计量经济学习题解析

合集下载

计量经济学题库(超完整版)及答案.详解

计量经济学题库(超完整版)及答案.详解

计量经济学题库(超完整版)及答案.详解计量经济学题库计算与分析题(每⼩题10分)1X:年均汇率(⽇元/美元) Y:汽车出⼝数量(万辆)问题:(1)画出X 与Y 关系的散点图。

(2)计算X 与Y 的相关系数。

其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采⽤直线回归⽅程拟和出的模型为 ?81.72 3.65YX =+ t 值 1.2427 7.2797 R 2=0.8688 F=52.99解释参数的经济意义。

2.已知⼀模型的最⼩⼆乘的回归结果如下:i i ?Y =101.4-4.78X 标准差(45.2)(1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。

回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iY ⽽不是i Y ;(3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。

3.估计消费函数模型i i i C =Y u αβ++得i i ?C =150.81Y + t 值(13.1)(18.7) n=19 R 2=0.81 其中,C :消费(元) Y :收⼊(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。

问:(1)利⽤t 值检验参数β的显著性(α=0.05);(2)确定参数β的标准差;(3)判断⼀下该模型的拟合情况。

4.已知估计回归模型得i i ?Y =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,求判定系数和相关系数。

5.有如下表数据(1拟合什么样的模型⽐较合适?(2)根据以上数据,分别拟合了以下两个模型:模型⼀:16.3219.14P U=-+ 模型⼆:8.64 2.87P U =-分别求两个模型的样本决定系数。

计量经济学计算题与答案解析

计量经济学计算题与答案解析

1、根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-= se=(340.0103)(0.0622)6066.733,2934.0,425.1065..,9748.02====F DW E S R试求解以下问题:(1)取时间段1978——1985和1991——1998,分别建立两个模型。

模型1:x y3971.04415.145ˆ+-= 模型2:x y 9525.1365.4602ˆ+-= t=(-8.7302)(25.4269) t=(-5.0660)(18.4094) ∑==202.1372,9908.0212eR ∑==5811189,9826.0222e R计算F 统计量,即∑∑===9370.4334202.137258111892122eeF ,对给定的05.0=α,查F 分布表,得临界值28.4)6,6(05.0=F 。

请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?(2)根据表1所给资料,对给定的显著性水平05.0=α,查2χ分布表,得临界值81.7)3(05.0=χ,其中p=3为自由度。

请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么? 表1F-statistic 6.033649 Probability 0.007410 Obs*R-squared10.14976 Probability0.017335Test Equation:Dependent Variable: RESID^2 Method: Least SquaresDate: 06/04/06 Time: 17:02 Sample(adjusted): 1981 1998Included observations: 18 after adjusting endpoints Variable Coefficie ntStd. Error t-Statistic Prob. C244797.2 373821.3 0.654851 0.5232 RESID^2(-1)1.226048 0.3304793.7099080.0023RESID^2(-2) -1.405351 0.379187 -3.706222 0.0023 R-squared 0.563876 Mean dependent var 971801.3 Adjusted R-squared 0.470421 S.D. dependent var 1129283. S.E. of regression 821804.5 Akaike info criterion 30.26952 Sum squared resid 9.46E+12 Schwarz criterion 30.46738 Log likelihood -268.4257 F-statistic6.033649 Durbin-Watson stat 2.124575 Prob(F-statistic) 0.0074101、(1)解:该检验为Goldfeld-Quandt 检验。

