《教育和心理统计学》章读书笔记

合集下载

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(聚类分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(聚类分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解第13章聚类分析【本章重点】☆Q型与R型聚类☆聚类分析中距离的六种定义13.1复习笔记一、聚类分析的基本原理(一)聚类分析1.聚类分析的概念聚类分析是分类学与多元统计分析相结合的一种方法。

它将分类对象置于一个多维空间中,按照它们空间关系的亲疏程度进行分类。

其与一般分类方法的不同之处在于:(1)一般分类法往往从专业知识出发进行分析归类,而聚类分析先是仅凭变量指标进行定量分析,整理出分类的谱系追踪图,然后再据专业知识确定最终类型数目和类型命名;(2)一般的分类允许在不同层次上有不同的分类依据或分类准则,而聚类分析在所有层次上的分类依据和分类准则都是一样的;(3)一般分类不要求被分对象一次性完备,允许分类后继续补充样品甚至建立新类,而聚类分析要求被分类对象一次性完备,不允许中间插入新样品,否则要重复聚类分析的全过程。

2.聚类分析的分类依据(1)聚类分析作为一种数值分类法,分类依据是数据指标,要进行聚类分析必须建起一个描写事物本质属性的指标体系,或者一个变量组合。

(2)入选的指标需满足的要求:①指标必须能刻画事物属性的某个侧面,所有指标组合起来形成一个完备的指标体系,互相配合共同刻画事物的本质特征。

②要求每一个入选指标都与所研究的问题紧密联系,并且都有较强的分辨能力。

③指标本身还必须可测和稳定,可测是分类得以进行的先决条件,稳定是分类准确的前提。

如果分类指标间还具有直交性,那么还可提高聚类的效率。

若有N个样品、有M个指标,称为M维空间上N个样本点,测值X ik表示第i个样本点在第k维指标上的测量值。

空间N个样本点的所有测值可以矩阵X记之:(13.1)④在聚类分析中,要求入选的所有指标变量有统一的量纲。

(3)常用的整理原始数据的方法有以下几种:①数据中心化变换。

如果一批数据指标由于各自的分布中心有显著差异而导致量纲不一致,可以对数据作中心化变换,新的指标中心皆为0。

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解 第7章~第9章【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解  第7章~第9章【圣才出品】
一、回归分析的基本原理 (一)意义 1.回归分析是借助于数学模型对客观世界所存在的事物间的不确定关系的一种数量化 描写,其目的在于为不确定现象的研究提供更为科学、精细的手段,以应用于相关随机变量 的估计、预测和控制。 2.回归分析是统计分析中的一种重要手段,首先发现回归现象的是英国生物学家高尔 顿和皮尔逊,其根本目的是要借助于因变量和自变量的分类,在概率统计的意义上,把变量 间的相关关系用精确的数学公式伴以其他手段加以进一步的定量刻画。在回归分析中,自变
(5)列出回归方程:y=a+bx。
(三)一元线性回归方程的有效性检验 1.建立假设:H0:所建回归方程无效;
H1:所建回归方程有效。 2.计算离差平方和
总离差平方和:
n
回归平方和:U =b2 (xi x )2 i 1
剩余平方和: Q lyy U
3.计算自由度
df总 n 1, dfU 1, dfQ n 2 。
4.计算均方
回归均方: MSU U dfU
剩余均方: MSQ Q dfQ
5.检验统计量: F MSU MSQ
6.将所求数据填入方差分析表
(7.5)
5 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台

7.查表,做出统计决断。
(四)回归方程有效性高低的指标 一元线性回归分析所建立的回归方程经方差分析后被判定为具有有效性,仅能说明这个 回归方程有别于无使用价值的方程,但是并未指出这个方程有效性高到什么程度。在回归分 析中衡量回归方程有效性高低的指标称为决定系数,记作 R2,其值为:R2=U/ 。即决 定系数是回归平方和在总离差平方和中所占的比例。 此外,在一元线性回归中决定系数 R2 是因变量与自变量积差相关系数的平方,即

教育与心理统计学 第二章 常用统计参数考研笔记-精品

教育与心理统计学  第二章 常用统计参数考研笔记-精品

第二章常用统计参数第二章常用统计参数用参数来描述一组变量的分布特征,便于我们对数据分布状况进行更好的代表性的描述,也有利于我们更好地了解数据的特点。

常见的统计参数包括三类:集中量数、差异量数、地位量数(相对量数X相关量数。

描述统计的指标通常有五类。

第一类集中量数:用于表示数据的集中趋势,是评定一组数据是否有代表性的综合指标,比如平均数、中数、众数等。

概述[不背]第二类差异量数:用于表示数据的离散趋势,是说明一组数据分散程度的指标,比如方差、标准差、差异系数等。

第三类地位量数:是反映个体观测数据在团体中所处位置的量数,比如百分位数、百分等级和标准分数等。

第四类相关量数:用于表示数据间的相互关系,是说明数据间关联程度的指标,比如积差相关、肯德尔和谐系数、①相关等。

第五类:是反映数据的分布形状,比如偏态量和峰度等(不作介绍I第一节集中量数(一)集中量数的定义(种类、作用)[湖南12名]描述数据集中趋势的统计量数称为集中量数。

集中量数能反映大量数据向某一点集中的情况。

常用的集中量数包括算术平均数、加权平均数、几何平均数、中数、众数等等,它们的作用都是用于度量次数分布的集中趋势。

(二)算术平均数(平均数、均数)(一级)简述算术平均数的定义和优缺点。

(1)平均数的含义算术平均数可简称为平均数或均数,符号可记为M。

算术平均数即数据总和除以数据个数,即所有观察值的总和与总频数之比。

只有在为了与其他几种集中.数洞区别时,如几何平均数、调和平均数、加权平均数,才全称为算术平均数。

如果平均数是由变量计算的,就用相应的变量表示,如又匕算术平均数是用以度量连续变量次数分布集中趋势及位置的最常用的集中量数,在一组数据中如果没有极端值, 平均数就是集中趋势中最有代表性的数字指标,是真值的最佳估计值。

(2)平均数的优缺点简述算术平均数的使用特点[含优缺点]算术平均数优点①反应灵敏。

观测数据中任1可一个数值或大或小的变化,甚至细微的变化,在计算平均数时,都能反映出来。

《教育统计学》学习笔记

《教育统计学》学习笔记

《教育统计学》读书笔记(1)第一章绪论第一节1)描述统计:对已获得的数据进行整理、概括并显现其分布特征。

1、集中量表现集中趋势,常用量:算术平均数、中位数、众数2、差异量来反应数据间的离散程度,常用量:全距、标准差3、用偏态量和峰态量来反映分布形态2)推断统计:根据已知的情况,在一定概率意义下估计、推断未知的情况。

1、总体参数检验(总体平均数、总体标准差、总体相关系数等)2、假设检验(总体平均数之差、总体方差之差、总体相关系数之差),总体分布是否服从某种分布的假设检验可以用样本来推测总体的情况,比如用某个班级所有学生的成绩来估计整个学校的学习成绩,用某个学校的成绩来估计整个市的成绩等。

第三节统计学中的基本概念1、总体和样本2、统计量和参数统计量:样本上的数字特征,例如平均数μ、标准差σ、相关系数ρ等参数:总体的数字特征,例如平均数X、标准差S、相关系数等第二章数据的初步整理1、统计表简单频数、累积频数和累积百分比分布表(累积百分比分布表可以用来说明、解释和评价某一测验的原始分数之优劣)2、统计图1)间断变量统计图1、直条图:比较性质相相似的间断性资料2、饼图等:间断性资料构成比的图形2)连续变量统计图(可用图形来初步判断数据是否符合正态分布)1、线形图2、直方图等第三章 集中量第一节 算数平均数(应用最多)iXX n=∑2、算数平均数优点:反应灵敏、简单易懂、受抽样变动影响小,在计算其他统计量时都需要用到他3、缺点:容易受两端极值影响,若数据中存在某个数值模糊时就无法计算。

4、适用条件:一组数据中每个数据都比较精确、可靠,无两端极值的影响,还要通过它计算其他统计量。

一)中位数Md ,各有一半数大于或小于这个数。

2、优点:受两端极值影响小3、缺点:抽样偏差较大,并不是每个数都参与运算,反应不灵敏,不适合代数运算4、适用条件:一组数据中有特大或特小两极端数值时,一组数据中有个别数据不确切、不清楚时,资料属于等级性质时。

