(大学物理)第七章热力学基础2-3
大学物理化学经典课件-3-热力学第二定律

05 热力学第二定律在工程技 术中应用
工程技术中不可逆过程分析
不可逆过程定义
在工程技术中,不可逆过 程指的是系统与环境之间 进行的无法自发逆转的能 量转换过程。
不可逆过程分类
根据能量转换形式,不可 逆过程可分为热传导、热 辐射、摩擦生热、化学反 应等多种类型。
不可逆过程影响
不可逆过程导致能量损失 和熵增加,降低系统能量 利用效率,并对环境造成 负面影响。
06 总结与展望
热力学第二定律重要性总结
热力学第二定律是自然界普遍适用的基本规律之一,它揭示了热现象的方向性和不可逆性,为热力学 的研究和应用提供了重要的理论基础。
热力学第二定律在能源转换和利用、环境保护、生态平衡等领域具有广泛的应用价值,对于推动可持续 发展和生态文明建设具有重要意义。
热力学第二定律的研究不仅深入到了热学、力学、电磁学等物理学各个领域,还拓展到了化学、生物学、 医学等其他自然科学领域,为多学科交叉研究提供了重要的桥梁和纽带。
提供了判断热过程进行方向的标准
根据热力学第二定律,可以判断一个热过程是否能够自发进行。如果一个热过程能够自发进行,那么它必须满足热力 学第二定律的要求。
为热力学的发展奠定了基础
热力学第二定律是热力学的基本定律之一,为热力学的发展奠定了基础。它揭示了热现象的本质和规律, 为热力学的研究和应用提供了重要的理论支持。
应用举例
在化学反应中,如果反应物和生成物处于同 一温度,则自发进行的反应总是向着熵增加 的方向进行。例如,氢气和氧气在点燃条件 下可以自发反应生成水,该反应的熵变小于
零,因此是一个自发进行的反应。
熵产生原因及影响因素
要点一
熵产生原因
熵的产生与系统的不可逆性密切相关。在不可逆过程中, 系统内部的微观状态数增加,导致系统的无序程度增加, 即熵增加。
大学物理热力学基础PPT课件

d Q 微小热量 :
> 0 表示系统从外界吸热; < 0 表示系统向外界放热。
等价
2
精选PPT课件
上页 下页 返回 退出
二、热力学第一定律 (The first law of thermodynamics)
某一过程,系统从外界吸热 Q,对外界做功 W,系 统内能从初始态 E1变为 E2,则由能量守恒:
循环过程
V
1. 热力学第一定律适用于任何系统(固、液、气);
2. 热力学第一定律适用于任何过程(非准静态过程亦 成立)。
6
精选PPT课件
上页 下页 返回 退出
四、 W、Q、E的计算
1.W的计算(准静态过程,体积功)
F
(1)直接计算法(由定义)
系统对外作功,
2
W=1
Fdx
=
2
1
PS
dx
V2
W = PdV
W = 1 P dV =
RT
2
1
dV V
W
RTl nV( 2 ) V1
P1V1
ln(V2 V1
)
P1V1
ln(P1 P2
)
系统吸热全部用来对外做功。
思考:CT ( 等温摩尔热容量)应为多大?
15
精选PPT课件
上页 下页 返回 退出
§7.4 理想气体的绝热过程 (Adiabatic process of the ideal gas)
吸热一部分用于对外做功,其余用于增加系统内能。
14
精选PPT课件
上页 下页 返回 退出
三.等温过程(isothermal process) P
《大学物理学》热力学基础练习题

合肥学院《大学物理Ⅰ》自主学习材料《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是( )pa2(A)b1a 过程放热、作负功,b2a 过程放热、作负功;c(B)b1a 过程吸热、作负功,b2a 过程放热、作负功;1b(C)b1a 过程吸热、作正功,b2a 过程吸热、作负功;VO (D)b1a 过程放热、作正功,b2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中 a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b1a 过程作的负功比b2a 过程作的负功多,由Q W E 知b2a 过程放热,b1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态 A 变到平衡态B,且他们的压强相等,即P P 。
A B问在状态 A 和状态 B 之间,气体无论经过的是什么过程,气体必然( )p (A)对外作正功;(B)内能增加;(C)从外界吸热;(D)向外界放热。
AB【提示:由于T T ,必有A B E E ;而功、热量是A BV 过程量,与过程有关】O13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气( 均视为刚性理想气体) ,开始时它们的压强和温度都相同,现将 3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为( )(A) 6 J ;(B)3 J ;(C)5 J ;(D)10 J 。
【提示:等体过程不做功,有Q E ,而M iE R TM 2mol,所以需传 5 J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是()pp绝热等温绝热等体等温绝热Op 等()AV Op()B等压V 绝热绝热体等温绝热OOVV ()C()D【提示:(A) 绝热线应该比等温线陡,(B)和(C)两条绝热线不能相交】热力学基础-1合肥学院《大学物理Ⅰ》自主学习材料13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J,则对外做功()(A)2000 J ;(B)1000 J ;(C)4000 J ;(D)500 J 。
大学物理《热力学基础》

热力学第二定律的实验验证
卡诺循环实验
通过比较可逆卡诺循环和不可逆卡诺循环的效率, 证明了热力学第二定律的正确性。
焦耳实验
通测量热量和功之间的转换关系,证明了热力 学第二定律的正确性。
热辐射实验
通过测量不同温度下物体的辐射能,证明了熵增 加原理的正确性。
05 热力学的应用
热机效率的提高
热机效率的概念
热力学第二定律定义
熵增原理
热力学第二定律的本质
不可能把热从低温物体传到高温物体而不产 生其他影响;不可能从单一热源取热使之完 全转换为有用的功而不产生其他影响;不可 逆热力过程中熵的微增量总是大于零。
在封闭系统中,自发过程总是向着熵 增加的方向进行,即熵增加原理。
揭示了热量传递和做功过程的不可逆 性,是能量耗散和转化过程的宏观规 律。
通过学习热力学基础,学生可以了解热现象的本质和规律,掌握热力学的 分析方法,为后续的物理学习和实际应用打下基础。
热力学的重要性
热力学在能源、化工、材料 、环保等领域有广泛应用, 是解决实际问题的重要工具
。
热力学的基本原理和方法对 于理解其他物理分支(如电 磁学、光学)以及交叉学科 (如生物物理、地球物理)
热力学第二定律的应用
空调制冷原理
利用制冷剂在蒸发器中吸热蒸发而降低温度,再通过冷凝器放出热 量,使室内温度降低。
汽车发动机效率
汽车发动机效率不可能达到100%,因为发动机工作时会产生热量 损失,这些热量无法完全转化为机械功。
热机效率
热机效率不可能达到100%,因为燃料燃烧产生的热量不可能完全转 化为机械功,其中一部分热量会以热量的形式散失到环境中。
THANKS FOR WATCHING
华中科技大学物理化学-121-145 第七章 统计热力学基础