计量经济学习题及全部答案

计量经济学习题及全部答案

计量经济学习题一一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法; 2.最小二乘法进行参数估计的基本原理是使残差平方和最小;3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1; 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0; 5.总离差平方和TSS 可分解为残差平方和ESS 与回归平方和RSS 之和,其中残差平方和ESS 表示总离差平方和中可由样本回归直线解释的部分; 6.多元线性回归模型的F 检验和t 检验是一致的;7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差; 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关;9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果; 10...DW 检验只能检验一阶自相关; 二、单选题1.样本回归函数方程的表达式为 ;A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是 ;A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示 ;A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指 ;A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为 ;A .B .40C .D .6.设k 为回归模型中的参数个数不包括截距项,n 为样本容量,ESS 为残差平方和,RSS 为回归平方和;则对总体回归模型进行显着性检验时构造的F 统计量为 ;A .F =RSSTSSB .F =/(1)RSS k ESS n k --C .F =/1(1)RSS k TSS n k --- D .F =ESSTSS7.对于模型i Y =01ˆˆi iX e ββ++,以ρ表示i e 与1i e -之间的线性相关系数2,3,,t n =,则下面明显错误的是 ;A .ρ=,..DW =B .ρ=-,..DW =-C .ρ=0,..DW =2D .ρ=1,..DW =08.在线性回归模型 011...3i i k ki i Y X X u k βββ=++++≥;如果231X X X =-,则表明模型中存在 ;A .异方差B .多重共线性C .自相关D .模型误设定9.根据样本资料建立某消费函数 i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 ;A .2B .4C .5D .610.某商品需求函数为ˆi C =100.5055.350.45i i D X ++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显着,则城镇家庭的消费函数为 ;A .ˆi C =155.850.45i X +B .ˆiC =100.500.45i X + C .ˆi C =100.5055.35i X +D .ˆiC =100.9555.35i X + 三、多选题1.一元线性回归模型i Y =01i i X u ββ++的基本假定包括 ;A .()i E u =0B .()i Var u =2σ常数C .(,)i j Cov u u =0 ()i j ≠D .(0,1)iu NE .X 为非随机变量,且(,)i i Cov X u =02.由回归直线ˆi Y =01ˆˆi X ββ+估计出来的ˆiY ; A .是一组平均数 B .是实际观测值i Y 的估计值 C .是实际观测值i Y 均值的估计值 D .可能等于实际观测值i Y E .与实际观测值i Y 之差的代数和等于零 3.异方差的检验方法有A .图示检验法B .Glejser 检验C .White 检验D ...DW 检验E .Goldfeld Quandt -检验4.下列哪些非线性模型可以通过变量替换转化为线性模型 ;A .i Y =201i i X u ββ++B .1/i Y =01(1/)i i X u ββ++C .ln i Y =01ln i i X u ββ++D .i Y =iui i AK L e αβE .i Y =1122012iiX X i e e u ββααα+++5.在线性模型中引入虚拟变量,可以反映 ;A .截距项变动B .斜率变动C .斜率与截距项同时变动D .分段回归E .以上都可以 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;3.简述序列相关性检验方法的共同思路; 五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,并写出过程保留3位小数;Dependent Variable: Y Method: Least Squares Included observations: 132.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;F 分布百分位表α=3.有人用广东省1978—2005年的财政收入AV 作为因变量,用三次产业增加值作为自变量,进行了三元线性回归;第一产业增加值——1VAD ,第二产业增加值——2VAD ,第三产业增加值——3VAD ,结果为:AV =12335.1160.0280.0480.228VAD VAD VAD +-+2R =,F =- ..DW =试简要分析回归结果; 五、证明题求证:一元线性回归模型因变量模拟值ˆi Y 的平均值等于实际观测值i Y 的平均值,即ˆiY =i Y ; 计量经济学习题二一、判断正误正确划“√”,错误划“×” 1.残差剩余项i e 的均值e =()i e n ∑=0;2.所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值; 3.样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释能力;4.多元线性回归模型中解释变量个数为k ,则对回归参数进行显着性检验的t 统计量的自由度一定是1n k --;5.对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值; 6.若回归模型存在异方差问题,可以使用加权最小二乘法进行修正;7.根据最小二乘估计,我们可以得到总体回归方程;8.当用于检验回归方程显着性的F 统计量与检验单个系数显着性的t 统计量结果矛盾时,可以认为出现了严重的多重共线性9.线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;10.一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同; 二、单选题1.针对同一经济指标在不同时间发生的结果进行记录的数据称为A .面板数据B .截面数据C .时间序列数据D .以上都不是 2.下图中“{”所指的距离是A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在模型i Y =01ln i i X u ββ++中,参数1β的含义是A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的平均值绝对量变化D .Y 关于X 的弹性4.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=90,估计用的样本容量为19,则随机误差项i u 方差的估计量为A .B .6C .D .55.已知某一线性回归方程的样本可决系数为,则解释变量与被解释变量间的相关系数为A .B .0.8C .D .6.用一组有20个观测值的样本估计模型i Y =01i i X u ββ++,在的显着性水平下对1β的显着性作t 检验,则1β显着异于零的条件是对应t 统计量的取值大于 A .0.05(20)t B .0.025(20)t C .0.05(18)t D .0.025(18)t7.对于模型i Y =01122ˆˆˆˆi ik ki iX X X e ββββ+++++,统计量22ˆ()/ˆ()/(1)ii i Y Y kY Y n k ----∑∑服从A .()t n k -B .(1)t n k --C .(1,)F k n k --D .(,1)F k n k --8.如果样本回归模型残差的一阶自相关系数ρ为零,那么..DW 统计量的值近似等于 ;A .1B .2C .4D .9.根据样本资料建立某消费函数如下i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为A .2B .4C .5D .610.设消费函数为i C =012i i i i X D X u βββ+++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为A .1β=0,2β=0B .1β=0,2β≠0C .1β≠0,2β=0D .1β≠0,2β≠0 三、多选题1.以i Y 表示实际观测值,ˆiY 表示用OLS 法回归后的模拟值,i e 表示残差,则回归直线满足A .通过样本均值点(,)X YB .2ˆ()i iY Y -∑=0 C .(,)i i Cov X e =0 D .i Y ∑=ˆiY ∑ E .i i e X ∑=0 2.对满足所有假定条件的模型i Y =01122i i i X X u βββ+++进行总体显着性检验,如果检验结果显示总体线性关系显着,则可能出现的情况包括A .1β=2β=0B .10β≠,2β=0C .10β≠,20β≠D .1β=0,20β≠E .1β=2β≠0 3.下列选项中,哪些方法可以用来检验多重共线性 ;A .Glejser 检验B .两个解释变量间的相关性检验C .参数估计值的经济检验D .参数估计值的统计检验E ...DW 检验 4.线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括A .OLS 参数估计量仍具有线性性B .OLS 参数估计量仍具有无偏性C .OLS 参数估计量不再具有效性即不再具有最小方差D .一定会低估参数估计值的方差5.关于虚拟变量设置原则,下列表述正确的有A .当定性因素有m 个类型时,引入1m -个虚拟变量B.当定性因素有m个类型时,引入m个虚拟变量会产生多重共线性问题C.虚拟变量的值只能取0和1D.在虚拟变量的设置中,基础类别一般取值为0E.以上说法都正确四、简答题1.简述计量经济学研究问题的方法;2.简述异方差性检验方法的共同思路;3.简述多重共线性的危害;五、计算分析题1.下表是某次线性回归的EViews输出结果,被略去部分数值用大写字母标示,根据所学知识解答下列各题计算过程保留3位小数;本题12分Dependent Variable: YMethod: Least SquaresIncluded observations: 181求出A 、B 的值;2求TSS2.有人用美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据单位:百亿美元建立收入—消费模型 i Y =01i i X u ββ++,估计结果如下:ˆiY =9.4290.936i X -+ t :2R = ,F = ,..DW =1检验收入—消费模型的自相关状况5%显着水平; 2用适当的方法消除模型中存在的问题; 五、证明题证明:用于多元线性回归方程显着性检验的F 统计量与可决系数2R 满足如下关系: 计量经济学习题三 一、判断对错1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法;2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值;DW 检验临界值表α=3、OLS 回归方法的基本准则是使残差平方和最小;4、在存在异方差的情况下,OLS 法总是高估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1;6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;7、当我们说估计的回归系数在统计上是显着的,意思是说它显着异于0; 8、总离差平方和TSS 可分解为残差平方ESS 和与回归平方和RSS,其中残差平方ESS 表示总离差平方和可由样本回归直线解释的部分;9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等; 10、当模型中解释变量均为确定性变量时,则可以用DW 统计量来检验模型的随机误差项所有形式的自相关性;二、单项选择1、回归直线t ^Y =0ˆβ+1ˆβX t 必然会通过点 A 、0,0; B 、_X ,_Y ;C 、_X ,0;D 、0,_Y ;2、针对经济指标在同一时间所发生结果进行记录的数据列,称为 A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据;3、如果样本回归模型残差的一阶自相关系数ρ接近于0,那么DW 统计量的值近似等于 A 、0 B 、1 C 、2 D 、44、若回归模型的随机误差项存在自相关,则参数的OLS 估计量A 、无偏且有效B 、有偏且非有效C 、有偏但有效D 、无偏但非有效 5、下列哪一种检验方法不能用于异方差检验A、戈德菲尔德-夸特检验;B、DW检验;C、White检验;D、戈里瑟检验;6、当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生A、OLS估计量仍然满足无偏性和有效性;B、OLS估计量是无偏的,但非有效;C、OLS估计量有偏且非有效;D、无法求出OLS估计量;7、DW检验法适用于的检验A、一阶自相关B、高阶自相关C、多重共线性 D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则可决系数R2A、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,回归平方和为40,则回归方程的拟合优度为A、 B、 C、 D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、计量经济模型中的随机误差项主要包含哪些因素3、简答经典单方程计量模型的异方差性概念、后果以及修正方法;4、简述方程显着性检验F检验与变量显着性检验t检验的区别;5、对于一个三元线性回归模型,已知可决系数R2=,方差分析表的部份结果如下:1样本容量是多少2总离差平方和TSS为多少3残差平方和ESS为多少4回归平方和RSS和残差平方和ESS的自由度各为多少5求方程总体显着性检验的F统计量;四、案例分析下表是中国某地人均可支配收入INCOME与储蓄SAVE之间的回归分析结果单位:元:Dependent Variable: SAVEMethod: Least SquaresSample: 1 31Included observations: 31Variable CoefficientStd.Errort-Statistic Prob.CINCOME――――R-squared Mean dependent var AdjustedR-squared. dependent var. of regression Akaike info criterionSum squared resid1778097Schwarz criterion.Log likelihood F-statisticDurbin-Watsonstat ProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 29=;4、下表给出了White异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题四一、判断对错1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同;2、对于模型Yi =β+β1X1i+β2X2i+……+βkXki+μi,i=1,2, ……,n;如果X2=X5+X6, 则模型必然存在解释变量的多重共线性问题;3、OLS回归方法的基本准则是使残差项之和最小;4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n-1;6、一元线性回归模型的F检验和t检验是一致的;7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;8、在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然是一BLUE估计量;9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合;10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本的拟合程度越高;二、单项选择1.在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的问题;A、自相关;B、异方差;C、模型设定偏误;D、多重共线性;2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形式的检验方法是A、图式检验法;B、DW检验;C、戈里瑟检验;D、White检验;3、如果样本回归模型残差的一阶自相关系数ρ接近于1,那么DW统计量的值近似等于A、0B、1C、2D、44、若回归模型的随机误差项存在异方差,则参数的OLS估计量A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效5、下列哪一个方法是用于补救随机误差项自相关问题的A、OLS;B、ILS;C、WLS;D、GLS;6、计量经济学的应用不包括:A、预测未来;B、政策评价;C、创建经济理论;D、结构分析;7、LM检验法适用于的检验A、异方差;B、自相关;C、多重共线性; D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数2RA、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为A、;B、;C、;D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、简述计量经济研究的基本步骤3、简答经典单方程计量模型自相关概念、后果以及修正方法;4、简述对多元回归模型01122...i i i k ki i Y X X X u ββββ=+++++进行显着性检验F 检验的基本步骤5、对于一个五元线性回归模型,已知可决系数R 2=,方差分析表的部份结果如下:1样本容量是多少2回归平方和RSS 为多少3残差平方和ESS 为多少 4回归平方和RSS 和总离差平方和TSS 的自由度各为多少 5求方程总体显着性检验的F 统计量;四、实验下表是某国1967-1985年间GDP 与出口额EXPORT 之间的回归分析结果单位:亿美元:Dependent Variable: EXPORT Method: Least Squares Sample: 1967 1985Included observations: 19VariableCoefficientStd. Errort-Statist icProb. CGDP――――R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared residSchwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t 检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 17=;4、下表给出了White 异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM 序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题五一、判断正误正确划“√”,错误划“x ”1、最小二乘法进行参数估计的基本原理是使残差平方和最小;2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同;3、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;4、若回归模型存在异方差问题,应使用加权最小二乘法进行修正;5、多元线性回归模型的F 检验和t 检验是一致的;6、DW 检验只能检验随机误差项是否存在一阶自相关;7、总离差平方和TSS 可分解为残差平方RSS 和与回归平方和ESS,其中残差平方RSS 表示总离差平方和可由样本回归直线解释的部分;8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决系数;9、对于模型011... 1,2,...,i i n ni i Y X X u i n βββ=++++=;如果231X X X =-,则模型必然存在解释变量的多重共线性问题;10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值; 二、单项选择1、回归直线01ˆˆˆi iY X ββ=+必然会通过点A、0,0B、_X,_YC、_X,0D、0,_Y2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为A、 B、C、 D、无法计算3、针对经济指标在同一时间所发生结果进行记录的数据列,称为A、面板数据B、截面数据C、时间序列数据D、时间数据4、对回归方程总体线性关系进行显着性检验的方法是A、Z检验B、t检验C、F检验D、预测检验5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数ρ近似等于A、0B、-1C、1D、6、若随机误差项存在异方差,则参数的普通最小二乘估计量A、无偏且有效B、有偏且非有效C、有偏但有效D、无偏但非有效7、下列哪一种方法是用于补救随机误差项的异方差问题的A、OLS;B、ILS;C、WLSD、GLS8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为A、1B、2C、3D、49、样本可决系数R2越大,表示它对样本数据拟合得A、越好B、越差C、不能确定D、均有可能10、多元线性回归模型中,解释变量的个数越多,可决系数R2A、越大;B、越小;C、不会变化;D、无法确定三、简答题1、简述计量经济学的定义;2、多元线性回归模型的基本假设有哪些3、简答异方差概念、后果以及修正方法;4、简述t检验的目的及基本步骤;四、计算对于一个三元线性回归模型,已知可决系数20.8R ,方差分析表的部份结果如下:变差来源平方和自由度源于回归ESS 200源于残差RSS总变差TSS 221样本容量是多少2总变差TSS为多少3残差平方和RSS为多少4ESS和RSS的自由度各为多少5求方程总体显着性检验的F统计量值;计量经济学习题六-案例题一、根据美国各航空公司航班正点到达的比率X%和每10万名乘客投诉的次数Y 进行回归,EViews输出结果如下:Dependent Variable: YMethod: Least SquaresSample: 1 9Included observations: 91对以上结果进行简要分析包括方程显着性检验、参数显着性检验、DW值的评价、对斜率的解释等,显着性水平均取;2按标准书写格式写出回归结果;二、以下是某次线性回归的EViews输出结果,部分数值已略去用大写字母标示,但它们和表中其它特定数值有必然联系,分别据此求出这些数值,并写出过程;保留3位小数Dependent Variable: YMethod: Least SquaresSample: 1 13Included observations: 131求A 的值; 2求B 的值; 3求C 的值;三、用1970-1994年间日本工薪家庭实际消费支出Y 与实际可支配收入X 单位:103日元数据估计线性模型Y =01X u ββ++,然后用得到的残差序列t e 绘制以下图形; 1试根据图形分析随机误差项之间是否存在自相关若存在,是正自相关还是负自相关答:图形显示,随机误差项之间存在着相关性,且为正的自相关; 2此模型的估计结果为 试用DW 检验法检验随机误差项之间是否存在自相关;四、用一组截面数据估计消费Y —收入X 方程Y =01X u ββ++的结果为1根据回归的残差序列et 图分析本模型是否存在异方差注:abset 表示et 的绝对值;2其次,用White 法进行检验;EViews 输出结果见下表:附表:DW 检验临界值表α=White Heteroskedasticity Test:Dependent Variable: RESID^2 Method: Least Squares Sample: 1 60Included observations: 60若给定显着水平0.05α=,以上结果能否说明该模型存在异方差查卡方分布临界值的自由度是多少五、下图描述了残差序列{}t e 与其滞后一期值1{}t e -之间的散点图,试据此判断随机误差项之间是否存在自相关若存在,则是正自相关还是负自相关六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量1x 作为被解释变量,对其余解释变量进行辅助回归,得到可决系数20.95R =;试计算变量1x 的方差扩大因子1VIF ,并根据经验判断解释变量间是否存在多重共线性问题七、下表是中国某地人均可支配收入INCOME 与储蓄SAVE 之间的回归分析结果单位:元:Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-Statist ic Prob.CINCOME--R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared resid 1778097. Schwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量INCOME 回归系数的经济含义2、解释可决系数的含义3、若给定显着性水平5%α=,试对自变量INCOME 的回归系数进行显着性检验已知0.025(29) 2.045t =4、在5%α=的显着性水平下,查31n =的DW 临界值表得 1.363L d =, 1.496U d =,试根据回归结果判断随机误差项是否存在一阶自相关5、下表为上述回归的White 检验结果,在5%α=的显着性水平下,试根据P 值检验判断随机误差项是否存在异方差 White Heteroskedasticity Test:F-statisticProbabilityObsR-squaredProbability计量经济学习题一答案一、判断正误1. × 2. √ 3. √ 4. √ 5. × 6. × 7. ×8. × 9. √ 10. √ 二、单选题每小题分,共15分1. D ;2. B ;3. B ;4. C ;5. B ; 6. B ;7. B ;8. B ;9. B ;10. A ; 三、多选题1. ABCE 2. BCDE 3. ABCE 4. ABCD 5. ABCDE ; 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么答:随机干扰项包括的主要因素有:1众多细小因素的影响;2未知因素的影响;3数据测量误差或残缺;4模型形式不完善;5变量的内在随机性;随机误差项羽残差不同,残差是样本观测值与模拟值的差,即i e =ˆi iY Y -;残差项是随机误差项的估计;2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显着性检验;这种检验是确定各个参数是否显着地不等于零;检验分为三个步骤:①提出假设:原假设0:0i H β=;备择假设1:0i H β≠ ②在原假设成立的前提下构造统计量:()ˆ~(1)ˆiit t n k Se ββ=--③给定显着性水平α,查t 分布表求得临界值/2(1)t n k α--,把根据样本数据计算出的t 统计量值t *与/2(1)t n k α--比较:若/2(1)t t n k α*>--,则拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量有显着影响;若/2(1)t t n k α*<--,则不能拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量没有显着影响.3.简述序列相关性检验方法的共同思路;答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关性,首先根据OLS 法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间的相关性以判定随机干扰项是否存在序列相关;各种检验方法就是在这个思路下发展起来的;五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,Dependent Variable: Y Method: Least Squares Included observations: 13解:A=ˆ()Se β=ˆt β=7.10604.3903=;B=2R =211(1)1n R n k -----=1311(10.8728)1321-----=由公式2ˆσ=21ien k --∑,得C=2ie ∑=2ˆ(1)n k σ--=21.1886(1321)--=; 2.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;α。