《教育和心理统计学》1-3章读书笔记

《教育和心理统计学》1-3章读书笔记

《绪论》1.什么是教育与心理统计学教育与心理统计学是应用统计学的一个分支,是数理统计学与教育学、心理学的一门交叉学科,它把统计学的理论方法应用于教育实际工作和各种心理实验、心理测验等科学研究中,通过对所得数据的分析和处理,达到更为准确地掌握情况、探索规律、制订方案、目的,为教育与心理的科学研究提供了一种科学的方法。

2.教育与心理统计学的基本内容及本书体系。

1)描述统计学:这一部分主要是研究和简缩数据和描述这些数据。

例如:计算平均数、中位数、众数等,以这些参数来反映观测数据的集中趋势。

计算标准差、方差等,以这些参数来反映观测数据的离散趋势。

描述统计学主要是描述事务的典型性、波动范围以及相互关系,提示事物的内部规律。

2)推断统计学:这部分内容主要是研究如何利用数据去作出决策的方法。

推断统计学则是一种依据部份数剧去推论全体的一种科学方法,它是进行教育与心理实验、对教育与心理研究或实验作出预测和规划的有力工具。

推断统计学的主要内容有:统计检验、统计分析和非参数统计法。

3)多元统计分析:这部分内容主要是研究超过两个因素的教育与心理的研究和实验。

多元统计分析的主要任务就是寻找出主要的因素,相近或相关的因素合并或归类。

多元统计分析的主要内容有:主成分分析、因素分析、聚类分析、多元方差分析、多元回归分析等。

3.教育与心理统计学的昨天、今天和明天1)与心理统计学的昨天:1904年美国人桑代克写的《心理与社会测量导论》2)教育与心理统计学的今天:叶佩华主编的《教育统计学》,张厚粲主编的《心理与教育统计》等。

4.预备知识1)概念与术语<1>随机变量:教育与心理实验或观测,在相同的条件下,其结果可能不止一个,同实验或观测所得到的数据,事先无法确定,这类现象称为随机现象。

因为可以用数字来表现,则称这些数字为随机变量。

它的特点是:离散性、变异性和规律性。

依其性质可分为:称名变量、顺序变量、等距变量、比率变量四种称名变量:用于说明一事物与其它事物在属性上的不同或类别上的差异,但不说明事物与事物之间差异的大小。

《教育统计学》超详细知识点及重点笔记

《教育统计学》超详细知识点及重点笔记

华东师大心理统计学大纲教材:《教育统计学》第一章绪论第一节什么是统计学和心理统计学一、什么是统计学统计学是研究统计原理和方法的科学。

具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。

统计学分为两大类。

一类是数理统计学。

它主要是以概率论为基础,对统计数据数量关系的模式加以解释,对统计原理和方法给予数学的证明。

它是数学的一个分支。

另一类是应用统计学。

它是数理统计原理和方法在各个领域中的应用,如数理统计的原理和方法应用到工业领域,称为工业统计学;应用到医学领域,称为医学统计学;应用到心理学领域,称为心理统计学,等等。

应用统计学是与研究对象密切结合的各科专门统计学。

二、统计学和心理统计学的内容统计学和心理统计学的研究内容,从不同角度来分,可以分为不同的类型。

从具体应用的角度来分,可以分成描述统计,推断统计和实验设计三部分。

1.描述统计对已获得的数据进行整理、概括,显示其分布特征的统计方法,称为描述统计。

2.推断统计根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上,对总体分布特征进行估计、推测,这种统计方法称为推断统计。

推断统计的内容包括总体参数估计和假设检验两部分。

3.实验设计实验者为了揭示试验中自变量和因变量的关系,在实验之前所制定的实验计划,称为实验设计。

其中包括选择怎样的抽样方式;如何计算样本容量;确定怎样的实验对照形式;如何实现实验组和对照组的等组化;如何安排实验因素和如何控制无关因素;用什么统计方法处理及分析实验结果,等等。

以上三部分内容,不是截然分开,而是相互联系的。

第二节统计学中的几个基本概念一、随机变量具有以下三个特性的现象,成为随机变量。

第一,一次试验有多中可能结果,其所有可能结果是已知的;第二,试验之前不能预料哪一种结果会出现;第三,在相同的条件下可以重复试验。

随机现象的每一种结果叫做一个随机事件。

我们把能表示随机现象各种结果的变量称为随机变量。

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用的统计表与图【圣才出品】

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用的统计表与图【圣才出品】
1 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

全距也称为极差,是指一批数据中最大值与最小值之间的差距。观察全部数据,找出其 中的最大值(Max)和最小值(Min),以符号 R 表示全距,则全距的计算公式为:
R Max Min
(2)定组数 定组数就是要确定把整批数据划分为多少个等距的区组。组数用符号 K 表示。 ①组数大小依据数据的多少而定 组数太多,往往会削弱对数据分组整理的功用;太少,又可能会湮没数据内含的重要信 息。一般来说,当一批数据的个数在 200 个以内时,组数可取 8~18 组。如果数据来自一个 正态的总体,则可利用下述经验公式来确定组数,即:
4 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台

构成一个累积百分数分布表。 (3)说明 累积相对次数分布和累积百分数分布均有“以下”分布和“以上”分布两种。在应用时,应
根据具体情况决定选用其中的一种。 (三)次数分布图的绘制 次数分布图通常有两种表达方式,包括次数直方图和次数多边图两种。 1.次数直方图 (1)含义 次数直方图是由若干宽度相等、高度不一的直方条紧密排列在同一基线上构成的图形。 (2)制作步骤 ①以细线条标出横轴和纵轴(取正半轴即可),使其垂直相交 a.为使图形美观,通常使横轴与纵轴的长度比为 5:3。 b.以纵轴为次数的量尺,按比例等间隔地标出刻度。 c.横轴代表测验分数的量尺,也按适当的比例等间隔地标出次数分布中各组的组中值。 d.一般说来,纵轴和横轴的尺度比例不一样。纵轴刻度往往从 0 开始,而横轴刻度则
2
K 1.87(N1)5
公式中的 N 为数据个数。 ②注意 事先计划的组数可能与实际分组时因考虑组距取整以及最低一组的起点位置不同而略 有差异,这种差异是正常的,最终结果应以实际划归的组数为准。 (3)定组距 组距用符号 i 表示,其一般原则是取奇数或 5 的倍数,如 1,3,5,7,9,10……等等。 具体的取值过程可通过全距 R 与组数 K 的比值来取整确定。 (4)写出组限 组限是每个组的起始点界限。例如,表 1-1 中列出的就是关于组限的几种不同表述方式。

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(方差分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(方差分析)【圣才出品】

在进行方差分析时,为确保方差齐性,可以对各实验处理内的方差作齐性检验。常用方
法有四种:哈特利(Hartley)法、巴特利特(Bartlett)检验法、莱文(Levene)检验法
和一般性检验法。
二、完全随机化设计(单因素)的方差分析 完全随机设计(单因素)是指用随机化的方法给处理指派实验序号和实验对象的实验设 计。在实验中仅有一个实验因素,它分处于 K 个水平(K>2),用随机化的方法将 N 名被试
一、方差分析的基本原理 (一)方差分析的逻辑基础 1.综合虚无假设与部分虚无假设 (1)综合虚无假设 各实验组样本所归属的所有总体的平均数都相等。 (2)部分虚无假设
1 / 40
圣才电子书 十万种考研考证电子书、题库视频学习平台

部分虚无假设为组间的虚无假设,当综合虚无假设被拒绝,就要确定究竟哪两组之间的 平均数之间存在着显著性差异。
②组间平方和 各处理组均数之间不尽相同,这种变异称为组间变异。组间变异反映了处理因素的作用, 也包括了随机误差。
为组间离差平方和,用 SSb 表示,b 表示组间,
2 / 40
圣才电子书

③组内平方和
十万种考研考证电子书、题库视频学习平台
各处理组内部观察值之间不尽相同,这种变异称为组内变异。组内变异反映了随机误差

,则拒绝 H0,当
,则不能拒绝 H0。
(四)列出方差分析表
一般在实验报告中都将方差分析的过程和结果以方差分析表(如表 6-1 所示)的形式
呈现。
表 6-1 完全随机化设计(单因素)的方差分析表
检验结果,如果 一个*;如果
在只有各实验处理的 公式可变形如下:
,则在方差分析表中 F 值的右上方标上 ,则标上两个*。 及 nj 情况下,组间离差平方和与组内离差平方和的计算