第柒章 统计热力学根底根本公式1. N 个定位粒子〔可别粒子〕壹种分布的微观状态数 !!iN i i i g t N N =∏总微观状态数 (),,!!iN i j i ig U V N N N Ω=∑∏2. N 个非定位粒子〔等同粒子〕壹种分布的微观状态数 !iN i i i g t N =∏总微观状态数 (),,!iN i j i i g U V N N Ω=∑∏3. Boltzman 分布在i,j 两个能级上粒子数之比 ()()exp /exp /j j i j i i g kT n n g kT εε⎡⎤-⎣⎦=-⎡⎤⎣⎦4. 能级公式平动 2222t 2228y xz n n n h m a b c ε⎛⎫=++ ⎪ ⎪⎝⎭转动 ()2r 218h J J Iεπ=+振动 v 12h ευυ⎛⎫=+ ⎪⎝⎭5.配分函数配分函数的别离 n t e r v q q q q q q =平动配分函数线型分子转动配分函数 2r 2r 8IkT Tq hπσσ==Θ 同核双原子分子σ=2,异核双原子分子σ=1.转动特征温度 2r 28h TkπΘ=非线性分子转动配分函数 ()()3/221/2r 382x y zkT q I I I h ππσ=双原子分子振动配分函数 ()()()()v v v exp /2exp /21exp /1exp /h kT T q T h kT υυ--Θ⎡⎤⎡⎤⎣⎦⎣⎦==--Θ--⎡⎤⎣⎦基态能量为零时振动特征温度 v /h k υΘ=电子配分函数假设只考虑基态,且将电子基态能量规定为零,则()v e,021q g J ==+,J 为电子总角动量量子数.核配分函数假设只考虑基态,且将核基态能量规定为零,则,S 为核自旋量量子数.单原子理想气体的热容 ,m 32V C R = 双原子理想气体的热容 ()(),m v ,m v 57=22V V C R T C RT=ΘΘ,单原子理想气体的内能 m 0,m 32U RT U =+ 双原子理想气体的内能 ()()m 0,m v m 0,mv 57=22U R U TU R U T=+Θ+Θ,平动熵〔Sackur -Tetrode 公式〕 转动熵 r,m r r =lnln T T S Nk Nk R R σσ+=+ΘΘ 振动熵 ()()v,m /ln 1exp exp /1h kT h S Nk RT h kT υυυ⎧⎫⎡-⎤⎪⎪⎛⎫=--+⎨⎬ ⎪⎢⎥-⎡⎤⎝⎭⎣⎦⎪⎪⎣⎦⎩⎭()()v v v /ln 1exp /exp /1T R T T ⎧⎫Θ⎪⎪=---Θ+⎡⎤⎨⎬⎣⎦Θ-⎪⎪⎩⎭电子运动熵 e,m e,0e,0ln ln S Nk g R g == Gibbs 自由能 m 0,m lnqG RT U L=-+8.自由能函数 9.热函函数 10.平衡常数对于D+E =G 的反响式中,f 为提出V 以后的配分函数,0ε∆为反响前后分子最低能级的差值.习题讲解1. 设有壹个由叁个定位的单维简谐振子组成的系统,这叁个振子分别在各自的位置上振动,系统的总能量为112h ν.试求系统全部可能的微观状态数. 解 振子的能量为 1ε(1,2,3,...)2h ννν⎛⎫=+= ⎪⎝⎭设系统中叁个单维简谐振子按以下能量方式分配至各能级:满足以上条件的分布有以下几种:(1) N 0=1, N 1=2微观状态数(2) N 0=1, N 1=1,N 3=1 微观状态数 236111t ==⨯⨯!!!!〔3〕N 0=2,N 4=1微观状态数 33321t ==⨯!!! 〔4〕N 1=2,N 2=1微观状态数 43321t ==⨯!!! 系统总的微观状态数2.假设有壹个热力学系统,当其熵值增加·K -1时,试求系统的微观状态的增加数占原有微观状态数的比值〔用1∆ΩΩ表示〕. 解 系统始态的熵 11ln S k =Ω 式中,k 就是Boltzmann 常数,2311.3810 J K k --=⨯⋅.系统终态的熵 22ln S k =Ω所以 21 ln ln 21S = S - S k k ∆=Ω-Ω代入数据 2320.4181.3810ln 1-Ω=⨯Ω 解得3102e 1⨯Ω=Ω系统微观状态数增加倍数为3102e 11⨯∆ΩΩ≈=ΩΩ 3.在海平面上大气的组成用体积分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他其他为0.01.设大气中各气体都符合Boltzmann 分布,假设大气柱在整个高度内的平均温度为220K.试求这叁类气体分别在海拔10 km 、60 km 和500 km 处的分压.已知道重力加速度为29.8 m s -⋅. 解 设大气再海平面的压力为p 0,在高度为h 处的压力为p ,则 式中,M 为气体的摩尔质量,g 为重力加速度.由气体的体积分数可得到各气体在海平面上的分压各气体的摩尔质量 ()()3131222810 kg mol ,O 3210 kg mol M N M ----=⨯⋅=⨯⋅ 假定其他气体全部为Ar,则()31Ar 39.94810 kg mol M --=⨯⋅在海拔10km 处可见,在海拔10 km 处,各气体的分压和摩尔分数和在海平面上的不相同.同理可得到在60 km 处,各气体的分压和摩尔分数 在500km 处,各气体的分压和摩尔分数4.对于双原子气体分子,设基态的振动能量为零,1x e x ≈+.试证明:〔1〕r U NkT =;〔2〕v U NkT =.证 双原子分子转动配分函数2r 28IkT q h πσ=双原子气体分子基态的振动能量为零时,振动配分函数5.设某分子的壹个能级的能量和简并度分别为-2111=6.110 J, 3g ε⨯=;另壹个能级的能量和简并度分别为-2122=8.410 J, 5g ε⨯=.请分别计算在300 K 和3 000 K 时,这两个能级上分布的粒子数之比12/N N .解 300 K 时[][]-21-21111112-232222exp /()36.1108.410exp exp 1.046exp /()5 1.3810300g kT N g N g kT g kT εεεε-⎛⎫-⨯-⨯⎛⎫==-=-= ⎪ ⎪-⨯⨯⎝⎭⎝⎭3 000K 时6.设有壹个由极大数目的叁维平动子组成的粒子系统,运动于边长为a 的立方容器内,系统的体积、粒子质量和温度的关系为220.108h kT ma =.现有两个能级的能量分别为221222927 , 48h h ma maεε==,试求处于这两个能级上粒子数的比值12N N . 解 叁维平动子的能级公式为只要满足222 18xy z n n n ++=,1ε值都相同,1ε能级的简并态 =1=14x y z n n n +=,,;=1=41x y z n n n +=,,;=4=11x y z n n n +=,,.简并度1=3g .只要满足222 27xy z n n n ++=,2ε值都相同,2ε能级的简并态 =1=15x y z n n n +=,,;=1=51x y z n n n +=,,;=5=11x y z n n n +=,,.简并度2=4g .根据Boltzmann 分布,粒子在两能级上的比值为7.将2(g)N 在电弧中加热,从光谱中观察到,处于振动量子数=1υ的第壹激发态上的分子数(=1)N υ,和处于振动量子数=0υ的基态上的分子数(=0)N υ之比为(=1)0.26(=0)N N υυ=.已知道2(g)N 的振动频率为1316.9910s -⨯.试计算:〔1〕2(g)N 的温度;〔2〕2(g)N 分子的平动、转动和振动能量;〔3〕振动能量在总能量中所占的分数.解 〔1〕量子数为υ的振子能量12h ευν⎛⎫=+ ⎪⎝⎭=0ν时 012h ευ==1υ时 032h ευ=即 3413236.62610 6.99100.26exp 1.3810/K T --⎛⎫⨯⨯⨯=- ⎪⨯⎝⎭2(g)N 的温度 2491.5 K T =〔2〕平动能 转动能 震动能将11342311318.3145 J mol K , 6.62610 J s , 1.3810 J K , 6.9910 s ,R h k v ------=⋅⋅=⨯⋅=⨯⋅=⨯ 2491.5 K T =,代入上式,得〔3〕振动能量在总能量中所占的分数8.设有壹个极大数目叁维平动子组成的粒子系统,运动于边长为a 的立方容器中,系统的体积,例子质量和温度的关系为试计算平动量子数为1,2,3和1,1,1两个状态上粒子分布数的比值.解 平动量子数为1,2,3时,其对应量子态有1,2,31,3,22,1,32,3,13,1,23,2,1,,,,,,ψψψψψψ即此能级的简并度16g =.此状态的能量为平动量子数为1,1,1时,其对应量子态只有1,1,1ψ,简并度为01g =,能量为所以,两个能级上的分布数之比为9.设某理想气体A,其分子的最低能级就是非兼并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级.〔1〕写出A 分子的总配分函数的表达式;〔2〕设kT ε=,求出相邻两能级上最概然分子数之比10/N N 的值;〔3〕设kT ε=,试计算在298K 时,1molA 分子气体的平均能量.解 〔1〕分子的基态能量00ε=,相邻的能级的能量1εε=,只考虑基态和相邻能级,忽略更高能级,分子的配分函数为 〔2〕()()()()1111000exp /2exp /20.73581exp 0exp /g kT kT kT N e N g kT εε---⎡⎤⎡⎤⎣⎦⎣⎦====⨯-⎡⎤⎣⎦〔3〕1mol 气体分子数为1010.7358,,10.7358L N N L N L +==+10.〔1〕某单原子理想气体的配位函数q 具有的函数形式为()q Vf T =,试导出理想气体的状态方程;〔2〕假设该单原子气体的配位函数q 的函数形式为3/222mkT q V h π⎛⎫= ⎪⎝⎭,试导出压力p 和热力学能U 的表达式,以及理想气体的状态方程.解 〔1〕()()(),,ln ln N T N TVf T f T q NkT q NkT NkT NkT V V Vf T V ⎧⎫∂⎡⎤∂⎪⎪⎛⎫⎣⎦====⎨⎬⎪∂∂⎝⎭⎪⎪⎩⎭ 上式即为理想气体的状态方程对1mol 理想气体,,N L Lk R ==则.m pV RT =〔2〕配分函数3/222mkT q V h π⎛⎫= ⎪⎝⎭,令()3/222mkT f T h π⎛⎫= ⎪⎝⎭,即()q Vf T =.所以即理想气体的状态方程.11.某气体的第壹电子激发态比基态能量高1400 kJ mol -⋅,试计算:〔1〕在300 K 时,第壹电子激发态所占的分数;〔2〕假设要使激发态分子所占的分数为10%,则这时的温度为多少. 解 〔1〕设基态能量为零,并忽略更高激发态,则 (2) 依题意,有由上式解出 42.1910 K T =⨯12.在300K 时,已知道F 原子的电子配分函数 4.288e q =,试求 〔1〕标准压力下的总配分函数〔忽略核配分函数的奉献〕;〔2〕标准压力下的摩尔熵值.已知道F 原子的摩尔质量为118.998 g mol M -=⋅. 解 〔1〕n e t q q q q =,忽略核配分函数n q ,电子配分函数 4.288e q =,平均配分函数 式中,m 为F 原子的质量,V 为体积.将231341.3810 J K , 6.62610 J S k h ---=⨯⋅=⨯⋅及m 、T 、m V 等数据代入平动配分函数表达式即得 总配分函数 〔2〕m t,m e,m S S S =+ 根据Sack -Tetrode 公式()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭23123134/,/, 6.02210 mol , 1.3810 J K , 6.62610 J S,m m M L V RT p N L k h ----====⨯=⨯⋅=⨯⋅18.3145 J K ,R -=⋅代入上式化简得摩尔平动熵表达式将53110 Pa,18.99810 kg mol ,300 K p p M T --===⨯⋅=代入上式得电子运动熵标准摩尔熵 13. 零族元素氩〔Ar 〕可看做理想气体,相对分子质量为40,取分子的基态〔设其简并度为1〕作为能量零点,第壹激发态和基态的能量差为∈,忽略其他高能级.〔1〕写出Ar 分子的总配分函数表达式;〔2〕设5kT ∈=,求在第壹激发态上最概然分布的分子数占总分子数的分数;〔3〕计算1mol Ar(g)在标准状态下的统计熵值.设Ar 分子的核和电子的简并度均等于1. 解 〔1〕[]()()0011exp /()exp /exp /i i iq g kT g kT g kT =-∈=-∈+-∈⎡⎤⎡⎤⎣⎦⎣⎦∑(2)()()()111exp /2exp 5 1.3312exp 5g kT N N q -∈⎡⎤-⎣⎦===+-% (3)Sack -Tetrode 公式对于1 mol 理想气体,粒子数,/,/,m N L m M L V RT p ===代入上式得将23123134116.02210 mol , 1.3810 J K , 6.62610 J s,8.3145 J mol K L k h R ------=⨯=⨯⋅=⨯⋅=⋅⋅等有关常数代入上述表达式,化简得()3/2m n,o e,o 15/32352ln ln ln ln ln ln 20.72322K Pa kg mol M T p k S R g g R L h π-⎡⎤⎛⎫⎛⎫=++-+++⎢⎥ ⎪ ⎪⋅⎝⎭⎢⎝⎭⎥⎣⎦将531n,o e,o 10 Pa,4010 kg mol ,300 K,1,1p p M T g g --===⨯⋅===代入上式,得14.设Na 原子气体〔设为理想气体〕凝聚成壹外表膜.(1)假设Na 原子可以在膜内自由运动〔即贰维平动〕,试写出此凝聚过程的摩尔平动熵变的统计表达式;〔2〕假设Na 原子在膜内不能运动,其凝聚过程的摩尔平动熵变的统计表达式又将如何" 解 (1)Na 原子气体凝聚成外表膜,由叁维运动变为贰维运动.壹个平动自由度的配分函数叁维平动配分函数 3/2t,322mkT q V h π⎛⎫= ⎪⎝⎭ 叁维平动熵 t,3t,m,35ln 2q S R L ⎛⎫=+ ⎪⎝⎭贰维平动配分函数 t,222mkT q A h π⎛⎫= ⎪⎝⎭贰维平动熵 t,2t,m,2ln2q S R L ⎛⎫=+ ⎪⎝⎭(2) 假设Na 原子在膜内不能运动,其摩尔平动熵为零,则15.试分别计算转动、振动和电子能级间隔的Boltzmann 因子exp kT ⎛⎫- ⎪⎝⎭£各为多少.已知道各能级间隔的值为:电子能级间隔约为100 kT,振动能级间隔约为10 kT,转动能级间隔约为 kT. 解 电子能级间隔的Boltzmann 因子 振动能级间隔的Boltzmann 因子 转动能级间隔的Boltzmann 因子16.设J 为转动量子数,取整数,转动简并度为〔2J +1〕.在240K 时,CO 〔g 〕最可能出现的量子态的转动量子数J 的值为多少"已知道CO(g)的转动特征温度t 2.8K Θ= 解 转动特征温度 2t 28h IkπΘ=转动能级公式 ()()2r 2ε118h J J J J kIπΘ=+=+ 根据Boltzmann 分布0j dN dJ=时的J 值就是CO 最可能出现的J 值,则17. H B r 分子的核间平衡距离 nm,试计算: ⑴ H B r 的转动特征温度;⑴ 在298 K 时,H B r 分子占据转动量子数J =1的能级上的分数; ⑴ 298 K 时,H B r 理想气体的摩尔转动熵. 解 ⑴ H B r 的折合质量 转动惯量⑵ HB r 转动配分函数 2r 2r8Ik q T hTπ=Θ= 转动能级 ()r r 1/J J k ε=+Θ转动简并度 21J +HB r 分子占据转动量子数J=1的能级上的分数 ⑶HBr 转动熵和I 的摩尔质量、转动特征温度和振动特征温度分别为)1mol - 3- 310-石球在298K 时:⑴H 2和I 2分子的平动摩尔热力学能、转动摩尔热力学能和振动摩尔热力学能; ⑵H 2和I 2分子的平动摩尔定容热容、转动摩尔定容和振动摩尔定容热容和总的摩尔定容热容〔忽略电子的核运动对热容的奉献〕. 解 ⑴r ,2ln V Nq NkT U T ∂⎛⎫=⎪∂⎝⎭H 2和I 2分子的平动摩尔热力学能 H 2和I 2分子的转动摩尔热力学能 振动摩尔热力学能⑵H 2和I 2分子的平动摩尔定容热容 H 2和I 2的转动摩尔定容r,m 11r ,m 2(H )8.3145 J mol K ,V U C R T--∂==⋅⋅∂振动摩尔定容热容 总的摩尔定容热容19.在298 K 和100 kPa 时,1 mol O 2〔g 〕(设为理想气体)放在体积为V 的容积中,试计算: ⑴O 2〔g 〕的平均配分函数q t ;⑵O 2〔g 〕的转动配分函数q r ,已知道其核间距为1207 nm;⑶O 2〔g 〕的电子配分函数q e ,已知道电子基态的简并度为3,忽略电子激发态的奉献; ⑷O 2〔g 〕的标准摩尔熵值.解⑴O 2〔g 〕的平均配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭O 2分子的质量将231341.3810 J K , 6.62610 J s,=298 K k h T ---=⨯⋅=⨯⋅及m 、V m 等数平动配分函数表达式即得3/230t 22 4.3410mkT q V h π⎛⎫==⨯ ⎪⎝⎭⑵O 2〔g 〕的折合质量71.7= (同核双原子分子,对称数σ=2) ⑶q e =g e,0=3⑷忽略振动激发态时,常温下,双原子分子的振动熵数值非常小,可以忽略,即 根据Sackur -Tetrode 公式 将232334m /,/, 6.02210mol , 1.3810 J K , 6.62610 J s,R=8.3145 J mol K m M L V RT p N L k h -1--1--1-1====⨯=⨯⋅=⨯⋅⋅⋅代入上式化简得 t,m 135ln ln ln 20.72322K Pa kg mol M T pS R -⎡⎤⎛⎫=+-+⎢⎥⎪⋅⎝⎭⎣⎦ 将5-3-110 Pa,=3110 kg mol p p M ==⨯⋅代入上式得转动熵 ,ln ln ln r r r r V Nq S Nk q NkT Nk q Nk T ∂⎛⎫=+=+⎪∂⎝⎭电子运动熵〔忽略电子激发态〕 标准摩尔熵K 和100 K P a 时,求1 molNO(g)(设为理想气体)的标准摩尔熵值.已知道NO(g)的转动特征温度为2.42K,振动特征温度为2690K,电子基态和第壹激发态的简并度均为2,两能级间的能量差21ε 2.47310 J -∆=⨯ 解 平动熵 转动熵 振动熵 电动运动熵NO(g)在298K 及100kPa 时的摩尔熵K 和100 kPa 时,求1 molNO(g)(设为理想气体)的标准摩尔剩余熵值和标准摩尔量热熵值.由题20算出的统计熵值.已知道NO(s)晶体就是由N 2O 2贰聚分子组成,在晶体中有两种排列方式.解 量热熵就是以为在T→0K 时,分子只有壹种取向,对应S 0=0,然而N 2O 2分子有两种不同取向,1 molNO(即12 molN 2O 2)晶体就有2L/2种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为 向,1 mol NO,〔即12molN 2O 2〕,晶体中就有2L/2 种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为由20题算出NO 〔g 〕的统计熵值 所以NO 得标准摩尔量热熵值22.在298 K 和100 kPa 时,求1mol SO 2 (g)(设为理想气体)的标准摩尔热力学能,焓,Gibbs 自由能,Helmhotls 自由能、熵、定压摩尔热能和定容摩尔热能等热力学函数.已知道SO 2的摩尔质量M 〔SO 2〕=3×10- 3 kg·mol - 1,σ1 =1151.4 cm - 1, σ2 =517.7 cm - 1 , σ3 =1361.8 cm - 1; 叁个转动惯量分别为I X ×10- 46 kg∙ m 2, I y ×10- 46 kg∙ m 2, I z ×10- 46 kg∙ m 2 SO 2 (g)分子的对称数为2,忽略电子和核的奉献. 解: SO 2 分子的质量 平动配分函数SO 2分子就是非线性分子,其转动配分函数 T =298 K 时 q r 振动局部利用c νσ=〔c =3×108 m •s -1〕将波数转换成频率,131 3.4510ν=⨯ s -1,132 1.5510ν=⨯s -1,133 4.0810ν=⨯ s -1.令112233/(),/(),/()x h kT x h kT x h kT ννν===.[]3112311111.004 1.090 1.001 1.0951exp /()1exp()1exp()1exp()v i i q h kT x x x ν====⨯⨯=--------∏[]3v,m 1ln 1exp() 2.875 J mol K exp()1i i i i x S R x x -1-1=⎧⎫=---+=⋅⋅⎨⎬-⎩⎭∑=v,m V,m,0631.01 J mol K U U -1-1-=⋅⋅ 总的热力学函数11mt,m r,m v,m 248.2 J mol K SS S S --=++=⋅⋅311v,m v,m,0t,m r,m v,m v,m,08.06410 J mol K U U U U U U ---=++-=⨯⋅⋅=411v,m v,m,0t,m r,m v,m v,m,0 1.05410 J mol K H U H H H U ---=++-=⨯⋅⋅K 时HI , H 2, I 2的标准Gibbs 自由能函数.已知道HI 的转动特征温度为9. 0 K,振动特征温度为3200 K ,摩尔质量M (HI)=127.9 X 10-3 kg·mol -1. I 2在零点时的总配分函数为q 0(I 2)=q t,0q r,0q v,0=4.143 X 1035, H 2在零点时的总配分函数为q 0(H 2)= q t,0q r,0q v,0=1.185 X 1029. 解HI 分子的质量平动配分函数 3/231t 22 3.4610mkT q h π⎛⎫==⨯ ⎪⎝⎭HI 分子就是线性分子,其转动配分函数振动局部()()()2V ν8111.000021exp /1exp /1exp 3200/298IkT q h kT T πν====----Θ--⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦HI 的总配分函数 ()0t,0r,0ν,03133HI 3.461033.111 1.14610q q q q ==⨯⨯⨯=⨯HI 的标准Gibbs 自由能函数()()33m m 1111230 1.14610ln 8.3145ln J mol K 177.65 J mol K ?6.02210G T H q R TL ----⎡⎤-⎛⎫⨯=-=-⨯⋅⋅=-⋅⋅⎢⎥ ⎪⨯⎝⎭⎣⎦I 2在零点时的总配分函数为 ()2t,0r,0ν,03535I =10=4.14310q q q q ⨯⨯I 2的标准Gibbs 自由能函数H 2在零点时的总配分函数为()2t ,0r,0ν,029H 1.18510q q q q ==⨯H 2的标准Gibbs 自由能函数24. 计算298K 时HI , H 2, I 2的标准热焓函数.已知道HI , H 2, I 2的振动特征温度分别为3200K 、6100K 和610K.解()(),mm 0ln N VH T U q RT R TT -∂⎛⎫=+ ⎪∂⎝⎭ 平动局部3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭,t ,ln 32N V q T T ∂⎛⎫= ⎪∂⎝⎭,()()t,m t,m 052H T U R T -= 转动局部振动局部HI:()()()()()mm 03200/298exp 3200/298521exp 3200/298H T U R RR T-⨯-=++-- H 2:()()()()()m m 06100/298exp 6100/298521exp 6100/298H T U R RR T-⨯-=++-- I 2:()()()()()m m 0610/298exp 610/298521exp 610/298H T U R RR T-⨯-=++--25.计算298K 时,如下反响的标准摩尔Gibbs 自由能变化值和标准平衡常数. H 2(g)+I 2(g)2HI(g)已知道298K 时,HI , H 2, I 2的有关数据如下:m,T m,0 K 11)/ J mol K G H T ---⋅⋅m,T m,0 K 11)/ J mol K H T ---⋅⋅m,T 1mol - 0解26. 计算300K 时,如下反响的标准平衡常数. H 2(g)+D 2(g)2HD(g)已知道298K 时,1656.9 J mol r m U -∆=⋅,HD 、H 2、D 2的有关数据如下:解 对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子总配分函数,()t r v n e f q q q q q ='.提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,和其他的量对各物质都相同,可以在平衡常数表达式中消去,所以平动局部为转动配分函数 2r 28IkTq h πσ=只有I 和σ和物质种类有关,所以转动局部成为 振动配分函数根据v c σ=,将题给的波数σ转换成频率291H 1.3110s v -=⨯,91HD 1.1410s v -=⨯,281D 9.2810s v -=⨯将数据代入振动配分函数,计算得核配分函数在化学反响中可不考虑,大多数电子处于基态,配分函数1e q =.H 2(g) + D 2(g)2HD(g)的1r m656.9J mol U -∆=⋅.所以27.计算298K 时,如下两个反响的标准平衡常数.已知道自由能函数和0 K 时的焓变如下:)m,m,0K 11/J mol KTH T---⋅(m,0K /KJ mol ⋅解 (1) CH 4(g) + H 2O(g)CO(g) + 3H 2(g)28.计算298 K 时,如下反响的标准平衡常数.已知道热力学数据如下:(m,0K /)m,m,0K 11/J mol K TU T---⋅⋅)m,m,0K 11/J mol K TH T---⋅⋅解 ()m m,0K 1102.19182.23168.82155.53J mol G H T -⎛⎫-∆=-+--⋅ ⎪⎪⎝⎭29.用配分函数计算298 K 时,如下反响的标准平衡常数.已知道反响的()1r m 08.03kJ mol U -∆=-⋅,在298 K 时的参数如下表所示,忽略电子和核的奉献.解对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子的总配分函数,()t r v n e f q q q q q ='.忽略核和电子的奉献,则 提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,其他的量对各物质都相同,所以平动局部成为 转动配分函数σ就是分子对称数,所以转动局部成为 振动配分函数H 2 (g) + I 2 (g)2HI(g)的()1r m 08.03kJ mol U -∆=-⋅.所以30. 计算5000 K 时,反响 N2(g)2N(g) 的标准平衡常数.已知道 N2(g) 分子的转动特征温度r 2.84K Θ=,振动特征温度v 3350K Θ=,解离能1708.35kJ mol D -=⋅,N2(g)的电子基态就是非简并的,而N 原子基态的简并度为4.解 ()()()()2m m 2N N 2m m m N N 2N N 2ln ln U U q q G G G RT L RT L RT ⎧⎫⎡⎤⎪⎪∆=-=---+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭所以 ()2222N N m m p N N /1exp exp /q L q U U K q L RT q RT L⎛⎫⎛⎫∆∆=-=- ⎪ ⎪⎝⎭⎝⎭ N 就是单原子,只需考虑电子和平动配分函数.2N 分子为双原子分子,所以要考虑电子、平动和振动配分函数,2N 的对称数2σ=. 将510,5000p Pa T K ==及其他常数代入,计算得自 测 题1. 在N 个NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即NO 和ON,在 0 K 时该体系的熵值为 ( )A. 00S =B. 0ln 2S k =C. 0ln 2S Nk =D. 02ln S k N =2. 分子的平动、转动和振动的能级间隔的大小顺序就是 〔 〕A .振动能>转动能>平动能 B. 振动能>平动能>转动能 C. 平动能>振动能>转动能 D. 转动能>平动能>振动能3. 在以下热力学函数的单粒子配分函数q 统计表达式中,和系统的定位或非定位无关的就是 ( )A. G 、F 、SB. U 、H 、SC. U 、H 、v CD. H 、G 、v C4. 能量零点的不同选择对热力学量不产生影响的就是 〔 〕A. U 、H 、GB. U 、H 、S 、v CC. S 、v CD. S 、F 、v C5. 在298 K 和100kPa 时,摩尔平动熵最大的气体就是 〔 〕 A. H 2 B. CH 4 C. NO D. CO 26. 叁维平动子的平动能就是2t 2/368h E mV =,能级的简并度为 〔 〕A. 1B. 2C. 3D. 67. 双原子分子以平衡位置为能量零点,其振动的零点能等于 〔 〕 A. kT B.12kT C. h υ D. 12h υ 8. 当两能级差21kT εε-=,且简并度121,3g g ==,两能级上最概然分布时分子数之比21/N N 为 〔 〕 A .3kT e B. 3kT e - C. 13e - D. 13e9. 300 K 时,分布在J =1转动能级上的分子数就是J =0能级上的0.1e -倍,则分子的转动特征温度就是 〔 〕 A . 10 K B. 15 K C. 30 K D. 300 K10. CO 和2N 分子的质量m 及转动特征温度r Θ根本相同,振动特征温度v Θ均大于298 K,电子又都处于非简并的基态,298 K 时这两种气体的标准摩尔统计熵的差()()m m 2CO N S S -约为 〔 〕 A .0 B. ln2R C. ()ln 1/2R D. ()v r ln /R ΘΘ11. 1 mol 纯物质的理想气体,设分子的某内部运动形式只有叁个可及的能级,它们的能量和简并度分别为1122330,0;/100K,g 3;/300K,g 5g k k εεε======.其间k 为Boltzmann 常数. 〔1〕 计算200 K 时的分子配分函数;〔2〕 计算200 K 时能级2ε上的最概然分子数;〔3〕 当T →∞,求出叁个能级上的最概然分子数的比.12. 系统中假设有2%的2Cl 分子有振动基态跃迁到第壹振动激发态,分子的振动波数115569cm υ-=,试估算系统的温度.13.设某独立定域子系统的分子只有两个能级0和ε,请计算当T →∞时 1 mol 该物质的平均能量和熵 14.用统计力学方法求 1 mol 氦气由1T 、1V 变化到2T 、2V 的S ∆和U ∆〔设电子不激发〕. 15. 某混合理想气体系统由x N 个X 分子和Y N 个Y 分子组成,X 、Y 分子的配分函数各为X q 和Y q .〔1〕 试导出该混合系统的Helmholtz 自由能〔2〕用统计热力学方法导出该混合理想气体的状态方程和Dalton 分压定律. 16. 证明对双原子分子,在p=101.25 KPa 时()v,m ln 11x x x S R e e -⎛⎫=-- ⎪-⎝⎭〔式中 h x kT υ=〕自 测 题 参 考 答 案1. C.2. A.在通常温度下,平动、转动、振动的能级间隔分别约为1910kT -、210kT -、10kT .3. C.在热力学函数中,凡和S 无关的函数,其值均和体系的定位或非定位关系,H 、S 、v C 和 S 无关,G 和S 有关.4. C.能量零点的不同选择,对U 及和U 有关的函数都有影响.选择不同的能量零点,每摩尔有影响的状态函数相差0U L ε=.5. D.根据Sackur -Tetrode 公式可知,平动熵()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭,m 越大,平动熵越大. 6. C. ()2222222t2/3,68xy z x y z nn n h E n n n mV++=++=,叁种简并态分别为1,1,2;x y z n n n ===1,2,1;x y z n n n === 2,1,1;x y z n n n ===.7. D. 8. C.1222111exp 3N g e N g kT εε--⎛⎫=-= ⎪⎝⎭ 9. B. ()()2r r 2118h J J J J k Iεπ=+=+Θ10. B.CO 和2N 分子的质量m 大体相同,平动熵大体相同,振动熵非常小,也大体相同,两物质的转动特征温度也根本相同,但不同的就是转动特征数σ,因此两物质的统计熵差值为 11. 〔1〕 ()()()112233exp /exp /exp /q g kT g kT g kT εεε=-+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 〔2〕 ()()2223232exp /3exp 100/2006.02210 2.785103.935g kT N Nqε-⎡⎤-⎣⎦==⨯⨯=⨯〔3〕 T →∞时 ,()()exp /exp 01kT ε-→=⎡⎤⎣⎦ 所以 123123::::1:3:5N N N g g g == 12. 由Boltzmann 分布定律得()()1100exp /0.020.98exp /kT N N kT εε-⎡⎤⎣⎦==-⎡⎤⎣⎦,由振动能级公式知12h ευυ⎛⎫=+ ⎪⎝⎭,基态到第壹振动激发态的能级间隔为h υ,所以将有关数据代入上式,解出 2062K T =13. ()()()12exp /exp /1exp /q kT kT kT εεε=-+-=+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦当T →∞时当T →∞时14. He 就是单原子气体,当电子不激发时,其内部运动只有平动运动. 平动熵 热力学能15. 〔1〕理想气体就是非定位子系统,()ln /!N A kT q N =-,混合体系的Helmholtz 自由能()()()()X Y X X Y Y X X Y Y ln /!ln /!ln /!/!N N N NA A A kT q N kT q N kT q N q N ⎡⎤=+=--=-⎣⎦〔2〕转动、振动配分函数和体积无关,只有平动配分函数对压力有奉献,则 因为 X Y N N N =+ 所以 X Y X Y N kT N kTNkT p p p V V V==+=+ 即Dalton 分压定律.16. 平动配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭将231231346.02210mol , 1.3810J K , 6.62610J s,L k h ----=⨯=⨯⋅=⨯⋅11R 8.3145J mol K --=⋅⋅,101.25kPa p =代入上式得当100kPa p =时 t,m 135ln ln 1.15422K kg mol MT S R -⎡⎤⎛⎫=+-⎢⎥⎪⋅⎝⎭⎣⎦ 转动配分函数 2t 28IkTq h πσ=振动配分函数 ()v 1111exp /xq e h kT υ-==---⎡⎤⎣⎦ 电子配分函数 0e e,0exp q g kT ε-⎛⎫=⎪⎝⎭。
大学物理热力学第二定律知识点总结

