叫分类抽样,就是先将总体的所有单位依照一种或几种特征分为若干个子总体,每一个子总体即为一类,然后从每一类中按简单随机抽样或系统随机抽样的办法抽取一个子样本,称为分类样本,它们的集合即为总体样本。
统计课后思考题答案
统计课后思考题答案统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科它收集处理分析解释来自各个领域的数据并从中得出结论。
1.3解释描述统计和推断统计描述统计它研究的是数据收集处理汇总图表描述概括与分析等统计方法。
推断统计它是研究如何利用样本数据来推断总体特征的统计方法。
1.5解释分类数据顺序数据和数值型数据统计数据按所采用的计量尺度不同分定性数据分类数据只能归于某一类别的非数字型数据它是对事物进行分类的结果数据表现为类别用文字来表述定性数据顺序数据只能归于某一有序类别的非数字型数据。
它也是有类别的但这些类别是有序的。
定量数据数值型数据按数字尺度测量的观察值其结果表现为具体的数值。
统计数据按统计数据都收集方法分观测数据是通过调查或观测而收集到的数据这类数据是在没有对事物人为控制的条件下得到的。
实验数据在实验中控制实验对象而收集到的数据。
统计数据按被描述的现象与实践的关系分截面数据在相同或相似的时间点收集到的数据也叫静态数据。
时间序列数据按时间顺序收集到的用于描述现象随时间变化的情况也叫动态数据。
1.6举例说明总体样本参数统计量变量这几个概念对一千灯泡进行寿命测试那么这千个灯泡就是总体从中抽取一百个进行检测这一百个灯泡的集合就是样本这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量变量就是说明现象某种特征的概念比如说灯泡的寿命。
1.7变量的分类变量可以分为分类变量顺序变量数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.8举例说明离散型变量和连续性变量离散型变量只能取有限个值取值以整数位断开比如“企业数”连续型变量取之连续不断不能一一列举比如“温度”。
1.8统计应用实例人口普查商场的名意调查等。
1.9统计应用的领域经济分析和政府分析还有物理生物等等各个领域。
第二章思考题2.4自填式面访式和电话式各自的长处和弱点自填式优点 1调查组织者管理容易2成本低可进行大规模调查3对被调查者可选择方便时间答卷减少回答敏感问题压力。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学课后习题参考答案
第一章复习思考题与练习题:一、思考题1.统计的基本任务是什么?2.统计研究的基本方法有哪些?3.如何理解统计总体的基本特征。
4.试述统计总体和总体单位的关系。
5.标志与指标有何区别何联系。
二、判断题1、社会经济统计的研究对象是社会经济现象总体的各个方面。
()2、在全国工业普查中,全国企业数是统计总体,每个工业企业是总体单位。
()3、总体单位是标志的承担者,标志是依附于单位的。
()4、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。
()5、全面调查和非全面调查是根据调查结果所得的资料是否全面来划分的()。
三、单项选择题1、社会经济统计的研究对象是()。
A、抽象的数量关系B、社会经济现象的规律性C、社会经济现象的数量特征和数量关系D、社会经济统计认识过程的规律和方法2、某城市工业企业未安装设备普查,总体单位是()。
A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业3、标志是说明总体单位特征的名称,标志有数量标志和品质标志,因此()。
A、标志值有两大类:品质标志值和数量标志值B、品质标志才有标志值C、数量标志才有标志值D、品质标志和数量标志都具有标志值4、统计规律性主要是通过运用下述方法经整理、分析后得出的结论()。
A、统计分组法B、大量观察法C、综合指标法D、统计推断法5、指标是说明总体特征的,标志是说明总体单位特征的,所以()。
A、标志和指标之间的关系是固定不变的B、标志和指标之间的关系是可以变化的C、标志和指标都是可以用数值表示的D、只有指标才可以用数值表示答案:二、 1.× 2.× 3.√ 4.× 5.×三、 1.C 2.B 3.C 4.B 5.B第三章一、复习思考题1.什么是平均指标?平均指标可以分为哪些种类?2.为什么说平均数反映了总体分布的集中趋势?3.为什么说简单算术平均数是加权算术平均数的特例?4.算术平均数的数学性质有哪些?5.众数和中位数分别有哪些特点?6.什么是标志变动度?标志变动度的作用是什么?7.标志变动度可分为哪些指标?它们分别是如何运用的?8.平均数与标志变动度为什么要结合运用?二、练习题(教材第四章P108课后习题答案)1.某村对该村居民月家庭收入进行调查,获取的资料如下:按月收入分组(元)村民户数(户)500~600 600~700 700~800 800~900 900以上20 30 35 25 10合计120 要求:试用次数权数计算该村居民平均月收入水平。