《现代心理与教育统计学》第4版笔记和课后习题详解

《现代心理与教育统计学》第4版笔记和课后习题详解

《现代心理与教育统计学》(第4版)笔记和课后习题详解第1章绪论1.1复习笔记本章重点ü心理与教育统计的研究内容ü选择使用统计方法的基本步骤ü统计数据的基本类型ü心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。

2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。

3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。

前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。

心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。

类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。

(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现。

2.心理与教育科学研究数据具有随机性和变异性。

3.心理与教育科学研究数据具有规律性。

4.心理与教育科学研究的目标是通过部分数据来推测总体特征。

(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题:(1)学习心理与教育统计学时,必须要克服畏难情绪。

心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。

(2)在学习时要注意重点掌握各种统计方法使用的条件。

(3)要做一定的练习。

2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。

(2)正确选用统计方法,防止误用和乱用统计。

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(主成分分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(主成分分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解第11章主成分分析【本章重点】☆主成分分析的基本原理☆主成分分析的步骤11.1复习笔记一、主成分分析的基本原理主成分分析主要是用来寻找判断某种事物或现象的主要综合指标,它是在不损失或很小损失原有信息的前提下,将原来多个彼此相关的指标转换为新的少数几个彼此独立的综合指标的一种多元统计分析方法。

实际上,主成分分析是一个数据降维的过程,即将反映复杂现象的相关变量用综合变量来代表。

主成分的分析原理是:设有n个观测点(x il,x i2),i=1,2,…,n。

这n个观测点的分布如图11-2。

主成分分析的原理是先对n个观测点(x il,x i2)求出第一条“最佳”拟合直线,使得这n个观测点到该直线的垂直距离的平方和最小,这时称此直线为第一主成分,然后再求与第一主成分相互独立(在此表现为相互垂直)的且与n个观测点(x i1,x i2)的垂直距离平方和最小的第二主成分。

如图11-2所示。

图11-2主成分分析示意图假如有P个变量,共得到n个点(x i1,x i2,x ip),此时,若要求第k个主成分,就必须使它与前k-1个主成分不相关,且使它与n个观测点的垂直距离平方和为最小。

如此继续,直至求出P个主成分。

注意:只有变量间存在一定相关才可以降维,原有的变量数和主成分数相等,并且具体选取几个主成分,应视具体情况而定。

二、主分量的导出主分量的导出是对主成分分析数学模型的讨论。

由主成分分析的基本原理可知,主成分分析,实际上就是分解相关矩阵,从而使P个相关的变量分解成P个独立的分量。

(一)主成分的定义及满足条件设X=(x1,x2,…,x P)'是一个p维随机向量。

并假设X的数学期望E(X)=0,记X的协方差矩阵为E(XX')=∑,令U=(u1,u2,…,u P)'是-P维向量,且满足W'=U'U=I,则X的第i主成分定义为:(11.1)且满足条件:1.第一主成分F1是一切形如中使F的方差达到最大者。

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(因素分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(因素分析)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解第12章因素分析【本章重点】☆因素分析的基本原理☆因素分析的基本过程☆正交旋转与斜交旋转12.1复习笔记一、因素分析的基本原理因素分析是确定主要因素的重要工具之一。

因素分析的基本思想是首先将多个描述事物性质的变量综合为较少的几个“因素”,然后依据一定的方式对所获得的“因素”作出较为合理的解释。

主成分分析可以看成是因素分析的一个特例,它本身往往不是目的,而是达到目的的一种手段,常用于因素分析的中间环节。

因素分析方法在1904年首先被英国心理学家斯皮尔曼应用于他的一篇论文中。

(一)因素分析的数学模型1.因素分析的数学模型可表示成如下形式:,该式写成矩阵形式为:Z=AF+DY(12.2)其中;;式中,F j(j=1,2,…,m)表示某被试第j个共同因素的标准分数;Y i表示某被试只和测验i有关的特殊因素;a ij表示第i个测验在第j个共同因素上的系数,通常称为因素负荷;d i表示与第i个测验有关的特殊因素Y i的系数,称为特殊因素负荷。

Z表示标准分数。

由上式可看出因素负荷a ij绝对值的大小反映了Z i与共同因素F j关系的密切程度,即表明了共同因素F j对Z i的负荷程度,所以a ij称为因素负荷,由其构成的矩阵A便称为因素负荷矩阵。

2.因素分析的数学模型要求满足的假设(1)各共同因素之间、特殊因素之间及共同因素与特殊因素之间均相互独立。

(2)各共同因素都是均值为0,方差为1的独立正态分布的随机变量,其协方差矩阵为m阶单位阵。

(二)因素负荷的统计意义因素分析的基本任务之一就是求因素负荷矩阵A。

因素负荷a ij就是变量Z j与共同因素F j的相关系数,它反映了Z i依赖F j的程序。

(三)变量共同度的统计意义记因素负荷矩阵A第i行元素的平方和为:(12.4)2h称之为变量Z i的共同度或者共同因素方差。

可以推导得出:i(12.5)从上式可知,变量Z i的方差由两部分构成。

《心理与教育统计学》考研笔记

《心理与教育统计学》考研笔记
(1)Z1=(90-57。08)/18.04=1.82
P(Z>1.82)=.0344
N1=np=47000*0.0344=1616(人)
(2)Zz=(80-57.08)/18.04=1.27
P(1.27<Z<1,82)=.46562-.39796=0.677
N2=NP=3177(人)
(3)Z3=(60-57.08)/18.04=0.16
P(Z<0.16)=.56356
N3=26487(人)
四.正态分布的应用
T=KZ+C T~N(C,K2)
IQ=15Z+100 IQ=100一般
IQ≥130 ——超常
(30=2x*15)
IQ<70 ——弱智
70几——bndenline
eg:1.某市参加一考试2800人,录取150人,平均分数75分,标准差为8。问录取分数定为多少分?
3.乘法:
P(A1,A2…An)=P(A1),P(A2)…P(An)
Eg:(1)四选1。(十道)完全凭猜测得满分得概率:(1/4)*(1/4)…*(1/4)=1/410
&2.二项分布
一.二项分布
P(x)=Cnxpxgn-x做对的概率px:做错的概率gn-x:X:对的数量pxgn-x ——每一种分情况的概率。一种情况:pxgn-x再乘上系数。
平均数——M=np标准差——r=npg1/2
&3.正态分布
一.正态分布曲线
二.标准正态分布。(P387附表可查面积P)
Z=(x-ц)/r (x:原始分数)
标准分数(有正有负)ΣZ=0
三.正态分布表的使用
查表P(0≤Z≤1)=0.34134——Z的范围中的人数比例(百分数)

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用统计参数【圣才出品】

张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用统计参数【圣才出品】

第2章常用统计参数【学习目标】1.了解各种集中量数、差异量数和地位量数的概念、性质和作用,理解各种量数的适用条件及特点。

2.识记相关、散点图及相关系数的概念与彼此之间的关系。

3.掌握各种量数的计算方法,并能够熟练使用各种量数对测量数据的数据特征进行描述。

4.掌握各种常见相关分析方法的适用条件及计算方法。

2.1复习笔记一组变量的次数分布,一般至少有以下两个方面的基本特征:中心位置:用以度量一组数据的集中趋势,描述它们的中心位于何处,故对其数量化描述称为位置度量数或集中量数。

离散性:反映一组数据的分散程度,即次数分布的离散程度。

对其数量化描述称为次数分布变异特性的度量或差异量数。

中心位置相同的次数分布,其离散程度不一定相同。

对任何一个已知的次数分布,均可以计算出反映上述统计特征的量数。

在教育与心理统计中,总体统计特征的量数称为参数,用希腊字母表示,如μ,σ2,ρ等;样本统计特征的量数称为统计量,用英文字母表示,如X,S2,r等。

一、集中量数集中量数是指描述数据集中趋势的统计量,包括算术平均数、加权平均数、几何平均数、中数,等等,其作用都是用于度量次数分布的集中趋势。

(一)算术平均数算术平均数(简称平均数、均数)是用以度量连续变量次数分布集中趋势的最常用的集中量数。

1.总体平均数与样本平均数(1)总体平均数如果一个总体X 包含N 个元素,x i 是这个总体中的第i 个元素,则称x i 为第i 次观测值,那么对x 来讲,该总体的算术平均数被定义为:11=Nii x N μ=∑式中:μ——总体算术平均数;N——总体容量;i x ——第i 次观测值。