计量经济学习题集及详解答案

计量经济学习题集及详解答案

第一章绪论一、填空题:1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。

2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间__________的关系,用__________性的数学方程加以描述。

3.经济数学模型是用__________描述经济活动。

4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。

5.计量经济学模型包括__________和__________两大类。

6.建模过程中理论模型的设计主要包括三部分工作,即__________、____________________、____________________。

7.确定理论模型中所包含的变量,主要指确定__________。

8.可以作为解释变量的几类变量有__________变量、__________变量、__________变量和__________变量。

9.选择模型数学形式的主要依据是__________。

10.研究经济问题时,一般要处理三种类型的数据:__________数据、__________数据和__________数据。

11.样本数据的质量包括四个方面__________、__________、__________、__________。

12.模型参数的估计包括__________、__________和软件的应用等内容。

13.计量经济学模型用于预测前必须通过的检验分别是__________检验、__________检验、__________检验和__________检验。

14.计量经济模型的计量经济检验通常包括随机误差项的__________检验、__________检验、解释变量的__________检验。

计量经济学 课后练习题答案解析

计量经济学 课后练习题答案解析

第二章练习题及参考解答练习题2.1 参考解答:计算中国货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相关系数为:计算方法: XY n X Y X Y r -=或,()()X Y X X Y Y r --=计算结果:M2GDPM2 10.996426148646GDP0.9964261486461经济意义: 这说明中国货币供应量与国内生产总值(GDP)的线性相关系数为0.996426,线性相关程度相当高。