统计学第七章、第八章课后题答案
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
统计学第四版课后答案
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
统计学基础课后全部详细答案与讲解
统计学第一至四章答案第一章一、思考题1.统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
统计方法可分为描述统计和推断统计。
2.统计数据的分类:按计量尺度:分类数据、顺序数据和数值型数据按获取数据的方式:观测数据和实验数据按数据与时间的关系:截面数据和时间序列数据特点:分类数据各类别之间是平等的并列关系,各类别之间的顺序可以任意改变;顺序数据的分类是有序的;数值型数据说明的是现象的数量特征,是定量数据;观测数据是通过调查或观测而收集到的数据,是在没有对事物进行人为控制的条件下得到的;实验数据是在实验中控制实验对象而收集到的数据;截面数据也称静态数据,描述的是现象在某一时刻的变化情况;时间序列数据也称动态数据,描述的是现象随时间的变化情况。
3.对武昌分校的全体教师进行工资调查,那么全体教师就是总体,从中抽取五十名教师进行调查,这五十名教师的集合就是样本,全体教师工资的总体平均值和总体标准差等描述特征的数值就是参数,五十名教师工资的样本平均值和样本标准差等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说教师的工资。
4.有限总体:指总体的围能够明确确定,而且元素的数目是有限可数的。
例如:武昌分校10 级金融专业学生无限总体:指总体所包含的元素是无限的、不可数的。
例如:整个宇宙的星球5.变量可分为分类变量、顺序变量、数值型变量。
同时数值型变量可分为离散型变量和连续型变量。
6.离散型变量只能取有限个值,而且其取值都以整位数断开,可以一一列举,例如“产品数量” 、“企业数”。
连续型变量的取值指连续不断的,不能一一列举。
例如“温度” 、“年龄”。
二、练习题1.(1)数值型变量(2)分类变量(3)数值型变量(4)顺序变量(5)分类变量2.(1)这一研究的总体是IT 从业者,样本是从IT 从业者中抽取的1000 人,样本量是1000(2)“月收入”是数值型变量(3)“消费支付方式”是分类变量3.(1)这一研究的总体是所有的网上购物者(2)“消费者在网上购物的原因”是分类变量第二章一、思考题1:答:1: 普查的特点:①:普查通常是一次性的或周期性的;②:普查一般需要规定统一的调查时间;③:普查的数据一般比较准确;4:普查的使用围比较狭窄,只能调查一些最基本的、特定的现象。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括和分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象和实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计课后思考题答案
统计课后思考题答案第一章思考题1.1什么是统计学1.3解释描述统计和推断统计1.51.6如说灯泡的寿命。
1.7变量的分类变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.8举例说明离散型变量和连续性变量1.8统计应用实例1.9统计应用的领域第二章思考题2.41调查组织者管理容易231返回率低23调查周期长4在数据搜集过程中遇见问题不能及时调整。
1回答率高2数据质量高31成本比较高2搜集数据的方式对调查过程的质量控制有一定难度31速度快2对调查员比较安全31实施地区有限2调查时间不能过长3使用的问卷要简单4第三章思考题2.5数据预处理内容3.2分类数据和顺序数据的整理和图示方法各有哪些行图示分析。
2.6数据型数据的分组方法和步骤1确定组数2确定各组组距3根据分组整理成频数分布表2.7直方图和条形图的区别123图主要展示数值型数据。