(2)样本平均数当无法对总体进行全面观测时,对于样本X ,其算术平均数被定义为:11n i i X x n =∑式中:X ——样本平均数;n ——样本容量。

2.加权平均数若已知各组平均数和各组人数,要求总的平均数时,则要用加权平均数的方法,其计算公式为:式中:——总平均数(或加权平均数);12,,,k n n n …——各组人数;12,k ,X X X …,——各组平均数;12t k n n n n =+++…——总人数。

《教育和心理统计学》-章读书笔记

《教育和心理统计学》-章读书笔记

《绪论》1.什么是教育与心理统计学2.教育与心理统计学是应用统计学的一个分支,是数理统计学与教育学、心理学的一门交叉学科,它把统计学的理论方法应用于教育实际工作和各种心理实验、心理测验等科学研究中,通过对所得数据的分析和处理,达到更为准确地掌握情况、探索规律、制订方案、目的,为教育与心理的科学研究提供了一种科学的方法。

3.教育与心理统计学的基本内容及本书体系。

4.1)描述统计学:这一部分主要是研究和简缩数据和描述这些数据。

5.例如:计算平均数、中位数、众数等,以这些参数来反映观测数据的集中趋势。

6.计算标准差、方差等,以这些参数来反映观测数据的离散趋势。

7.描述统计学主要是描述事务的典型性、波动范围以及相互关系,提示事物的内部规律。

8.2)推断统计学:这部分内容主要是研究如何利用数据去作出决策的方法。

推断统计学则是一种依据部份数剧去推论全体的一种科学方法,它是进行教育与心理实验、对教育与心理研究或实验作出预测和规划的有力工具。

推断统计学的主要内容有:统计检验、统计分析和非参数统计法。

9.3)多元统计分析:这部分内容主要是研究超过两个因素的教育与心理的研究和实验。

10.多元统计分析的主要任务就是寻找出主要的因素,相近或相关的因素合并或归类。

11.多元统计分析的主要内容有:主成分分析、因素分析、聚类分析、多元方差分析、多元回归分析等。

12.教育与心理统计学的昨天、今天和明天13.1)与心理统计学的昨天:1904年美国人桑代克写的《心理与社会测量导论》14.2)教育与心理统计学的今天:叶佩华主编的《教育统计学》,张厚粲主编的《心理与教育统计》等。

15.预备知识16.1)概念与术语17.<1> 随机变量:18.教育与心理实验或观测,在相同的条件下,其结果可能不止一个,同实验或观测所得到的数据,事先无法确定,这类现象称为随机现象。