练习题2.2参考解答美国软饮料公司的广告费用X 与销售数量Y 的散点图为说明美国软饮料公司的广告费用X 与销售数量Y 正线性相关。

相关系数为:说明美国软饮料公司的广告费用X 与销售数量Y 的正相关程度相当高。

若以销售数量Y 为被解释变量,以广告费用X 为解释变量,可建立线性回归模型 i i i u X Y ++=21ββ 利用EViews 估计其参数结果为经t 检验表明, 广告费用X 对美国软饮料公司的销售数量Y 确有显著影响。

回归结果表明,广告费用X 每增加1百万美元, 平均说来软饮料公司的销售数量将增加14.40359(百万箱)。

练习题2.3参考解答:1、 建立深圳地方预算内财政收入对GDP 的回归模型,建立EViews 文件,利用地方预算内财政收入(Y )和GDP 的数据表,作散点图可看出地方预算内财政收入(Y )和GDP 的关系近似直线关系,可建立线性回归模型: t t t u GDP Y ++=21ββ 利用EViews 估计其参数结果为即 ˆ20.46110.0850t tY GDP =+ (9.8674) (0.0033)t=(2.0736) (26.1038) R 2=0.9771 F=681.4064经检验说明,深圳市的GDP 对地方财政收入确有显著影响。

20.9771R =,说明GDP 解释了地方财政收入变动的近98%,模型拟合程度较好。

模型说明当GDP 每增长1亿元时,平均说来地方财政收入将增长0.0850亿元。

计量经济学习题以及全部答案

计量经济学习题以及全部答案
表示总离差平方和中可由样本回归直线解释的部分。( ) 6.多元线性回归模型的 F 检验和 t 检验是一致的。( ) 7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。( ) 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的
自相关。( ) 9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。( )
两组,分别作回归,得到两个残差平方和 ESS1 =0.360、 ESS2 =0.466,写出检验步骤( =0.05)。
F 分布百分位表( =0.05)
分子自由度
f2
f1 10
11
12
13
分 9 3.14 3.10 3.07 3.01
母 10 2.98 2.94 2.91 2.85
自 11 2.85 2.82 2.79 2.72
由 12 2.75 2.72 2.69 2.62
度 13 2.67 2.63 2.60 2.53
3.有人用广东省 1978—2005 年的财政收入( AV )作为因变量,
用三次产业增加值作
为自变量,进行了三元线性回归。第一产业增加值——VAD1 ,第二产业增加值——
VAD2 ,第三产业增加值——VAD3 ,结果为:
机误差项 ui 的方差估计量为( )。
A.33.33
B.40 C.38.09
D.36.36
6.设 k 为回归模型中的参数个数(不包括截距项), n 为样本容量, ESS 为残差平方和, RSS 为回归平
方和。则对总体回归模型进行显著性检验时构造的 F 统计量为( )。
A. F = RSS TSS
B.
验,则 1 显著异于零的条件是对应 t 统计量的取值大于( )

计量经济学试题及答案解析

计量经济学试题及答案解析

计量经济学试题及答案解析WORD 格式整理版1.计量经济学模型:揭示经济现象中客观存在的因果关系,主要采用回归分析方法的经济数学模型。

2.参数估计的无偏性:它的均值或期望值是否等于总体的真实值。

3.参数估计量的有效性:它是否在所有线性无偏估计量中具有最小方差。

估计量的期望方差越大说明用其估计值代表相应真值的有效性越差;否则越好,越有效。

不同的估计量具有不同的方差,方差最小说明最有效。

4.序列相关:即模型的随即干扰项违背了相互独立的基本假设。

5.工具变量:在模型估计过程中被作为工具使用,以替代与随即干扰项相关的随机解释变量。

6.结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统。

7.内生变量:具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型系统决定的,同时也对模型系统产生影响。

内生变量一般都是经济变量。

8.异方差:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

9. 回归分析:研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

其目的在于通过后者的已知或设定值,去估计和预测前者的(总体)均值。

前一变量称为被解释变量或应变量,后一变量称为解释变量或自变量。

1.下列不属于...线性回归模型经典假设的条件是( A ) A .被解释变量确定性变量,不是随机变量。

B .随机扰动项服从均值为0,方差恒定,且协方差为0。

C .随机扰动项服从正态分布。

D .解释变量之间不存在多重共线性。

2.参数β的估计量β?具备有效性是指( B )A .0)?(=βVarB .)?(βVar 为最小C .0)?(=-ββED . )?(ββ-E 为最小3.设Q 为居民的猪肉需求量,I 为居民收入,PP 为猪肉价格,PB 为牛肉价格,且牛肉和猪肉是替代商品,则建立如下的计量经济学模型:iB i P i i t P P I Q μαααα++++=3210根据理论预期,上述计量经济学模型中的估计参数1?α、2?α和3?α应该是( C )A .1?α<0,2?α<0,0?3>αB .1?α<0,2?α>0,0?3<αC .1?α>0,2?α<0,0?3>αD .1?α>0,2?α>0,0?3<α 4.利用OLS 估计模型ii i X Y μαα++=10求得的样本回归线,下列哪些结论是不正确的( D )A .样本回归线通过(Y X ,)点B .∑i μ=0C .YY ?= D .i i X Y 10??αα+=5.用一组有20个观测值的样本估计模型i i i X Y μββ++=10后,在0.1的显著性水平下对1?β的显著性作t 检验,则1β显著地不等于零的条件是t 统计量绝对值大于( D )A. t 0.1(20)B. t 0.05(20)C. t 0.1(18)D. t 0.05(18)6.对模型i i i i X X Y μβββ+++=22110进行总体线性显著性检验的原假设是( C )A .0210===βββB .0=j β,其中2,1,0=jC .021==ββD .0=j β,其中2,1=j7.对于如下的回归模型ii i X Y μαα++=ln ln 10中,参数1α的含义是( D )A .X 的相对变化,引起Y 的期望值的绝对变化量B .Y 关于X 的边际变化率C .X 的绝对量发生一定变动时,引起Y 的相对变化率D .Y 关于X 的弹性 8.如果回归模型为背了无序列相关的假定,则OLS 估计量( A )A .无偏的,非有效的B .有偏的,非有效的C .无偏的,有效的D .有偏的,有效的 9. 下列检验方法中,不能用来检验异方差的是( D )A .格里瑟检验B .戈德菲尔德-匡特检验C .怀特检验D .杜宾-沃森检验10.在对多元线性回归模型进行检验时,发现各参数估计量的t 检验值都很低,但模型的拟合优度很高且F 检验显著,这说明模型很可能存在( C )A .方差非齐性B .序列相关性C .多重共线性D .模型设定误差11.包含截距项的回归模型中包含一个定性变量,且这个定性变量有3种特征,则,如果我们在回归模型中纳入3个虚拟变量将会导致模型出现( A )A .序列相关B .异方差C .完全共线性D .随机解释变量 12.下列条件中,哪条不是有效的工具变量需要满足的条件( B )A .与随机解释变量高度相关B .与被解释变量高度相关C .与其它解释变量之间不存在多重共线性D .与随机误差项不同期相关13.当模型中存在随机解释变量时,OLS 估计参数仍然是无偏的要求( A )A .随机解释变量与随机误差项独立B .随机解释变量与随机误差项同期不相关,而异期相关C .随机解释变量与随机误差项同D .不论哪种情况,OLS 估计量都期相关是有偏的14.在分布滞后模型tt t t X X Y μβββ+++=-1210中,解释变量对被解释变量的长期影响乘数为( C )A. 1βB. 2βC. 21ββ+ D .210βββ++15.在联立方程模型中,外生变量共有多少个( B )A. 1B. 2C. 3D. 41.普通最小二乘法确定一元线性回归模型i i i e X Y ++=10??ββ的参数0?β和1?β的准则是使( B ) A .∑ei 最小 B .∑e i2最小C .∑e i 最大D .∑e i2最大2、普通最小二乘法(OLS)要求模型误差项i μ满足某些基本假定。