大学物理热力学第二定律知识点总结热力学第二定律是大学物理热学部分的重要内容,它揭示了热现象过程中的方向性和不可逆性。
理解和掌握热力学第二定律对于深入研究热学以及相关领域具有重要意义。
以下是对热力学第二定律相关知识点的详细总结。
一、热力学第二定律的表述1、克劳修斯表述热量不能自发地从低温物体传向高温物体。
这意味着热传递的过程具有方向性,如果没有外界的干预,热量只会从高温物体流向低温物体,而不会反向流动。
2、开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
也就是说,第二类永动机是不可能制成的。
第二类永动机是指一种能够从单一热源吸热,并将其全部转化为功,而不产生其他变化的热机。
二、热力学第二定律的微观解释从微观角度来看,热力学第二定律反映了大量分子热运动的无序性。
在一个孤立系统中,分子的热运动总是从有序趋向无序,这是一个自发的过程。
比如,将不同温度的气体混合在一起,它们会自发地达到温度均匀分布的状态,而不会自动地分离成原来的不同温度区域。
这是因为分子的无规则运动使得它们更容易趋向无序的分布。
三、熵熵是描述系统无序程度的热力学概念。
熵的增加表示系统的无序程度增加。
对于一个绝热过程,系统的熵永不减少。
如果是可逆绝热过程,熵不变;如果是不可逆绝热过程,熵增加。
熵的计算公式为:$dS =\frac{dQ}{T}$,其中$dQ$ 是微元过程中的吸热量,$T$ 是热力学温度。
四、卡诺循环与卡诺定理1、卡诺循环卡诺循环由两个等温过程和两个绝热过程组成,是一种理想的热机循环。
通过卡诺循环,可以计算出热机的效率。
卡诺热机的效率为:$\eta = 1 \frac{T_2}{T_1}$,其中$T_1$ 是高温热源的温度,$T_2$ 是低温热源的温度。
2、卡诺定理(1)在相同的高温热源和低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关。
(2)在相同的高温热源和低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。
大学物理热力学基础.