因为可以用数字来表现,则称这些数字为随机变量。

19.它的特点是:离散性、变异性和规律性。

现代心理与教育统计学 笔记

现代心理与教育统计学 笔记

概念(1)随机变量:在统计学上把取值之前,不克不及精确预感取到什么值的变量,称为随机变量.(2)总体:总体(population)又称为母全部或全域,是具有某种特点的一类事物的总体,是研讨对象的全部.(3)样本:样本是从总体中抽取的一部分个别.(4)个别:构成总体的每个根本单元.(5)次数:是指某一事宜在某一类别中消失的数量,又称作频数,用f暗示.(6)频率:又称相对次数,即某一事宜产生的次数除以总的事宜数量,通经常应用比例或百分数来暗示.(7)概率:概率论术语,指随机事宜产生的可能性大小器量指标.其描写性定义.随机事宜A在所有实验中产生的可能性大小的量值,称为事宜A的概率,记为P(A).(8)统计量:样本的特点值叫做统计量,又称作特点值.(9)参数:又称总体参数,是描写一个总体情形的统计指标.(10)不雅测值:随机变量的取值,一个随机变量可以有多个不雅测值.2何谓心理与教导统计学?进修它有何意义?答:(1)心理与教导统计学是专门研讨若何应用统计学道理和办法,汇集.整理.剖析心理与教导科学研讨中获得的随机性数据材料,并根据这些数据材料传递的信息,进行科学推论找出心理与教导统计运动纪律的一门学科.具体讲,就是在心理与教导研讨中,经由过程查询拜访.实验.测量等手腕有意地获取一些数据,并将得到的数据按统计学道理和步调加以整顿.盘算.绘制图表.剖析.断定.推理,最后得出结论的一种研讨办法.(2)进修心理与教导统计学有重要的意义.①统计学为科学研讨供给了一种科学办法.科学是一种常识体系.它的研讨对象消失于实际世界各个范畴的客不雅事实之中.它的重要义务是对客不雅事实进行猜测和分类,从而揭示储藏于个中的各种因果关系.要进步对客不雅事实不雅测及剖析研讨的才能,就必须应用科学的办法.统计学恰是供给了如许一种科学办法.统计办法是从事科学研讨的一种必不成少的工具.②心理与教导统计学是心理与教导科研定量剖析的重要对象.凡是客不雅消失事物,都稀有量的表示.凡是稀有量表示的事物,都可以进行测量.心理与教导现象是一种客不雅消失的事物,它也稀有量的表示.固然心理与教导测量具有多变性并且旨起它产生变更的身分许多,难以精确测量.但是它毕竟照样可以测量的.是以,在进行心理与教导科学研讨时,在必定前提下,是可以对心理与教导现象进行定量剖析的.心理与教导统计就是对心理与教导问题进行定量剖析的重要的科学对象.③宽大心理与教导工作者进修心理与教导统计学的具体意义.a.可经顺遂浏览国表里先辈的研讨成果.b.可以进步心理与教导工作的科学性和效力.c.为进修心理与教导测量和评价打下基本.?答:一项实验研讨成果要用何种统计办法去剖析,须要对实验数据进行卖力的分析.只有做到对数据剖析精确,才干对统计办法做出精确地选用.选用统计办法可以分为以下步调:(1)起首,要剖析一下实验数据是否合理,即所或得的数据是否合实用统计方法行止理,精确的数量化是应用统计办法的起步,假如对数量化的进程及其意义没有懂得,将一些不着边沿的数据加以统计处理是毫无意义的.(2)其次,要剖析实验数据的类型.不合数据类型所应用的统计办法有很大差别,懂得实验数据的类型和程度,对选用恰当的统计办法至关重要.(3)第三,要剖析数据的分布纪律,如总体方差的情形,肯定其是否知足所选用的统计办法的前提前提.4.什么叫随机变量?心理与教导科学实验所获得的数据是否属于随机变量?答:(1)在统计学上把取值之前,不克不及精确预感取到什么值的变量,称为随机变量.(2)心理与教导科学实验所获得的数据属于随机变量.心理与教导科学研讨数据具有随机性和变异性.科学研讨中因不雅测人员.不雅测对象.不雅测前提的变更而具有随机变更的现象.在心理和教导科学范畴,研讨获得的数据材料也具有必定随机性质.不雅测数据的这种特色,称为变异性.即便应用统一种测量对象,不雅测统一事物,只如果进行多次,那么获得的数据就不会完整雷同.跟着测量对象的完美和精确,数据的这种随机性变更就更明显.例如,人们对统一年级或统一年纪儿童甚至对统一小我进行统一学科的学业测试,或对统一个心理特色进行评量.不雅察多次,得到的数据毫不会全然雷同,这些数据老是在必定的规模内变更.造成数据变异的原因,出自不雅测进程中一些有时的不成掌握的身分,称随机身分.随机身分使测量产生的误差称作随机误差.因为这种随机误差的消失,使得在雷同前提下不雅测的成果常常不止一个,并且事前无法肯定,这是客不雅世界消失的一种广泛现象,人们称这类现象为随机现象.在教导和心理科学的各类研讨中,研讨的对象是人的内涵的各种心理现象,不但由客不雅上一些有时身分会引起测量误差,由实验者和被试主不雅上一些不成掌握的有时身分也会造成测量误差,这些有时身分+分庞杂,因而造成的随机误差就更大,也就是使心理与教导科学研讨中得到的数据具有更明显的变异性.5.如何懂得总体.样本与个别.答:根据其各自的界说,我们可以用下面这个图来暗示.大圆暗示研讨对象的全体,也就是总体;大圆中的小圆暗示个中一个样本,大圆中所有的点代表的是样本.6.统计量与参数之间有何差别和关系.答:(1)参数是描写总体情形的统计指标;样本的特点值称作统计量.(2)差别:1参数是从总体中盘算得到的量数,代表总体特点,一个常数.统计量是从一个样本中盘算得到的量数,它描写一组数据的情形,是一个变量,随样本的变更而变更.2参数经常应用希腊字母暗示,样本统计量用英文字母暗示.(3)接洽:1参数平日是经由过程样本特点值来猜测得到,(7.答案略)8.下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味什么?(1)17. 0千克(2 ) 89. 85厘米(3) 199. 2秒(4) 17人(5) 25本(6 ) 93. 5答:上面的数据中测量数据有:(1) 17.0千克(2 ) 89. 85厘米(3 ) 199. 2秒(6)93. 5分计数数据有:(4) 17人(5) 25本(2) 17. 0千克.89. 85厘米.199. 2秒.93. 5分,这些数据是借助必定的重量.长度.时光或必定的测量尺度而获得数据,分别代表事物的重量.长度.时光或者分数.9符号代表的意义(教材20页)(1)总体平均数,期望值 (2)样本平均数 (3)总体之间的相干系数 (4)样本间的相干系数 (5)总体尺度差 (6)样本尺度差 (7)总体间的回归系数 (8)有限个别数量标总体 (9)样本容量,样本大小1.统计分组应留意哪些问题?答:进行统计分组时须要留意下列问题:(1)分组要以被研讨对象的本质特点为基本面对大量原始数据进行分组时,有时须要先做初步的分类,分类或分组必定是要选择与被研讨现象的本质的关的特点为根据,才干确保分类或分组的精确.在心理与教导学研讨方面,专业常识的懂得和熟习对分组的精确进行有重要的感化.例如在学业成绩研讨中按学科性质分类,在整顿智力磨练成果时,按言语智力.操纵智力和总的智力分数分类等.(2)分类标记要明白,要能包含所有的数据对数据进行分组时,所根据的特点称为分组或分类的标记.整顿数据时,分组标志要明白并在整顿数据的进程中前后一致.这就是说,关于被研讨现象本质特点的概念要明白,不克不及既是这个又是谁人.别的,所根据的标记必须能将全部数据包含进去,不克不及有漏掉,也不克不及半途转变.2.直条图或叫条形图:重要用于暗示离散型数据材料,即计数材料.详见教材45页.3.圆形图或叫饼图:重要用于描写间断性材料,目标是为显示多部分在整体中所占的比重大小,以及各部分之间的比较.:统计学的道理和数学的办法在心理学范畴中的应用.描写统计和推理统计两大部分.3.实验数据可分为两类:精确数和近似值.4.肯定组距今后,要斟酌最小的一组从哪开端.显然,最小的一组应包含全部系列中的最小数值.5.在心理实验中经常应用的表格有三类:原始数据登记表,经由火组整顿的次数分布表,带有对实验成果总结性质的表6.暗示实验成果的图有:平面图和立体图.7.平面图一般分为:曲线图和直方图两类.8.平面图有两个坐标,横坐标代表心理实验中的刺激变量或自变量,纵坐标代表反响变量或因变量.当横坐标代表的数量是持续的,可画曲线图或直方图;当横坐标代表的数量不是持续的变量,而是不合类别时,就只能画直方图,其纵坐标必须从0开端.上限.算术平均数.明显的分散趋向指标,但众数不如平均数和中数稳固.12.分组不合适会消失双峰,可调剂组距.真正的双峰消失的原因是_有两种性质不合的数据_.13.在偏斜的分布中,平均数老是处于偏斜的一端,而中数则永久把一个分布曲线下的面积分成相等的两部分.14. q2-q1<q3-q2时,分布向右偏斜;q2-q1=q3-q2时,分布向对称;q2-q1>q3-q2时,分布向_左(哪方大则朝哪方偏斜)偏斜.15.暗示两个变量之间相干性质和程度的图,叫分布图.假如图中所有的点形成一条直线,解释是一个完整正相干的分布图;假如是椭圆,这个椭圆越窄,解释相干程度越_高_____.16.从样本估计总体是以概率原则为基本的,假如样本中只包含随机误差就不致产生对总体偏性的估计;假如样本中还包含体系误差在内,就会产生偏性估计.17.当一个总体中的成分只分成两类时,根据传统,把_愿望得到的成果,产生的概率叫P;不愿望得到的成果产生的概率叫q.18.在一系列正态分布中,有一个尺度的正态分布,其平均数为_0,尺度差为_ 119.当实验数据有___二组____以上时,并且都是__不持续_____的变量时,要检验各组间的差别是否明显就须要用c2分布进行盘算.20.统计成果磨练时:1 ) w2为0. 14_时,实验后果较强,统计成果可托.2 ) w2为0. 16_时,实验后果中等,统计成果可托度一般.3 ) w2为0. 01_时,实验后果很差,统计成果不成信.21.用d值解释实验后果时:1) d是0.2时,实验后果较小; 2) d;是0.5时,后果中等; 3)d>>0. 8_时,后果较大.概念1.描写统计:是对成组数据归纳分解的描写.描写统计的指标有三类:数据的分散趋向,数据的离中趋向,数据间的相干.2.推论统计:办法包含从样本的数量特点推想总体数量特点的一系列问题:推论假设,推论的各类办法和步调,以及磨练推想靠得住性的各类办法.3.组距:每一组上限和下限的差.(组距习上经常应用2, 3, 5, 10, 204.中点:在某一组的下限和上限当中的那一点.5.分散趋向:是代表一系列数据的典范程度的数字指标,代表分散趋向的指标有平均数,中数和众数.6.平均数(x):是一组数据总和的平均值.7.中数(mdn):一系列按大小次序分列的数据中的一个点,在这个系列中有一半数据在这个点以上,有一半数据在这个点以下.8.众数(mo):在一系列数据中消失次数最多的谁人数.9.全距:一个分布中最大的数值的上限减去最小数值的下限,就得到全距.