第4章数据的概括性度量3.13.4简述四分位数的计算方法。
四分位数是一组数据排序后处于25%和75%3.2G就是平均增长率。
3.3简述众数、中位数和平均数的特点和应用场合。
据量较少时不宜使用。
主要适合作为分类数据的集中趋势测度值。
要适合作为顺序数据的集中趋势测度值。
此时应考虑中位数或众数。
3.5简述异众比率、四分位差、方差或标准差的适用场合测量其离散程度。
3.6标准分数有哪些用途行标准化处理。
它还可以用来判断一组数据是否有离群数据。
3.8测度数据分第五章概率与概率分布5.1在相同条件下随机试验n A 出现m m/n 称为事件A 发生的频率。
随着n围绕某一常数p5.2第8章思考题8.1μ在估计前是未知的。
而在参数假设检验中则是先对μ8.2著等价拒绝00.05或比0.05更小的显著水平上。
8.5解释假设检验中的P 值P8.6显著性水平与P 值有何区别者0.05。
而P 只是原假设为真时所得到的样本观察结果或更极端结果出现的概率被称为观察到的(或实测的)显著性水平 8.7第10章思考题10.1的是非类型自变量对数值型因变量的影响。
统计学(贾俊平第八版)课后思考题及答案
统计学(贾俊平第八版)课后思考题及答案第一章:统计学基本概念和方法思考题1:什么是统计学?统计学的研究对象是什么?统计学是从观察数据的现象和规律出发,运用数理统计方法进行概括、分析和推断的科学。
统计学研究的对象是数据的概括和整体行为特征,即基本统计量和统计分布。
答案:统计学是一门应用数学的学科,其研究范围包括数据的收集、整理、描述、分析和推断等方面。
统计学通过运用数理统计方法,帮助我们从观察到的数据中发现其中的规律和趋势,从而对现象和问题作出合理的判断和推断。
统计学的研究对象主要包括两个方面。
一方面,统计学关注数据的概括和整体行为特征,例如对数据集的中心趋势(平均数、中位数)和离散程度(标准差、方差)进行描述和分析,这些统计量可以帮助我们对数据进行概括和比较。
另一方面,统计学研究数据的统计分布,即数据的分布形状和特征,例如正态分布、偏态分布等,这些分布有助于我们根据数据的特点进行进一步的推断和推测。
第二章:统计学的数据描述思考题2:试举例说明数据分为哪些类型?数据分为定性数据和定量数据两种类型。
答案:数据可以分为定性数据和定量数据两种类型。
定性数据是指不能用数字表示的数据,其特征主要是描述性的,例如性别、喜好等。
定性数据通常采用文字或符号进行记录和表达。
定量数据是指可以用数字表示的数据,其特征主要是数量性的,例如身高、体重等。
定量数据可以进行数学运算和统计分析。
举例来说,一个学生调查问卷中的“性别”以及“对某个电影的评价(好、中、差)”是属于定性数据;而问卷中的“年龄”和“观看该电影的次数”则是属于定量数据。
第三章:概率与概率分布思考题3:什么是概率?请以一个例子来解释。
概率是指某个事件发生的可能性。
它在统计学中用于描述随机现象的规律性和不确定性。
答案:概率是描述某个事件发生的可能性的数值。
概率可以从0到1之间的任何一个数值,其中0表示不可能发生,1表示肯定会发生。
举个例子来说明,假设有一个标准的骰子,每个面上有1到6的数字。
统计学思考题
统计学思考题第一篇:统计学思考题思考题:1、什么是统计学?怎样理解统计学与统计数据的关系?答:⑴统计学是一门收集、整理、显示和分析统计数据的科学,其目的是探索数据的内在的数量规律性;⑵统计学是由收集、整理、显示和分析统计数据的方法组成的,这些方法来源于对统计数据的研究,目的也在于对统计数据的研究;⑶离开了统计数据,统计方法乃至统计学就失去其存在的意义。
2、间隔尺度与比例尺度有何区别?答:⑴对“0”的不同理解;⑵间隔尺度中,“0”表示某一数值,比例尺度中“0”表示“没有”或“无”;⑶间隔尺度适合于加减法,比例尺度对加减乘除等运算都有意义。
3、简述基尼系数的使用。
答:基尼系数用于反应收入分配的变化情况,取值在0~1之间①基尼系数小于0.2,表明分配平均;②在0.2~0.4之间,分配比较适当;③0.4 是收入分配不公平的警戒线,超过0.4,收入分配不公平。
4、简要说明抽样误差和非抽样误差。
答:⑴非抽样误差是由于调查过程中各有关环节工作失误造成的;⑵抽样误差是利用样本推断总体时产生的误差;⑶抽样误差不可避免,非抽样误差可以避免。
5、一组数据的分布特征可以从哪几个方面进行测度?答:可以从三个方面测度:⑴分布的集中趋势反映的是数据一般水平的代表值或者数据分布的中心值;⑵分布的离散程度反映的是分布离散和差异程度;⑶分布的偏态与峰度反映数据的分布形态是否对称、偏斜的程度以及分布的扁平程度。
6、简述频率与概率的关系。