11.01310522.4103
22.7102(J)
Qacb Acb
V(l)
7-3 气体的摩尔热容量
一、热容与摩尔热容的定义: 热容量:系统在某一无限小过程中吸收热量dQ与温
度变化dT的比值称为系统在该过程的热容量(C)
dQ
C dT
表示升高1K所吸收的热量
J K1
单位质量的热容量叫比热容。 CMC比 JK1kg1
摩尔热容量:1 mol 物质的热容量(Cm)
M C Mmol Cm
1mol 物质温度升高1K时所吸收的热量。
JK1mo1
二、理想气体的摩尔热容量
1、理想气体的定容摩尔热容:
dQ CV ( dT )V
( dE dT
)V
理想气体 dE i RdT
2 3
单原子理想气体 CV 2 R
双原子理想气体
1、理想气体的绝热准静态过程的过程方程
dA PdV dE M M moC lVdT (1)
理想气体状态方程
PV M RT Mmol
对其微分得:
M
PdVVdP RdT Mmol
(2)
联立(1)(2)得:
dP dV0 PV
PV con. s(3t)
(泊松公式)
将 PV cons.与t PV M RT联立得:
准静态过程是一种理想的极限。
三、准静态过程的功和热量
1、体积功的计算
dl
➢当活塞移动微小位移dl 时, 系统对外界所作的元功为:
p F S
➢系统体积由V1变为V2,系统对外界作总功为:
A dA V2pdV V1
dV0, 系统对外作正功;
dV0, 系统对外作负功;
例:有1mol理想气体 (1)a b等温,
第七章热力学理论