计量经济学习题集与答案解析

计量经济学习题集与答案解析

习题讲解(一)一、选择题1、样本回归函数(方程)的表达式为( D )A.i i i X Y μββ++=10B.i i X X Y E 10)(ββ+=C.i i i e X Y ++=10ˆˆββD.ii X Y 10ˆˆˆββ+= 2、反映由模型中解释变量所解释的那部分离差大小的是( B )A.总离差平方和B.回归平方和C.残差平方和D.都不是3、设k 为回归模型中的参数个数(不包括常数项),n 为样本容量,RSS 为残差平方和,ESS 为回归平方和,则对总体回归模型进行显著性检验时构造的F 统计量为( B ) A.TSSESS F = B.)1(--=k n RSS k ESS F C.)1(1---=k n TSS k ESS F D.TSSRSS F = 4、对于某样本回归模型,已求得DW 的值为l ,则模型残差的自相关系数∧ρ近似等于( C ).0 C5、下列哪种方法不能用来检验异方差( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验 检验6、根据一个n =30的样本估计tt t e X Y ++=10ˆˆββ后计算得.=,已知在5%的显著水平下,35.1=L d ,49.1=U d ,则认为原模型( C )。

A.不存在一阶序列相关B.不能判断是否存在一阶序列相关C.存在正的一阶序列相关D.存在负的一阶序列相关7、某商品需求函数模型为i i i X Y μββ++=10,其中Y 为需求量,X 为价格。

为了考虑“地区”(农村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为( B ).4 C8、可以用于联立方程计量模型方程间误差传递性检验的统计量是( C )A.均方百分比误差 检验统计量C.均方根误差D.滚动预测检验9、下列属于有限分布滞后模型的是( D )A. t t t t X X Y μβββ++++=-Λ1210B. t t t t t Y Y X Y μββββ++++=--231210C. t t t t Y Y Y μβββ++++=-Λ1210D. t k t k t t t X X X Y μββββ+++++=+--11210Λ10、估计模型Y t =β0+β1X t +β2Y t-1+μt (其中μt 满足线性模型的全部假设)参数的适当方法是( D )A.二阶段最小二乘法B.间接最小二乘法C.广义差分法D.工具变量法11、考察某地区农作物种植面积与农作物产值的关系,建立一元线性回归模型i i i X Y μββ++=10(X 表示农作物种植面积、Y 表示农作物产值),采用30个样本,根据OLS 方法得54.0ˆ1=β,对应标准差045.01ˆ=βS ,那么,1β对应的统计量t 为( ) B.0.0243 C. 、一无线性回归模型 的最小二乘回归结果显示,残差平方和RSS=,样本容量为25,则回归模型的标准差 为( B )B.1.324C. 、k 表示模型系统中先决变量的个数(含常数项),i k 表示第i 个方程中先决变量的个数(含常数项),i g 表示第i 个方程中内生变量的个数,识别的阶条件为1-<-i i g k k ,表示( B )A.第i 个方程恰好识别B.第i 个方程不可识别C.第i 个方程过度识别D.第i 个方程具有唯一的统计形式14、当随机误差项存在序列相关时,单位根检验采用的是( B )。

计量经济学习题解析

计量经济学习题解析

第一章1、下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?(1)t S =+t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。

(2)1t S -=+t R ,其中1t S -为第t-1年底农村居民储蓄余额(单位:亿元),t R 为第t 年农村居民纯收入总额(单位:亿元)。

2、 指出下列假想模型中的错误,并说明理由:其中,t RS 为第t 年社会消费品零售总额(单位:亿元),t RI 为第t 年居民收入总额(单位:亿元)(指城镇居民可支配收入总额与农村居民纯收入总额之和),t IV 为第t 年全社会固定资产投资总额(单位:亿元)。

3、 下列设定的精良经济模型是否合理?为什么?(1)301i i i GDP GDP ββμ==+⋅+∑ 其中,i GDP (i=1,2,3)是第一产业、第二产业、第三产业增加值,μ为随机干扰项。

(2)财政收入=f (财政支出)+ μ,μ为随机干扰项。

答案1、(1)不是。

因为农村居民储蓄增加额应与农村居民可支配收入总额有关,而与城镇居民可支配收入总额没有因果关系。

(2)不是。

第t 年农村居民的纯收入对当年及以后年份的农村居民储蓄有影响,但并不对第t-1的储蓄产生影响。

2、一是居民收入总额RI t 前参数符号有误,应是正号;二是全社会固定资产投资总额IV t 这一解释变量的选择有误,它对社会消费品零售总额应该没有直接的影响。

3、(1)不合理,因为作为解释变量的第一产业、第二产业和第三产业的增加值是GDP 的构成部分,三部分之和正为GDP 的值,因此三变量与GDP 之间的关系并非随机关系,也非因果关系。

(2)不合理,一般来说财政支出影响财政收入,而非相反,因此若建立两者之间的模型,解释变量应该为财政收入,被解释变量应为财政支出;另外,模型没有给出具体的数学形式,是不完整的。

第二章五、计算分析题1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。

计量经济学课后习题答案解析汇总

计量经济学课后习题答案解析汇总

计量经济学练习题第一章导论一、单项选择题⒈计量经济研究中常用的数据主要有两类:一类是时间序列数据,另一类是【 B 】A 总量数据B 横截面数据C平均数据 D 相对数据⒉横截面数据是指【 A 】A 同一时点上不同统计单位相同统计指标组成的数据B 同一时点上相同统计单位相同统计指标组成的数据C 同一时点上相同统计单位不同统计指标组成的数据D 同一时点上不同统计单位不同统计指标组成的数据⒊下面属于截面数据的是【 D 】A 1991-2003年各年某地区20个乡镇的平均工业产值B 1991-2003年各年某地区20个乡镇的各镇工业产值C 某年某地区20个乡镇工业产值的合计数D 某年某地区20个乡镇各镇工业产值⒋同一统计指标按时间顺序记录的数据列称为【 B 】A 横截面数据B 时间序列数据C 修匀数据 D原始数据⒌回归分析中定义【 B 】A 解释变量和被解释变量都是随机变量B 解释变量为非随机变量,被解释变量为随机变量C 解释变量和被解释变量都是非随机变量D 解释变量为随机变量,被解释变量为非随机变量二、填空题⒈计量经济学是经济学的一个分支学科,是对经济问题进行定量实证研究的技术、方法和相关理论,可以理解为数学、统计学和_经济学_三者的结合。

⒉现代计量经济学已经形成了包括单方程回归分析,联立方程组模型,时间序列分析三大支柱。

⒊经典计量经济学的最基本方法是回归分析。

计量经济分析的基本步骤是:理论(或假说)陈述、建立计量经济模型、收集数据、计量经济模型参数的估计、检验和模型修正、预测和政策分析。

⒋常用的三类样本数据是截面数据、时间序列数据和面板数据。

⒌经济变量间的关系有不相关关系、相关关系、因果关系、相互影响关系和恒等关系。

三、简答题⒈什么是计量经济学?它与统计学的关系是怎样的?计量经济学就是对经济规律进行数量实证研究,包括预测、检验等多方面的工作。

计量经济学是一种定量分析,是以解释经济活动中客观存在的数量关系为内容的一门经济学学科。

计量经济学题库(超完整版)及答案.详解

计量经济学题库(超完整版)及答案.详解
9.有10户家庭的收入(X,元)和消费(Y,百元)数据如下表:
10户家庭的收入(X)与消费(Y)的资料
X
20
30
33
40
15
13
26
38
35
43
Y
7
9
8
11
5
4
8
10
9
10
若建立的消费Y对收入X的回归直线的Eviews输出结果如下:
Dependent Variable: Y
Variable
Coefficient
x
2
5
10
4
10
y
4
7
4
5
9
假设y对x的回归模型为 ,且 ,试用适当的方法估计此回归模型。
26.根据某地1961—1999年共39年的总产出Y、劳动投入L和资本投入K的年度数据,运用普通最小二乘法估计得出了下列回归方程:
(0.237) (0.083) (0.048)
,DW=0.858
上式下面括号中的数字为相应估计量的标准误差。在5%的显著性水平之下,由DW检验临界值表,得dL=1.38,du=1.60。问;(1)题中所估计的回归方程的经济含义;(2)该回归方程的估计中存在什么问题?应如何改进?
1988
3.6
7
1992
4.6
9
1996
5.8
12.4
根据以上数据估计货币供给量Y对国民收入X的回归方程,利用Eivews软件输出结果为:
Dependent Variable: Y
Variable
Coefficient
Std. Error
t-Statistic
Prob.