答:①频率反映的是某一事物出现的频繁程度;②概率是指事件在一次试验中发生的可能性;③当观察次数n很大时,频率与概率非常接近。
7、概率的三种定义各有什么应用场合。
答:⑴古典概率实验的基本事件总数有限,每个基本事件出现的可能性相同;⑵统计概率实验的基本事件总数有限,每个基本事件出现的可能性不完全相同;⑶主观概率随机事件发生的可能性既不能通过等可能事件个数来计算,也不能根据大量重复试验的频率来估计。
8、离散型随机变量和连续型随机变量的概率分布的描述有些什么不同?答:⑴离散型随机变量的概率分布可以用表格、函数或图形等形式来表现。
《统计学》课后思考题
《统计学》课后思考题第一章导论1、解释描述统计和推断统计描述统计:研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计:研究如何利用样本数据来推断总体特征的统计方法。
2、统计数据可分为哪几个类型?不同类型的数据各有什么特点?3、举例说明总体、样本、参数、统计量、变量这几个概念总体:所研究的全部元素的集合,其中的每一个元素称为个体。
eg.要检验一批灯泡的使用寿命,这批灯泡构成的集合就是总体。
样本:从总体中抽取的一部分元素的集合。
eg.从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数:研究者想要了解的总体的某种特征值。
eg.总体平均数用μ表示,总体标准差用σ表示。
统计量:根据样本数据计算出来的一个量。
eg.样本标准差用s表示变量:说明现象某种特征的概念。
eg.商品销售额、受教育程度等第三章数据的图表展示1、分类数据和顺序数据的整理和图示方法各有哪些分类数据整理:频数、比例、百分比、比率图示:条形图、帕累托图、饼图、环形图顺序数据整理:累计频数、累计频率(累计百分比)图示:累计频数分布图和累计频率分布图分类数据的整理和图示方法同样适用于顺序数据2、茎叶图与直方图相比有什么优点?它们的应用场合是什么?茎叶图是由“茎”和“叶”两部分组成的、反映原始数据分布的图形,其图形是由数字组成的。
通过茎叶图,可以看数据的分布形状及数据的离散状况。
与直方图相比,茎叶图既能给出数据的分布状况,又能给出一个原始数值,即保留了原始数据的信息。
而直方图不能给出原始数值。
在应用方面,直方图一般适用于大批量数据,茎叶图通常适用于小批量数据。
第四章数据的概括性度量1、一组数据的分布特征可以从哪几个方面进行测度?一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。
2、简述众数、中位数和平均数的特点和应用场合(1)众数特点:是一组数据分布的峰值,不受极端值影响。
第四版统计学课后习题答案
时间在横轴,观测值绘在纵轴。一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。
3.6饼图和环形图的不同
饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。
4.6简述异众比率、四分位差、方差或标准差的适用场合
对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。
4.7标准分数有哪些用途?
4.9测度数据分布形状的统计量有哪些?
对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。
第五章 概率与概率分布
5.1频率与概率有什么关系?
在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。随着n的增大,该频率围绕某一常数p波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。
1.4解释分类数据,顺序数据和数值型数据
答案同1.3
1.5举例说明总体,样本,参数,统计量,变量这几个概念
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
《统计学》第四版
统计课后思考题答案
第一章思考题
统计课后思考题答案
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学》课后思考题
第一章导论
1、解释描述统计和推断统计
描述统计:研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计:研究如何利用样本数据来推断总体特征的统计方法。
2、统计数据可分为哪几个类型?不同类型的数据各有什么特点?