Q : ∆E : A = 1 : 0 : 1
•摩尔热容量 摩尔热容量: 摩尔热容量
CT ,m = ∞
4、绝热过程 adiabatic 、
•特点: 特点: 特点
整个过程和外界无热量交换, 整个过程和外界无热量交换,Q = 0 气体绝热膨胀, 气体绝热膨胀,温度 ? 气体绝热压缩, 气体绝热压缩,温度 ? p1 p2 B V1 V2 V p A
理想气体的压强保持不变, 理想气体的压强保持不变,p = const. p1
•过程曲线: 过程曲线: 过程曲线 •内能改变: 内能改变: 内能改变
图上是一条垂直p轴的直线 等压线)。 轴的直线(等压线 在 p-V 图上是一条垂直 轴的直线 等压线 。 过程方程: 过程方程:V/T = const. o
A
B
V1
V2
V
i ∆E = νR∆T 2 •体积功: 体积功: 体积功
A = p1 (V2 − V1 ) = νR(T2 − T1 ) = νR∆T
气体体积膨胀 做正功, 做正功,直接 计算面积。 计算面积。
2、等压过程 、
•热量交换 热量交换: 热量交换
由热力学第一定律: 由热力学第一定律:
p p1 A B
•过程曲线: 过程曲线: 过程曲线
图上是一条双曲线, 等温线。 在 p-V 图上是一条双曲线,叫等温线。 过程方程: 过程方程:pV = const. o
•内能改变: 内能改变: 内能改变
i Q ∆T = 0 ∴ ∆E = νR∆T = 0 2 •体积功: 体积功: 体积功
A = ∫ PdV =
V1
A Q1 − Q2 Q2 η= = = 1− Q1 Q1 Q1
《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
大学物理热力学