计量经济学习题及参考答案解析详细版

计量经济学习题及参考答案解析详细版

计量经济学(第四版)习题参考答案潘省初第一章 绪论试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

什么是时间序列和横截面数据? 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础略,参考教材。

请用例中的数据求北京男生平均身高的99%置信区间NS S x ==45= 用=,N-1=15个自由度查表得005.0t =,故99%置信限为x S t X 005.0± =174±×=174±也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。

25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体? 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/2510/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。

计量经济学习题 含答案

计量经济学习题 含答案

第一章 绪论(一)基本知识类题型 1-1. 什么是计量经济学?1-2. 简述当代计量经济学发展的动向。

1-3. 计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。

1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么? 1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。

1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

1-12.模型的检验包括几个方面?其具体含义是什么? 1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。

1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题? 1-16.经济数据在计量经济分析中的作用是什么?1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?⑴ S R t t =+1120012.. 其中S t 为第t 年农村居民储蓄增加额(亿元)、R t 为第t 年城镇居民可支配收入总额(亿元)。

⑵ S R t t -=+144320030.. 其中S t -1为第(1-t )年底农村居民储蓄余额(亿元)、R t 为第t 年农村居民纯收入总额(亿元)。

1-18.指出下列假想模型中的错误,并说明理由: (1)RS RI IV t t t =-+83000024112...其中,RS t 为第t 年社会消费品零售总额(亿元),RI t 为第t 年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和),IV t 为第t 年全社会固定资产投资总额(亿元)。

计量经济学题库(超完整版)及答案.详解

计量经济学题库(超完整版)及答案.详解

计量经济学题库计算与分析题(每小题10分)1X:问题:(1)画出X 与Y 关系的散点图。

(2)计算X 与Y 的相关系数。

其中X 129.3=,Y 554.2=,2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=,()()X X Y Y ∑--=16195.4 (3)采用直线回归方程拟和出的模型为t 值 1.2427 7.2797 R 2=0.8688 F=52.99解释参数的经济意义。

2.已知一模型的最小二乘的回归结果如下:i iˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31 其中,Y :政府债券价格(百美元),X :利率(%)。

回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iˆY 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。

3.估计消费函数模型i i i C =Y u αβ++得i i ˆC =150.81Y + t 值 (13.1)(18.7) n=19 R 2=0.81其中,C :消费(元) Y :收入(元)已知0.025(19) 2.0930t =,0.05(19) 1.729t =,0.025(17) 2.1098t =,0.05(17) 1.7396t =。

问:(1)利用t 值检验参数β的显著性(α=0.05);(2)确定参数β的标准差;(3)判断一下该模型的拟合情况。

4.已知估计回归模型得i i ˆY =81.7230 3.6541X + 且2X X 4432.1∑(-)=,2Y Y 68113.6∑(-)=, 求判定系数和相关系数。

5.有如下表数据(1关系?拟合什么样的模型比较合适? (2)根据以上数据,分别拟合了以下两个模型:模型一:16.3219.14P U=-+ 模型二:8.64 2.87P U =- 分别求两个模型的样本决定系数。

7.根据容量n=30的样本观测值数据计算得到下列数据:XY 146.5=,X 12.6=,Y 11.3=,2X 164.2=,2Y =134.6,试估计Y 对X 的回归直线。

《计量经济学》习题及答案

《计量经济学》习题及答案

《计量经济学》习题及答案(解答仅供参考)第一套一、名词解释:1. 计量经济学:计量经济学是经济学的一个分支,它使用数学和统计学的方法,对经济现象进行量化分析,建立经济模型,预测和解释经济行为和现象。

2. 异方差性:在回归分析中,如果误差项的方差随自变量的变化而变化,这种现象称为异方差性。

3. 自相关性:在时间序列分析中,如果一个变量的当前值与它的过去值存在相关性,这种现象称为自相关性。

4. 多重共线性:在多元回归分析中,如果两个或多个自变量之间高度相关,这种现象称为多重共线性。

5. 随机抽样:随机抽样是一种统计抽样方法,每个样本单位都有一定的概率被选入样本,且各个样本单位之间的选择是独立的。

二、填空题:1. 在线性回归模型中,参数估计的常用方法是______最小二乘法______。

2. 如果一个变量的分布是对称的,那么它的偏态系数应该接近于______0______。

3. 在时间序列分析中,______平稳性______是进行预测的前提条件之一。

4. ______工具变量法______是处理内生性问题的一种常用方法。

5. 如果一个经济变量的变化完全由其他经济变量的变化所决定,那么这个变量被称为______外生变量______。

三、单项选择题:1. 下列哪种情况可能导致异方差性?(B)A. 自变量和因变量之间存在非线性关系B. 自变量的某些组合导致误差项的方差增大C. 因变量和误差项之间存在相关性D. 样本容量过小2. 在进行回归分析时,如果发现数据存在多重共线性,以下哪种方法可以解决这个问题?(C)A. 增加样本容量B. 使用非线性模型C. 删除相关性较强的自变量D. 对自变量进行标准化3. 下列哪种情况可能会导致自相关性?(A)A. 时间序列数据中存在滞后效应B. 因变量和某个自变量之间存在非线性关系C. 样本容量过小D. 自变量之间存在多重共线性四、多项选择题:1. 下列哪些是计量经济学的基本假设?(ABCD)A. 线性关系假设B. 零均值假设C. 同方差性假设D. 无自相关性假设E. 正态性假设2. 下列哪些是处理内生性问题的方法?(ACD)A. 工具变量法B. 加权最小二乘法C. 两阶段最小二乘法D. 广义矩估计法E.岭回归法五、判断题:1. 在进行回归分析时,如果自变量和因变量之间不存在线性关系,那么回归结果将没有任何意义。

计量经济学例题解答

计量经济学例题解答

例1(一元线性回归模型) 令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为:µββ++=educ kids 10(1)随机扰动项µ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

解答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。

有些因素可能与增长率水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。

(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设4不满足。

例2(一元线性回归模型) 已知回归模型µβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。

随机扰动项µ的分布未知,其他所有假设都满足。

(1)从直观及经济角度解释α和β。

(2)OLS 估计量αˆ和满足线性性、无偏性及有效性吗?简单陈述理由。

βˆ(3)对参数的假设检验还能进行吗?简单陈述理由。

解答:(1)N βα+为接受过N 年教育的员工的总体平均起始薪金。

当N 为零时,平均薪金为α,因此α表示没有接受过教育员工的平均起始薪金。

β是每单位N 变化所引起的E 的变化,即表示每多接受一年学校教育所对应的薪金增加值。

(2)OLS 估计量αˆ和仍满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项βˆµ的正态分布假设。

(3)如果t µ的分布未知,则所有的假设检验都是无效的。

因为t 检验与F 检验是建立在µ的正态分布假设之上的。

例3(一元线性回归模型) 对于人均存款与人均收入之间的关系式t t t Y S µβα++=使用美国36年的年度数据得到如下估计模型,括号内为标准差:)011.0()105.151(067.0105.384ˆtt Y S +=2R =0.538 023.199ˆ=σ(1)β的经济解释是什么?(2)α和β的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。

计量经济学考试习题及答案

计量经济学考试习题及答案

四、计算题1、(练习题6.2)在研究生产中劳动所占份额的问题时,古扎拉蒂采用如下模型模型1 t t u t Y ++=10αα模型2 t t u t t Y +++=2210ααα其中,Y 为劳动投入,t 为时间。

据1949-1964年数据,对初级金属工业得到如下结果:模型1 t Y t0041.04529.0ˆ-=t = (-3.9608)R 2 = 0.5284 DW = 0.8252模型2 20005.00127.04786.0ˆt t Y t+-= t = (-3.2724)(2.7777)R 2 = 0.6629DW = 1.82其中,括号内的数字为t 统计量。