3、举例说明总体、样本、参数、统计量、变量这几个概念
总体:所研究的全部元素的集合,其中的每一个元素称为个体。
eg.要检验一批灯泡的使用寿命,这批灯泡构成的集合就是总体。
样本:从总体中抽取的一部分元素的集合。
eg.从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。
参数:研究者想要了解的总体的某种特征值。
eg.总体平均数用μ表示,总体标准差用σ表示。
统计量:根据样本数据计算出来的一个量。
eg.样本标准差用s表示
变量:说明现象某种特征的概念。
eg.商品销售额、受教育程度等
第三章数据的图表展示
1、分类数据和顺序数据的整理和图示方法各有哪些
分类数据
整理:频数、比例、百分比、比率
图示:条形图、帕累托图、饼图、环形图
顺序数据
整理:累计频数、累计频率(累计百分比)
图示:累计频数分布图和累计频率分布图
分类数据的整理和图示方法同样适用于顺序数据
2、茎叶图与直方图相比有什么优点?它们的应用场合是什么?
茎叶图是由“茎”和“叶”两部分组成的、反映原始数据分布的图形,其图形是由数字组成的。
通过茎叶图,可以看数据的分布形状及数据的离散状况。
与直方图相比,茎叶图既能给出数据的分布状况,又能给出一个原始数值,即保留了原始数据的信息。
而直方图不能给出原始数值。
在应用方面,直方图一般适用于大批量数据,茎叶图通常适用于小批量数据。
第四章数据的概括性度量
1、一组数据的分布特征可以从哪几个方面进行测度?
一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;
二是分布的离散程度,反映各数据远离其中心值的趋势;
三是分布的形状,反映数据分布的偏态和峰态。
2、简述众数、中位数和平均数的特点和应用场合
(1)众数
特点:是一组数据分布的峰值,不受极端值影响。
缺点是不具有唯一性。
在数据较多时才有意义。
应用场合:主要用于测度分类数据的集中趋势。
(2)中位数
特点:是一组数据中间位置上的代表值,不受数值极端值的影响。
应用场合:主要用于测度顺序数据的集中趋势,也适用于测度数值型数据的集中趋势。
3)平均数。
(3)平均数
特点:是针对数值型数据计算的,利用了全部数据信息,是实际应用最广泛的集中趋势测度值。
缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。
应用场合:主要适用于数值型数据。
第七章参数估计
1、简述评价估计量好坏的标准
无偏性:估计量的数学期望等于被估计的总体参数。
有效性:一个方差较小的无偏估计量称为一个更有效的估计量。
如,与其他估计量相比,样本均值是一个更有效的估计量。
一致性:随着样本容量的增大,估计量越来越接近被估计的总体参数。
2、影响抽样误差的因素
①样本量的大小②总体的变异性③抽样方法④抽样调查的组织形式
第11章一元线性回归
1、解释相关关系的含义,说明相关关系的特点
相关关系:是根据样本数据计算的度量两个变量之间的线性关系强度的统计量。
简单的说,就是客观现象之间存在的互相依存的不确定性关系。
特点:(1)现象之间确实存在着数量上的依存关系;
(2)现象之间数量上的关系是不确定、不严格的依存关系。
2、相关分析主要解决哪些问题?
(1)变量之间是否存在关系?
(2)如果存在关系,它们之间是什么样的关系?
(3)变量之间的关系强度如何?
(4)样本所反映的变量之间的关系能否代表总体总体变量之间的关系?
3、相关分析与回归分析的联系与区别
联系:相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
区别:(1)相关分析主要通过相关系数来判断两个变量之间是否存在着相互关系及其关系的密切程度,其前提条件是两个变量都是随机变量,且变量之间不必区别自变量和因变量。
而回归分析研究一个随机变量(Y)与另一个非随机变量(X)之间的相互关系,且变量之
间必须区别自变量和因变量。
(2)相关系数只能观察变量间相关关系的密切程度和方向,不能估计推算具体数值。
而回归分析可以根据回归方程,用自变量数值推算因变量的估计值。
(3)互为因果关系的两个变量,可以拟合两个回归方程,且互相独立、不能互相替换。
而相关系数却只有一个,即自变量与因变量互换相关系数不变。
4、总平方和、回归平方和与残差平方和的含义及关系
总平方和(SST ):2
)y y i ∑-(
回归平方和(SSR ):2
^)y y i -∑(
残差平方和(SSE ):2^
)(∑-i i y y
三个平方和的关系为:总平方和(SST )=回归平方和(SSR )+残差平方和(SSE )
5、会看excel 分析
第13章 时间序列分析和预测
股票价格指数的编制和计算。