02
数学表达式为:不可能通过有限个步骤将一个单一 热源的热量全部转化为机械功而不产生其他影响
04
此外,热力学第二定律还揭示了机械能与内能之间 的转化是不可逆的,即机械能可以完全转化为内能, 而内能不能完全转化为机械能而不产生其他影响
5
卡诺循环与卡 诺定理
卡诺循环与卡诺定理
01
02
卡诺循环是由法国物理学家 卡诺提出的一种理想化循环 过程,包括四个步骤:等温 膨胀、绝热膨胀、等温压缩 和绝热压缩
1
热力学的基本 概念
热力学的基本概念
热力学的基本概念包括系 统、状态、过程和循环等
系统是指研究对象的整体, 可以是气体、液体、固体
等
状态是指系统在某一时刻 的宏观物理量,如温度、
压力、体积等
过程是指系统状态的变化 历程,可以分为等温过程、
等压过程、绝热过程等
循环是指系统经过一系列 状态变化后又回到初始状
此外,热力学还在航天工 程、材料科学等领域得到
应用
11
热力学与其他 学科的联系
热力学与其他学科的联系
热力学与其他学科有着密切的 联系
例如,热力学与统计力学的关 系密切,统计力学从微观角度 研究物质的热力学性质,提供
了对热现象的微观描述
此外,热力学与电动力学也有 一定的联系,如电磁场的能量 和动量等物理量可以与热力学 中的熵和温度等概念相对应
12
未来展望
未来展望
随着科学技术的发展,热力学的研究和应用将 不断深入和扩展
例如,随着能源问题的日益严重,热力学在能 源利用和环境保护方面的应用将更加广泛;随 着纳米技术的发展,热力学在纳米材料和纳米 器件方面的应用将更加深入;随着气候变化和 环境问题的日益严重,热力学在地球科学和环 境科学方面的应用将更加重要
大学物理 热力学基础详解