(全距大,解释这组数据疏散;全距小,则较分散.应用时留意:1.无极端值;2,比较两个分布的全距时,当两个分布所包含数据的数量相等或差不久不多时才干使用)10.离中趋向:是暗示一组数据疏散程度的指标,经常应用的指标有:全距,四分差,平均差和尺度差.(假如离中趋向很小,解释数据分布都在平均数邻近变动,是以平均数的代表性很大;假如离中趋向太大,解释数据分布太疏散)11.四分差(q):是数据的离中趋向的指标之一,四分差解释按大小次序分列的一系列数据中心50%个数据的疏散程度.(假如一个分布中心部分的数据比较分散,则两个四分点q3与q1就离得近些,a的值就小些.)12.百分点:某次数分布中处于某百分等级的数值.13.百分等级:某数值在某次数分布中所处的地位.14.平均差(ad):一个分布中每个变量和平均数的差的绝对值的平均值.15.尺度差:s2开方后的正值就叫尺度差,是数据的离中趋向的指标之一.16.离中系数(CV):用相对量来暗示数据疏散程度的数字指标.:指相干是否亲密,可分为无相干;部分相干;完整相干.18.相干:是描写两种数量关系的一个指标,假如一个变量随另一个变量的增加(减小)而增长(减小),则两个变量之间消失着相干.19. z分数(尺度分数):是以尺度差为单位所暗示的原始分数(x)与平均数的偏离,也可以说是一个以尺度差为单位来暗示的偏离分数.20.总体;某类事物的全部称为总体.21.样本:从全部抽出的部分叫样本.22.推论统计:从局部推想全部,从样本推想总体的统计程序.23.随机抽选样本:指总体中每个成分都有一致的机遇被抽选.24.分层抽样:用分层抽样的办法,必须对总体有必定的懂得,事先对于影响所研讨问题的诸身分做恰当安插.25.样本分布:从许多个样本中算出的许多个平均数的次数分派叫样本分布.26.正态分布:是一个中心高,两侧逐渐降低,两头永久不与横轴订交,两侧完整对称的钟形曲线.27.平均数的尺度误(sx):为了和单个样本的尺度差有所差别,把样本分布的尺度差称做平均数的尺度误.28.自由度(df):可以或许自力变更的数据的数量.29.平均数差的尺度误(sxd ):分别从两个总体中抽掏出的多个样本平均数的差(xd)的分布,这个分布的尺度差叫做平均数差的尺度误.30.虚无假设(ha):除概率以外不加任何其它假定,即假设二总体的平均数差别为O31.备则假设(ha):假设两个总体平均数之间差别中除了抽样误差外,还包含有两个总体平均数之间的差别,即备则假设是个总体平均数之间差别不为O32.明显性生程度(P):我们所选择的颠覆虚无假设的概率叫做磨练的明显性程度.33.第一类错误:当虚无假设不该颠覆时而被颠覆了,这意味着把样本的平均数不同以为是代表了总体平均数的差别.34.第二类错误:当应当颠覆虚无假设时而不颠覆,这意味着把样本的平均数不同是代表总体平均数的不同这一事实给否定了.35.明显性磨练:经由过程样本平均数的不同来推论总体平均数是否真正消失不同,并肯定消失何种程度.36.回归:当两种变量间消失着必定程度的相干时,一种变量有向另一种变量的平均数趋近的现象,这种现象叫回归.37.回归方程式:从一变量的数值猜测另一变量的响应数值的直线方程式,当两个变量部分相干时,有两个回归方程式.38.回归系数(byx):由x变量猜测Y变量的回归方程式的斜率.39.c2磨练:是实际不雅察次数与假设次数偏离程度的指标.40.方差剖析:根据组间和组内方差的比值,来比较两组或多组数据的差别是否达到明显.41.组间变异:在两组之间所产生的因变量的变异,就是体系变异,也就是由自变量引起的变异.因为这种变异产生在两组之间,所以又叫组间变异.42.组内变异:统一组内的因变量的变异,就不是因为自变量的情形不合引起的,而只是因为未加掌握的变量引起的.因为这种变异产生在统一组内,所以叫做组内变异.43.组间设计:每个被试只介入1个程度的实验44.组内实际:每个被试介入所有程度的实验.45.主效应:自变量所引起的平均数差别46.交互感化:一个自变量对反响变量的影响因另一个自变量的变更而产生1,伽利略提出了概率论的根本理论;法国数学家帕斯卡和费马创立了概率论,未统计学的成长奠基了重要基本;贝奴里定理的产生,为发明正态概率分布创造了前提;棣莫弗推导出“正态曲线方程”;皮尔逊揭橥了频率曲线理论和积差相干;斯皮尔曼提出等级相干;肯德尔W系数和U系数;格赛特T分布理论;费舍是推论统计真正的创始者,最先提出F分布理论,使方差剖析体系化;凯特勒他将统计办法应用于教导学和社会学的研讨;斯内德克提出方差剖析;克一瓦氏H磨练是一种非参数方差剖析办法,它与参数办法中的完整随机材料方差剖析相对应;费里德曼双向等级方差剖析可解决随机区组实验设计的非参数磨练问题2:从数据的不雅测办法和起源划分,研讨数据可分为计数数据和测量数据两大类;根据数据反应的测量程度,可把数据区分为称名数据.次序数据.等距数据和比率数据四种类型;按照数据是否具有持续性,把数据分为离散数据和持续数据3:统计表的儿个构成要素:表号.名称.标目.数字.表注.4:统计图的构成部分:图号及图题.图目.图尺.图形.图例.图注5:次数分布显示初步整顿后一组数据的分布情形重要暗示数据在各个分组区问内的散布情形,可分为简略次数分布.分组次数分布.相对次数分布.累计次数分布.6:经常应用的次数分布图有直方图.次数多边形图及累加次数分布图.7:其它经常应用的统计图的类别:直方图.条形图.圆形图.线形图.散点图:条形图又分为简略条形图.分组条形图.分段条形图8:其它经常应用统计表类型:简略表.分组表.复合表9:用来描写数据分散趋向和离中趋向的统计量分别称为分散量数和差别量数.10:分散量数包含:算数平均数.中数.众数.加权平均数.儿何平均数.折衷平均数等.12:平均数的优缺陷:长处:反响敏锐.盘算周密.盘算简略.简明易解.合适于进一步用代数办法演算.较少受抽样变动的影响;缺陷:易受极端数据的影响.若消失隐约不清的数据时,无法盘算平均数.13:盘算和应用平均数的原则:同质性原则.平均数与个别数值相联合的原则.平均数与尺度差.发差相联合的原则14:差别量数就是对一组数据的变异性,即离中趋向特色进行器量和描写的统计量.15:差别量数有:全距.四分位差.白一分位差.平均差.尺度差与方差16:相干类别为:正相干.负相干.零相干17:质量相干分为:点二列相干.二列相干及多系列相干18:品德相干:重要分为四分相干.C相干.列联表相干19:概率:是标明随机事宜消失可能性大小的客不雅指标就是概率,概率的界说有两种即后验概率和先验概率20:概率分布类型:160页离散分布与持续分布.经验分布与理论分布.根本随机变量分布与抽样分布21“概率分布:是指对随机变量取值的概率分布情形用数学办法(函数)进行描写22:持续分布:是指持续随机变量的概率分布,即测量数据的概率分布,它用持续随机变量的分布函数描写它的分布纪律23:离散分布:离散随机变量的分布又称作离散分布24:经验分布:是指根据不雅察或实验所获得的数据而编制的次数分布或相对频率分布25:理论分布:一是随机变量概率分布的函数一数学模子,二是按某种数学模子盘算出的总体的次数分布26:抽样分布:是样本统计量的理论分布,样本统计量有:平均数.两平均数之差.方差.尺度差.相干系数.回归系数.白一分比率等. 27:正态分布:也称常态分布或常态分派,是持续随机变量概率分布的一种,正态分布N C0,1)称为尺度正态分布,它的平均值是0,尺度差是1.28:二项分布:是指实验仅有两种不合性质成果的概率分布,具体界说是:设有N次实验,各次实验是彼此自力的,每次实验某事宜消失的概率都是P,某事宜不消失的概率都是q(等于1-P).则对于某事宜消失X次(0,1,2,3.0 0 o n)的概率分布为为29:除了尺度正态Z分布外,儿种罕有的抽样分布包含X的平方分布,T分布,F分布.30:点估计:是用样本统计量来估计总体参数,因为样本统计量为数值上某一点值,估计的成果也以一个点的数值暗示,所以称为点估计.31:优越估计量的特点:无偏性.有用性.一致性.充分性犯:区问估计:就是根据估计值以必定靠得住程度揣摸总体参数地点的区问规模,它是用数轴上的一段距离暗示未知参数可能落入的规模,他虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区问的概率有多大33:置信区问:也称置信问距,是指在某一置信度时,总体参数地点的区域距离或区域长度.置信区问的高低两头点值称为置信界线.34:明显性程度是指估计总体参数落在某一区问时,可能犯错误的概率,用符号a暗示35:假设磨练:经由过程样本统计量得出的差别做出一般性结论,断定总体参数之问是否消失差异,这种推论进程称作假设磨练,它的根本义务就是事先对总体参数或总体分布形态做出一个假设,然后应用样本信息来断定原假设是否合理,从而决议是否吸收原假设.假设磨练包括“参数磨练”和“非参数磨练”.36:参数假设磨练:若进行假设磨练时总体的分布情势已知,须要对总体的未知参数进行假设磨练;非参数假设磨练:若对总体分布情势37:方差剖析:重要功效在于剖析实验数据中不合起源的变异对总变异的进献大小,从而肯定实验中的白变量是否对因变量有重要影响38:方差剖析的基起源基本理:分解虚无假设和部分虚无假设.方差的可分化性39:平方和:指不雅测数据与平均数离差的平方总和40:总变异被分化为“组问变异”和“组内变异"41:组问变异:重要指因为接收不合的2而造成的各组之问的变异,可以用两个平均数之问的差别暗示42:组内变异:是由组内各被试因变量的差别规模决议的,重要指由实验误差.或组内被试之问的差别造成的变异.43:发差剖析的根本假定:总体正态分布.变异的互相自力性.各实验处理内的方差要一致44:组内设计:又称被试内设计,是指每个被试都要接收所有白变量程度的实验处理45:完整随机设计的方差剖析:就是对单身分组问设计的方差剖析,在这种实验研讨设计中,各类处理的分类仅以单个实验变量为基本,因而把它称为单身分方差剖析或单向方差剖析46:随机区组设计的方差剖析:根据被试特色把被试划分为儿个区组,再根据实验变量的程度数在每一个区组内划分为若干个小区,统一区组随机吸收不合的处理.这类实验设计的原则是统一区组内的被试应尽量同质47:试比较完整随机设计与随机区组设计的优.缺陷?随机区组设计因为统一区组接收所有实验处理,使实验处理之问有相干组设计,或称被试内设计.与完整随机设计比拟,其最大长处是斟酌到个别差别的影响.这种因为被试之问性质不合导致产生的差别就称为区组效应.随机区组设计可以将这种影响从组内变异平分别出来,从而进步效力.但是这种设计也出缺少,重要表示为划分区组艰苦,假如不克不及包管统一区组内尽量同质,则有消失更大误差的可能. 48:当全部实验中的个别差别知道后,就可以算出个别差别造成的变异,即区组变异.这时总平方和被分化为三部分:被试问平方和.区组平方和.误差项平方和。