问:(1)模型1和模型2中是否有自相关;(2)如何判定自相关的存在?(3)怎样区分虚假自相关和真正的自相关。

练习题6.2参考解答:(1)模型1中有自相关,模型2中无自相关。

(2)通过DW 检验进行判断。

模型1:d L =1.077, d U =1.361, DW<d L , 因此有自相关。

模型2:d L =0.946, d U =1.543, DW>d U , 因此无自相关。

(3)如果通过改变模型的设定可以消除自相关现象,则为虚假自相关,否则为真正自相关。

2、根据某地区居民对农产品的消费y 和居民收入x 的样本资料,应用最小二乘法估计模型,估计结果如下。

3524.09123.27ˆ+=ySe=(1.8690) (0.0055)R 2=0.9966 0506.221612=∑=i i e ,DW=0.6800,F=4122.531由所给资料完成以下问题:(1) 在n=16,α=0.05的条件下,查D-W 表得临界值分别为L d =1.106,U d =1.371,试判断模型中是否存在自相关;(2) 如果模型存在自相关,求出相关系数ρˆ,并利用广义差分变换写出无自相关的广义差分模型。

因为DW=0.68<1.106,所以模型中的随机误差存在正的自相关。

计量经济学部分习题答案解析

计量经济学部分习题答案解析

第三章 一元线性回归模型P56.3.3 从某公司分布在11个地区的销售点的销售量()Y 和销售价格()X 观测值得出以下结果:519.8X = 217.82Y = 23134543i X =∑ 1296836i i X Y =∑2539512i Y =∑(1)、估计截距0β和斜率系数1β及其标准误,并进行t 检验; (2)、销售的总离差平方和中,样本回归直线未解释的比例是多少? (3)、对0β和1β分别建立95%的置信区间。

解:(1)、设01i i Y X ββ=+,根据OLS 估计量有:()()()11111122222211112=129683611519.8217.820.32313454311519.8N N NNNi i i ii i iii i i i i NNNN i ii i i i i i N Y X Y X N Y X N X NYY XN X YN X N X XN XN X X β=========---==⎛⎫--- ⎪⎝⎭-⨯⨯==-⨯∑∑∑∑∑∑∑∑∑01217.820.32519.851.48Y X ββ=-=-⨯=残差平方和:()()()()222112222220111111122222222010101011111111=225395121NNiii i i NNNNN N ii i i i ii i i i i i N N N N N i i i i i i i i i i i uRSS TSS ESS Y YYYY Y Y Y Y X N N Y X X Y N X X ββββββββββ===============-=---⎛⎫⎛⎫--+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫=-++=-++ ⎪⎝⎭=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑()22151.480.32313454320.3251.4811519.8997.20224⨯+⨯+⨯⨯⨯⨯=另解:对()()22211NNiii i i uRSS TSS ESS Y YYY====-=---∑∑∑,根据OLS估计01Y X ββ=-知01+Y X ββ=,因此有()()01011=++i i i Y Y X X X X βββββ--=-,所以()()()()22222211111=N NNNiiii i i i i i u Y Y YY Y YX Xβ=====------∑∑∑∑∑标准差:10.53σ==1β的标准误:()10.026se β=====设原假设和备择假设分别为:01=0H β: 110H β≠: 将原假设带入t 统计量:()()10.02510.3212.31 2.26290.026t t se ββ===>= 即拒绝原假设,认为销售价格()X 显著地解释了销售量()Y 的总体平均变化。

李子奈_计量经济学分章习题及答案解析

李子奈_计量经济学分章习题及答案解析

WORD 文档 下载可编辑第一章 导 论一、名词解释1、截面数据2、时间序列数据3、虚变量数据4、内生变量与外生变量二、单项选择题1、同一统计指标按时间顺序记录的数据序列称为 ( )A 、横截面数据B 、虚变量数据C 、时间序列数据D 、平行数据2、样本数据的质量问题,可以概括为完整性、准确性、可比性和 ( )A 、时效性B 、一致性C 、广泛性D 、系统性3、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来 煤炭行业的产出量,这是违反了数据的哪一条原则。

( ) A 、一致性 B 、准确性 C 、可比性 D 、完整性4、判断模型参数估计量的符号、大小、相互之间关系的合理性属于什么检验? ( )A 、经济意义检验B 、统计检验C 、计量经济学检验D 、模型的预测检验5、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值? ( )A 、i C (消费)5000.8i I =+(收入)B 、di Q (商品需求)100.8i I =+(收入)0.9i P +(价格)C 、si Q (商品供给)200.75i P =+(价格)D 、i Y (产出量)0.60.65i K =(资本)0.4i L (劳动)6、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为012M Y r βββμ=+++,1ˆβ和2ˆβ分别为1β、2β的估计值,根据经济理论有 ( ) A 、1ˆβ应为正值,2ˆβ应为负值 B 、1ˆβ应为正值,2ˆβ应为正值 C 、1ˆβ应为负值,2ˆβ应为负值 D 、1ˆβ应为负值,2ˆβ应为正值三、填空题1、在经济变量之间的关系中, 因果关系 、 相互影响关系 最重要,是计量经济分析的重点。

2、从观察单位和时点的角度看,经济数据可分为 时间序列数据 、 截面数据 、 面板数据 。

3、根据包含的方程的数量以及是否反映经济变量与时间变量的关系,经济模型可分为 时间序列模型 、 单方程模型 、 联立方程模型 。

《计量经济学(第二版)》习题解答(第1-3章)

《计量经济学(第二版)》习题解答(第1-3章)

《计量经济学(第二版)》习题解答第一章1.1 计量经济学的研究任务是什么?计量经济模型研究的经济关系有哪两个基本特征? 答:(1)利用计量经济模型定量分析经济变量之间的随机因果关系。

(2)随机关系、因果关系。

1.2 试述计量经济学与经济学和统计学的关系。

答:(1)计量经济学与经济学:经济学为计量经济研究提供理论依据,计量经济学是对经济理论的具体应用,同时可以实证和发展经济理论。

(2)统计数据是建立和评价计量经济模型的事实依据,计量经济研究是对统计数据资源的深层开发和利用。

1.3 试分别举出三个时间序列数据和横截面数据。

1.4 试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

1.5 试结合一个具体经济问题说明计量经济研究的步骤。

1.6 计量经济模型主要有哪些用途?试举例说明。

1.7 下列设定的计量经济模型是否合理,为什么?(1)ε++=∑=31i iiGDP b a GDPε++=3bGDP a GDP其中,GDP i (i =1,2,3)是第i 产业的国内生产总值。

答:第1个方程是一个统计定义方程,不是随机方程;第2个方程是一个相关关系,而不是因果关系,因为不能用分量来解释总量的变化。

(2)ε++=21bS a S其中,S 1、S 2分别为农村居民和城镇居民年末储蓄存款余额。

答:是一个相关关系,而不是因果关系。

(3)ε+++=t t t L b I b a Y 21其中,Y 、I 、L 分别是建筑业产值、建筑业固定资产投资和职工人数。

答:解释变量I 不合理,根据生产函数要求,资本变量应该是总资本,而固定资产投资只能反映当年的新增资本。

(4)ε++=t t bP a Y其中,Y 、P 分别是居民耐用消费品支出和耐用消费品物价指数。

答:模型设定中缺失了对居民耐用消费品支出有重要影响的其他解释变量。

按照所设定的模型,实际上假定这些其他变量的影响是一个常量,居民耐用消费品支出主要取决于耐用消费品价格的变化;所以,模型的经济意义不合理,估计参数时可能会夸大价格因素的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?(1)t S =112.0+0.12t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。

(2)1t S -=4432.0+0.30t R ,其中1t S -为第t-1年底农村居民储蓄余额(单位:亿元),t R 为第t年农村居民纯收入总额(单位:亿元)。

2、 指出下列假想模型中的错误,并说明理由:其中,t RS 为第t 年社会消费品零售总额(单位:亿元),t RI 为第t 年居民收入总额(单位:亿元)(指城镇居民可支配收入总额与农村居民纯收入总额之和),t IV 为第t 年全社会固定资产投资总额(单位:亿元)。

3、 下列设定的精良经济模型是否合理?为什么?(1)301i i i GDP GDP ββμ==+⋅+∑ 其中,i GDP (i=1,2,3)是第一产业、第二产业、第三产业增加值,μ为随机干扰项。