§ 3 气体的摩尔热容量
热容量:
(简称热容) 表示升高1K所吸收的热量
dQ C dT
(JK-1)
摩尔热容Cm :当物质的量为1 mol 时的热容。 单位: (Jmol -1 K-1) 比热C比:当物质的量为 1 kg 时的热容。
C MC比
M C Cm M mol
单位: (J kg-1 K-1 )
(1)
理想气体状态方程 对其微分得:
M RdT PdV VdP M mol
M PV RT M mol
(2)
联立(1)、(2),得:
M PV const 将 与 PV RT 联立得: M mol
dP dV 0 P V
-1
PV const. ( 3)
(4)
V
T=const .
√ (C) -700J
(D) 1000J
1
e
c b
思路: Ta =Tb
Vb Va Vb Va
0 1 4 Eab 0
Va
V(10-3m3)
Qab Aab PdV
Vd
Eacbda 0
Qacbda Aacbda PdV PdV 500 - 1200( J )
-
P
-1
T =const . ( 5 )
(3)、(4)、(5)式称为绝热方程 (或泊松公式)。
注意:式中的各常数不相同!!!
绝热线比等温线陡 (1)、等温:PV=const
0 (2)、绝热: PV const
PA dp A点的斜率: dV VA a
PA dp A点的斜率: VA dV T
i2 Q A 2
大学物理力学热力学基础

k
运动的总动能
f(v) f(vP)
vP v #分布曲线或者高而窄,或者矮而宽。从而 分布曲线或者高而窄,或者矮而宽。 保证曲线下的面积为1 保证曲线下的面积为1
V’p 四. 用麦克斯韦速率分布函数求速率的各种平均值
0
1. 平均速率 2. 方均根速率
2 ∞ 0 2
8kT 8RT v = ∫ vf (v)dv = = πm πµ
气体分子平均 第三节 气体分子平均平动动能与温度的关系 温度的统计解释) (或:温度的统计解释) 推导气体分子平均 一.推导气体分子平均平动动能与温度的关系 推导气体分子 1. 理想气体状态方程
P=nkT
3 2
k=R = 1.38 ×10−23 J ⋅ K −1 (玻尔兹曼常数) 其中 NA
2.分子平均 2.分子平均平动动能与温度的关系 w = kT 分子 •温度标志着物体内部分子无规则运动的
摩尔氢气和1摩尔氦 例3. 一个容器内贮有 摩尔氢气和 摩尔氦 . 一个容器内贮有1摩尔氢气和 气,若两种气体各自对器壁产生的压强分别 则两者的大小关系是: 为p1和p2,则两者的大小关系是: (A) p1> p2. (C) p1=p2. (B) p1< p2. (D)不确定的. 不确定的. 不确定的
例6. 容器内混有二氧化碳和氧气两种气体, . 容器内混有二氧化碳和氧气两种气体, 混合气体的温度是 290 K,内能是 ,内能是9.64×105 × J,总质量是 ,总质量是5.4 kg,试分别求二氧化碳和氧 , 气的质量. 气的质量.
中国石油大学华东物理化学课件一律2-2,3(课堂)