现代心理与教育统计学-笔记

现代心理与教育统计学-笔记

概念(1)随机变量:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。

(2)总体:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体.(3)样本:样本是从总体中抽取的一部分个体。

(4)个体:构成总体的每个基本单元。

(5)次数:是指某一事件在某一类别中出现的数目,又称作频数,用f表示。

(6)频率:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。

(7)概率:概率论术语,指随机事件发生的可能性大小度量指标.其描述性定义.随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A).(8)统计量:样本的特征值叫做统计量,又称作特征值.(9)参数:又称总体参数,是描述一个总体情况的统计指标。

(10)观测值:随机变量的取值,一个随机变量可以有多个观测值。

2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。

具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法.(2)学习心理与教育统计学有重要的意义.①统计学为科学研究提供了一种科学方法。

科学是一种知识体系。

它的研究对象存在于现实世界各个领域的客观事实之中。

它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。

要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。

统计学正是提供了这样一种科学方法。

统计方法是从事科学研究的一种必不可少的工具.②心理与教育统计学是心理与教育科研定量分析的重要工具。

凡是客观存在事物,都有数量的表现。

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(概率与分布)【圣才出品】

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解(概率与分布)【圣才出品】

5 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台

何值均由它顶上左右两个值相加而得。按这种方法可为更大的 n 值求得二项式的各项系数。 它的优点在于能简捷地确定二项展开式的各项系数。
表 3-1 杨辉三角(n=10)
二、二项分布 (一)二项分布 1.二项分布所讨论的概率问题 对于随机变量 x 进行 n 次独立试验,若每次试验结果只出现对立事件 A 与 之一,在 每次试验中出现 A 的概率是 p,则出现 的概率为 1-p,记为 q=1-p,求在 n 次独立试验 下,A 出现次数为 x 的概率分布(其中 x=0,1,2,…,n)。 2.二项分布的计算公式 (二)二项分布的均值、方差和标准差 二项分布的均值μ、方差σ2 和标准差σ分别为:
圣才电子书 十万种考研考证电子书、题库视频学习平台

张敏强《教育与心理统计学》修订本笔记和课后习题(含考研真题)详解 第 3 章 概率与分布
【本章重点】 ☆ 概率的统计定义与古典定义 ☆ 概率的两个基本定理 ☆ 二项分布的定理与计算 ☆ 正态分布曲线的性质 ☆ 正态分布在教育教学中的应用
为: (二)二项分布 1.排列与组合 (1)排列 ①定义 从 n 个不同的元素中,任取 m 个(m≤n)元素,按一定的顺序排成一列,称为从 n 个 不同元素中取出 m 个元素的一个排列。 a.当 m<n 时,所得排列称为选排列,记作 。 b.当 m=n 时,所得排列称全排列,记作 。 ②计算公式:
(2)组合 ①定义 从 n 个不同元素中,任取 m 个(m≤n)元素,不管顺序,并成一组,称为从 n 个不同 的元素中取出 m 个元素的一个组合,记作
4 / 23
圣才电子书

②计算公式:
十万种考研考证电子书、题库视频学习平台

《统计学》读书笔记摘抄(3篇)

《统计学》读书笔记摘抄(3篇)

第1篇第一章绪论1. 统计学是一门研究数据的收集、整理、分析和解释的学科,它广泛应用于各个领域,如经济学、生物学、医学、社会学等。

2. 统计学的基本任务是从大量的数据中提取有用信息,以帮助人们作出科学决策。

3. 统计学的发展经历了从简单描述到复杂推断的过程,其核心是概率论和数理统计。

4. 统计学的研究方法包括描述性统计、推断性统计和决策理论。

第二章数据收集与描述1. 数据收集是统计学的第一步,包括定性和定量数据。

2. 定性数据分为名义数据、有序数据和间隔数据,定量数据分为离散数据和连续数据。

3. 描述性统计的主要目的是用图表、表格和数值来描述数据的特征,如集中趋势、离散程度和分布形态。

4. 集中趋势的度量有均值、中位数和众数,离散程度的度量有方差、标准差和极差。

5. 分布形态的度量有偏度和峰度。

第三章概率论基础1. 概率论是统计学的基础,它研究随机事件发生的可能性。

2. 概率的基本概念包括样本空间、事件、概率、条件概率和独立事件。

3. 概率的公理包括加法法则、乘法法则和全概率公式。

4. 概率的性质包括非负性、规范性、可加性、条件概率的性质和独立事件的性质。

5. 常见的概率分布有二项分布、泊松分布、正态分布、均匀分布和指数分布。

第四章推断性统计1. 推断性统计是基于样本数据对总体参数进行估计和假设检验。

2. 参数估计包括点估计和区间估计,假设检验包括参数假设检验和非参数假设检验。

3. 点估计的常用方法有矩估计和最大似然估计。

4. 区间估计的常用方法有置信区间和最优置信区间。

5. 假设检验的常用方法有卡方检验、t检验、F检验和秩和检验。

第五章方差分析1. 方差分析(ANOVA)是一种用于比较多个样本均值差异的统计方法。

2. 方差分析的基本思想是将总方差分解为组内方差和组间方差。

3. 方差分析的主要步骤包括方差分解、假设检验和结果解释。

4. 方差分析的类型有单因素方差分析、双因素方差分析和多因素方差分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《绪论》1.什么是教育与心理统计学2.教育与心理统计学是应用统计学的一个分支,是数理统计学与教育学、心理学的一门交叉学科,它把统计学的理论方法应用于教育实际工作和各种心理实验、心理测验等科学研究中,通过对所得数据的分析和处理,达到更为准确地掌握情况、探索规律、制订方案、目的,为教育与心理的科学研究提供了一种科学的方法。

3.教育与心理统计学的基本内容及本书体系。

4.1)描述统计学:这一部分主要是研究和简缩数据和描述这些数据。

5.例如:计算平均数、中位数、众数等,以这些参数来反映观测数据的集中趋势。

6.计算标准差、方差等,以这些参数来反映观测数据的离散趋势。

7.描述统计学主要是描述事务的典型性、波动范围以及相互关系,提示事物的内部规律。

8.2)推断统计学:这部分内容主要是研究如何利用数据去作出决策的方法。

推断统计学则是一种依据部份数剧去推论全体的一种科学方法,它是进行教育与心理实验、对教育与心理研究或实验作出预测和规划的有力工具。

推断统计学的主要内容有:统计检验、统计分析和非参数统计法。

9.3)多元统计分析:这部分内容主要是研究超过两个因素的教育与心理的研究和实验。

10.多元统计分析的主要任务就是寻找出主要的因素,相近或相关的因素合并或归类。

11.多元统计分析的主要内容有:主成分分析、因素分析、聚类分析、多元方差分析、多元回归分析等。

12.教育与心理统计学的昨天、今天和明天13.1)与心理统计学的昨天:1904年美国人桑代克写的《心理与社会测量导论》14.2)教育与心理统计学的今天:叶佩华主编的《教育统计学》,张厚粲主编的《心理与教育统计》等。

15.预备知识16.1)概念与术语17.<1> 随机变量:18.教育与心理实验或观测,在相同的条件下,其结果可能不止一个,同实验或观测所得到的数据,事先无法确定,这类现象称为随机现象。

因为可以用数字来表现,则称这些数字为随机变量。

19.它的特点是:离散性、变异性和规律性。

20.依其性质可分为:称名变量、顺序变量、等距变量、比率变量四种21.称名变量:用于说明一事物与其它事物在属性上的不同或类别上的差异,但不说明事物与事物之间差异的大小。