(2)财政收入=f (财政支出)+ μ,μ为随机干扰项。

答案1、(1)不是。

因为农村居民储蓄增加额应与农村居民可支配收入总额有关,而与城镇居民可支配收入总额没有因果关系。

(2)不是。

第t 年农村居民的纯收入对当年及以后年份的农村居民储蓄有影响,但并不对第t-1的储蓄产生影响。

2、一是居民收入总额RI t 前参数符号有误,应是正号;二是全社会固定资产投资总额IV t 这一解释变量的选择有误,它对社会消费品零售总额应该没有直接的影响。

3、(1)不合理,因为作为解释变量的第一产业、第二产业和第三产业的增加值是GDP 的构成部分,三部分之和正为GDP 的值,因此三变量与GDP 之间的关系并非随机关系,也非因果关系。

(2)不合理,一般来说财政支出影响财政收入,而非相反,因此若建立两者之间的模型,解释变量应该为财政收入,被解释变量应为财政支出;另外,模型没有给出具体的数学形式,是不完整的。

第二章五、计算分析题1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。

生育率对受教育年数的简单回归模型为(1)随机扰动项μ包含什么样的因素?它们可能与受教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

2、已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。

随机扰动项μ的分布未知,其他所有假设都满足。

(1)从直观及经济角度解释α和β。

(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。

(3)对参数的假设检验还能进行吗?简单陈述理由。

(4)如果被解释变量新员工起始薪金的计量单位由元改为100元,估计的截距项、斜率项有无变化?(5)若解释变量所受教育水平的度量单位由年改为月,估计的截距项与斜率项有无变化?3、假设模型为t t t X Y μβα++=。

给定n 个观察值),(11Y X ,),(22Y X ,…,),(n n Y X ,按如下步骤建立β的一个估计量:在散点图上把第1个点和第2个点连接起来并计算该直线的斜率;同理继续,最终将第1个点和最后一个点连接起来并计算该条线的斜率;最后对这些斜率取平均值,称之为βˆ,即β的估计值。

(1)画出散点图, 推出βˆ的代数表达式。

(2)计算βˆ的期望值并对所做假设进行陈述。

这个估计值是有偏还是无偏的?解释理由。

(3)判定该估计值与我们以前用OLS 方法所获得的估计值相比的优劣,并做具体解释。

4、对于人均存款与人均收入之间的关系式t t t Y S μβα++=使用美国36年的年度数据得如下估计模型,括号内为标准差:2R =0.538 023.199ˆ=σ(1)β的经济解释是什么?(2)α和β的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显着不同(在1%水平下)。

同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进行陈述。

你的结论是什么?5、现代投资分析的特征线涉及如下回归方程:01t mt t r r ββμ=++;其中:r 表示股票或债券的收益率;m r 表示有价证券的收益率(用市场指数表示,如标准普尔500指数);t 表示时间。

在投资分析中,1β被称为债券的安全系数β,是用来度量市场的风险程度的,即市场的发展对公司的财产有何影响。

依据1956~1976年间240个月的数据,Fogler 和Ganpathy 得到IBM 股票的回归方程(括号内为标准差),市场指数是在芝加哥大学建立的市场有价证券指数。

(0.3001) (0.0728)要求:(1)解释回归参数的意义;(2)如何解释2R ?(3)安全系数1β>的证券称为不稳定证券,建立适当的零假设及备选假设,并用t 检验进行检验(5%α=)。

6、假定有如下的回归结果:t t X Y 4795.06911.2-=∧,其中,Y 表示美国的咖啡的消费量(每天每人消费的杯数),X 表示咖啡的零售价格(美元/杯),t 表示时间。

要求:(1)这是一个时间序列回归还是横截面序列回归?(2)如何解释截距的意义,它有经济含义吗?如何解释斜率?(3)能否求出真实的总体回归函数?(4)根据需求的价格弹性定义:弹性=斜率×(X/Y ),依据上述回归结果,你能求出对咖啡需求的价格弹性吗?如果不能,计算此弹性还需要其他什么信息?7、若经济变量y 和x 之间的关系为2(5)ii i y A x e αμ=-,其中A 、为参数,i μ为随机误差,问能否用一元线性回归模型进行分析?为什么?8、上海市居民1981~1998年期间的收入和消费数据如表所示,回归模型为i i i x y μββ++=10,其中,被解释变量i y 为人均消费,解释变量i x 为人均可支配收入。

试用普通最小二乘法估计模型中的参数01,ββ,并求随机误差项方差的估计值。

1、解:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。

有些因素可能与受教育水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。

(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设3不满足。

2、解:(1)N βα+为接受过N 年教育的员工的总体平均起始薪金。

当N 为零时,平均薪金为α,因此α表示没有接受过教育员工的平均起始薪金。

β是N 每变化一个单位所引起的E 的变化,即表示每多接受一年教育所对应的薪金增加值。

(2)OLS 估计量αˆ和仍βˆ满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项μ的正态分布假设。

(3)如果t μ的分布未知,则所有的假设检验都是无效的。

因为t 检验与F 检验是建立在μ的正态分布假设之上的。

(4)考察被解释变量度量单位变化的情形。

以E*表示以百元为度量单位的薪金,则 由此有如下新模型或 ****μβα++=N E这里100/*αα=,100/*ββ=。

所以新的回归系数将为原始模型回归系数的1/100(5)再考虑解释变量度量单位变化的情形。

设N*为用月份表示的新员工受教育的时间长度,则N*=12N ,于是或 μβα++=*)12/(N E可见,估计的截距项不变,而斜率项将为原回归系数的1/12。

3、解:(1)散点图如下图所示。

(X 2,Y 2)(X n ,Y n )(X 1,Y 1)首先计算每条直线的斜率并求平均斜率。

连接),(11Y X 和),(t t Y X 的直线斜率为)/()(11X X Y Y t t --。

由于共有n -1条这样的直线,因此(2)因为X 非随机且0)(=t E μ,因此这意味着求和中的每一项都有期望值β,所以平均值也会有同样的期望值,则表明是无偏的。

(3)根据高斯-马尔可夫定理,只有β的OLS 估计量是最佳线性无偏估计量,因此,这里得到的βˆ的有效性不如β的OLS 估计量,所以较差。

4、解:(1)β为收入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变化量。

(2)由于收入为零时,家庭仍会有支出,可预期零收入时的平均储蓄为负,因此α符号应为负。

储蓄是收入的一部分,且会随着收入的增加而增加,因此预期β的符号为正。

实际的回归式中,β的符号为正,与预期的一致。

但截距项为正,与预期不符。

这可能是模型的错误设定造成的。

如家庭的人口数可能影响家庭的储蓄行为,省略该变量将对截距项的估计产生了影响;另外线性设定可能不正确。

(3)拟合优度刻画解释变量对被解释变量变化的解释能力。

模型中53.8%的拟合优度,表明收入的变化可以解释储蓄中53.8 %的变动。

(4)检验单个参数采用t 检验,零假设为参数为零,备择假设为参数不为零。

在零假设下t 分布的自由度为n-2=36-2=34。

由t 分布表知,双侧1%下的临界值位于2.750与2.704之间。

斜率项的t 值为0.067/0.011=6.09,截距项的t 值为384.105/151.105=2.54。

可见斜率项的t 值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。

5、解:(1)回归方程的截距0.7264表示当0m r =时的股票或债券收益率,本身没有经济意义;回归方程的斜率1.0598表明当有价证券的收益率每上升(或下降)1个点将使得股票或债券收益率上升(或下降)1.0598个点。

(2)2R 为可决系数,是度量回归方程拟合优度的指标,它表明该回归方程中47.10%的股票或债券收益率的变化是由m r 变化引起的。

当然20.4710R = 也表明回归方程对数据的拟合效果不是很好。

(3)建立零假设01:1H β=,备择假设11:1H β>,0.05α=,240n =,查表可得临界值0.05(238) 1.645t =,由于111 1.059810.8214 1.6450.0728t S ββ--===<,所以接受零假设01:1H β=,拒绝备择假设11:1H β>。

说明此期间IBM 股票不是不稳定证券。

6、解:(1)这是一个横截面序列回归。

(2)截距2.6911表示咖啡零售价在t 时刻为每磅0美元时,美国平均消费量为每天每人2.6911杯,这个数字没有经济意义;斜率-0.4795表示咖啡零售价与消费量负相关,在t 时刻,价格上升1美元/磅,则平均每天每人消费量减少0.4795杯;(3)不能;(4)不能;在同一条需求曲线上不同点的价格弹性不同,若要求出,须给出具体的X 值及与之对应的Y 值。

相关文档
最新文档