22.顺序变量:指可以按事物的某一属性,把它们按多少或大小顺序加以排列的变量。

23.等距变量:指变量之间具有相等的距离。

它除了有量的大小外,还具有相等的单位。

24.比率变量:除了有量的大小、相等单位之外,还有绝对零点。

25.变量依其相互关系可分为自变量(一般将相互关系中作为原因的称为自变量)与因变量(作为结果的称为因变量)。

函数关系式y=f(x)表示,y为因变量,x为自变量。

26.<2>总体、样本、个体27.总体是指具有某一种特征的一类事物的全体。

28.个体是指构成总体的每一个基本元素。

29.样本是在总体中按一定规则抽取的一部分个体,称为总体的一个样本。

30.2)常用的符号与计算31.<1>连加号及运算法则32.∑表示连加符号,同时表示想加的观测数值共有n个,这些数值的下标编号i从1起至n止。

运算法则如下:33.①若c是一个常数,而xi是观测变量,则常与变量的乘积的连加和等于变量连加和与常数的乘积。

34.②设c是一个常数,则连加和竺于nc.35.③若xI 和yi都是变量,则变量和的连加和等于各个变量连加和的和。

36.<2>几个常用符号。

37.①变量一般以大写英文字母表示,而变量中的元素则以小写英文字母表示。

38.②变量平均数、变量标准差、方差,一般都用大写英文字母表示。

39.第1章第1节次数分布表与图(适用于描述一元连续变量的观测数据)1.次数分布及其表达方式概述2.次数分布指的是一批数据中各个不同数值所出现的次数情况,或者是指一批数据在量各等距区组所出现的次数情况。

3.次数分布表:我们通常是对数据进行分组归类,考察这批数据在量尺上各等距区内的次数分布情况,并把这种情况用规范的表格形式加以体现,这就是次数分布表,若用图形来表达,那就叫做次数分布图。

4.次数分布表的编制5.1)简单次数分布表6.简单次数分布表,通常简称为次数分布表,其实质是反映一批数据在各等距区组内的次数分布结构。

其编制的主要步骤为:7.①求全距,字母R表示。

全距等于最大值减最小值,公式为:R=Max-Min8.②定组数,字母K表示。

把整批数据划分为多少个等距的区组。

公式:K=(N-1)2/59.③定组距,字母i表示。

I=R/K10.④写出组限。

(表述组限与实际两个不同的概念,但它们之间有规律性的联系;当各相邻组的组限已经相互承接而没有间断时,便认为已把表述的组限与实际的组限统一起来,且不管这里表述的实下限与实上限是整数还是小数;按照本书上述规定的组限表述方法即可形成规范的组限表述方式,并与其他学科中的区间表达方法统一起来。

11.⑤求组中值。

组中值=(组实上限+组实下限)/2.12.⑥归类划记13.⑦登记次数14.次数分布图的绘制15.次数分布图有次数直方图和次数多边图两种表达方式。

16.1)次数直方图(是由若干宽度、高度不一的直方条紧密排列在同一基线上构成的图形)17.绘制步骤:18.①以细线条标出横轴和纵轴(取正半轴即可),使其垂直相交;19.②每一直方条的宽度由组距i确定并已体现在横轴的等距刻度上;20.③在直方图横轴下边标上图的编号和图的题目,并检查一下图形结构的完整性。

21.2)次数多边图(利用闭合的折线构成多边形以反映次数变化情况的一种图示方法)22.3)相对次数直方图与多边图23.4)累积次数分布图24.(有直方图式和曲线图式两种,曲线图式常用,它是根据累积次数分布或累积相对次数分布制作而成。

)25.5)累积相对次数曲线图与累积百分数曲线图26.第2节几种常用的统计分析图(散点图、折线图、条形图和圆形图)1.散点图(适合于描述二元变量的观测数据)2.散点图是用平面直角坐标系上点的散布图形来表示两种事物之间的相关性及联系模式。

3.绘制散点图注意:①在平面直角坐标系中,横轴一般代表自变量,纵轴一般代表因变量;横轴既可作为连续性变量的量尺,也可作为离散性变量的量尺,但纵轴一般均代表连续变量的量尺;②点的描绘依二元观测数据而定,但在具体描绘时应注意用细线画坐标轴,用稍粗黑点描绘各个坐标点,点位置的确定按平面解析几何学中的方法;③注意图形的调和比例和必要的图注说明。

4.线形图(是以起伏的折线来表示某种事物的发展变化及演变趋势的统计图。

)5.适用于描述某种事物在时间序列上的变化趋势、描述一种事物随另一事物发展变化的趋势模式、比较不同的人物团体在同一心理或教育现象上的变化特征及相互联系。

6.条形图(是用宽度相同的长条来表示各个统计事项之间的数量关系。

)7.通常用于描述离散性变量的统计事项。

8.1)简单条形图(它适用于统计事项按一种特征进行分类的情况)9.2)复合条形图(用两类或三类不同色调的直方长条来表示多特征分类下的统计事项之间数量关系的一种图示方法)10.圆形图(是以单位圆内各扇形面积所占整个圆形面积的百分比来表示各统计事项在其总体中所占相应比例的一种图示方法。

)特别适用于描述具有百分比结构的分类数据。

11.第1章自测练习【练习1】试比较简单条形图与简单次数直方图在制作和应用方面的异同点。

解答:条形图和直方图都是次数分布图,但前者适用于离散型随机变量的次数分布描述,其所依据的次数分布表是离散型次数分布表。

后者则适用于连续型随机变量的次数分布描述,其所依据的次数分布表是连续型次数分布表。

这一区别决定了它们在制作上的不同。

即相应于不同类型的次数分布表,条形图中的直条对应离散变量各类别,因而直条没有宽度的要求,直条之间是间隔排列的;而直方图的直条则对应连续变量次数分布的各取值区间,宽度即组距,直条比较相连排列。

具体参照教材有关内容。

【练习2】简述散点图、折线图、条形图和圆形图这四种统计分析图的应用特点。

解答:如上题所述,①条形图适用于离散型变量的次数分布,是一种次数分布图;②圆形图的适用条件与之相同。

所不同的是,圆形图使用圆中的扇面弧度来替代直条表达次数或相对次数,所有扇面组成整个圆周。

因而圆形图本身就包含有相对次数信息。

③散点图是专用于分析两个连续变量或至少是等级变量间相关关系的统计图,它用两个相关变量的配对数据分别作为散点的横、纵坐标在平面直角坐标系中描点,根据散点分布的区域的形状就可以大致判断两变量间的相关关系。

例如如果散点区域形状是一个椭圆,则变量为直线性相关,椭圆长轴的方向还可以表达相关的方向。

④折线图在教材中之牵涉到所谓的均值图,即描述某个因变量(指标)在一个离散型自变量的各水平上取值均值的统计图,将指标在自变量各水平上取值的均值作为纵坐标先描出散点,然后用线段连接这些散点构成折线,故而叫折线图。

折线图通常用在组间均值比较中帮助直观分析各均值间的差异。

第2章常用统计参数中心位置:用以度量一级数据的集中趋势,描述它们的中心位于何处,故对其数量化描述称为置度量数或集中量数。

离散性:反映一组数据的分散程度,即次数分布的离散程度。

对其数量化描述称为次数分布变异特性的度量或差异量数。

参数:总体统计特征的量数。

统计量:样本统计特征的量数。

第1节集中量数(描述数据集中趋势的统计量。

包括:算术平均数、加权平均数、几何平均数、中数,等。

它们的作用都是试题次数分布的集中趋势。

)1.算术平均数2.只有在与其他几种集中量数相区别时,才称它为算术平均数。

3.算术平均数是用以度量连续变量次数分布集中趋势的最常用的集中量数。

4.公式:5.6.7.8.1)总体平均数与样本平均数。

9.2)加权平均数10.11.12.13.3)算术平均数具有以下性质:14.①每一个观测值都加上一个相同常数C后,计算得到的平均数等于原平均数加上这个常数;15.16.17.②每一个观测值都乘以一个相同常数C后,计算得到的平均数等于原平均数乘以这个常数;18.19.20.③每一个观测值都乘以一个相同常数C后,再加上一个常数d后,计算得到的平均数等于原平均数乘以这个常数c再加上常数d.21.④观测值与平均数离差的总和为零22.23.⑤观测值与任意常数c的离差平方和,不小于观测值与平均数的离着平方和。

24.25.4)算术平均数的优点:26.反应灵敏、确定严密、简明易解、计算简便并能作进一步的代数演算等优点,是应用最普遍的一种集中量数。

27.5)算术平均数的缺点:28.易受极端数据影响、出现模糊数据和存在不等质数据时无法计算算术平均数的缺点。

29. 几何平均数(Mg)30. 当出现以下两种情况时需用几何平均数:31. ①一组数据中任何两个相邻数据之比接近于常数,即数据按一定的比例关系变化。

在教育与心理研究中,求平均增长率或对心理物理学中的等距与等比量表实验的数据处理;32. ②当一组数据中存在极端数据,分布呈偏态时,算术平均数不能很好的反映数据的33. 公式:34. 35. 公式变形:36. 未来情况的预测数X= x ′·( )n 37. x ′表示预测的基础。

相关文档
最新文档