恒温恒压相变过程
1molH2O(g)
100Cº、p
Vg
W
V2 V1
p外dV
p (Vg
Vl )
pVg nRT
(18.314373.15)J
3102.4J
如一定量的理想气体 V f (T , p)
dV
V T
dT p
V p
T
dp
⑤ 循环过程,任一状态函数的变化量都为零
状态函数特点:
异途同归,值变相等;周而复始,其值不变; 且满足单值、连续、可微。 3.状态方程
如理想气体状态方程 pV nRT
对一定量单组分流体系统(气体、液体系统)
T f ( p,V ) 或 V f (T , p)
② 对于一定量组成不变的均相流体(气体、液体)系统, 系统的任意宏观性质是另外两个独立的宏观性质的函数:
表示为: Z f (x, y)
RT 如理想气体方程 Vm p f (T , p)
③ 状态函数的变化量=终态的函数值−始态的函数值
如: T T2 T1
④ 状态函数的微小变化可用全微分表示
环境进行热传递。
2.功
① 定义: 热力学中,称除热以外其它各种形式传递的能量为功 , 用W表示
② 说明:a.功—过程函数,与过程有关;不同过程,功不同; 微量功用W表示 。
b.规定:系统对外做功为负,即W<0; 环境对系统做功为正,即W>0
c.单位:J,kJ
d.分类
体积功: 反抗外力作用下,系统由于体积变化而与环境交换的能量
同的过程传递的热不同,故微量热用Q示。 b.规定:系统吸热为正,即Q0;放热为负,即Q0。 c.单位:J;kJ d.分类: 物理过程热: 显热、 潜热(相变热)、溶解热、稀释热
大学物理答案第七章

(3)若沿过程曲线从a到c状态,内能改变为
应用热力学第一定律,系统所作的功为
7-3 2mol的氮气从标准状态加热到373 K,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?
分析根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.
分析气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率 .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.
解等温过程中系统所作的功为
7-92 m3的气体等温地膨胀,压强从 变到 ,求完成的功.
第七章热力学基础
7-1 假设火箭中的气体为单原子理想气体,温度为2000 K,当气体离开喷口时,温度为1000 K,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率 .已知一个原子质量单位=1.6605×10-27kg;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.
p
p22
p0等温线
1
p1
OV2V1V
图7-12
分析对于双原子理想气体,热容比 .不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.
大学物理热力学基础知识点及试题带答案

热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
大学物理:第七章 热力学定律

功
做功可以改变系统的状态
做功是系统与外界交换能量的一种方式 在热学中,它是外界有序运动能量与系
统无序运动能量间的转换。过程量
摩擦升温(机械功) 电加热(电功)
上海交通大学 物理系
准静态过程的功
dA PSdl PdV 若A>0系统对外界作功.
A dA v2 PdV v1
若A<0外界对系统作功
上海交通大学 物理系
准静态过程
可以用P-V图描述准静态的变化过程,这P-V图上的每 上点都可表示系统的一个平衡态。
准静态做功:气体膨胀过程
P
P1
P
P2
12
V1 V2 V
上海交通大学 物理系
准静态过程
作功是系统与外界交换能量的一种方式,是力 学相互作用下的能量转移。作功是通过宏观的 有规则运动来完成的。
上海交通大学 物理系
理想气体
严格满足玻意耳定律 pV = vRT
压强趋向于零极限状态下的气体
满足道尔顿分压定律 满足阿伏伽德罗定律 满足焦耳定律 U=U(T) 内能由系统的状态唯一地确定,并随状态变化而变化, 是状态的单值函数
E E(2) E(1)
上海交通大学 物理系
理想气体的内能 焦耳实验
上海交通大学 物理系
气体实验定律
关于气体热学行为的5个基本实验定律, 也是建立理想气体概念的实验依据。
玻意耳定律
盖·吕萨克定律 查理定律。 阿伏伽德罗定律 道耳顿定律
上海交通大学 物理系
§9.1 热力学第一定律
包括热现象在内的能量守恒和 转换定律
热力学第一定律
Q U2 U1 W
系统从外界吸热 Q
处于平衡态系统的内能是确定的;
大学物理课后习题答案(上下册全)武汉大学出版社 第7章 热力学基础习题解答

第7章 热力学基础7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩.7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程.C .A →D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多.7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ]A .对外作的净功为正值.B .对外作的净功为负值.C .内能增加了.D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功.B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体.C .不可逆过程就是不能向相反方向进行的过程.D .一切自发过程都是不可逆的.7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程.D .不可逆过程就是不能向相反方向进行的过程.7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 .C .S 1 < S 2 .D .无法确定. 题7-6图 7-7 理想气体进行的下列各种过程,哪些过程可能发生[ D ] A .等容加热时,内能减少,同时压强升高 B . 等温压缩时,压强升高,同时吸热 C .等压压缩时,内能增加,同时吸热 D .绝热压缩时,压强升高,同时内能增加7-8 在题7-8图所示的三个过程中,a →c 为等温过程,则有[ B ] A .a →b 过程 ∆E <0,a →d 过程 ∆E <0. B .a →b 过程 ∆E >0,a →d 过程 ∆E <0. C .a →b 过程 ∆E <0,a →d 过程 ∆E >0.D .a →b 过程 ∆E >0,a →d 过程 ∆E >0. 题7-8图7-9 一定量的理想气体,分别进行如题7-9图所示的两个卡诺循环,若在p V -图上这两个循环过程曲线所围的面积相等,则这两个循环的[ D ] A .效率相等.B .从高温热源吸收的热量相等.C .向低温热源放出的热量相等.D .对外做的净功相等. 题7-9图7-10一定质量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热__500__ J ;若为双原子分子气体,则需吸热__700___ J 。
热力学统计物理_第七章_玻耳兹曼统计

ln Z ' S S Nk ln Z
ln Z S' S Nk ln Z U Nk ln N S ' N k N ln N N U S '
Z1 l e l
l
粒子 配分 函数
1 kT
热统 西华大学 理化学院
e
N Z1
6
2、粒子配分函数的物理意义
粒子处在该 能级的几率
有效状 态数
N l al l e Z1
玻耳兹 曼因子
al l e N Z1
l
l e l e
S k N ln N N U S '
lnMB N ln N N U
lnFD lnBE N U N
S MB k ln MB
e ' S k ( N ln N N ) Nk ln N
14 热统 西华大学 理化学院
我们已经学习了什么?
1、粒子运动状态的描述
经典粒子:-空间、相轨道的概念、 量子粒子:量子数、可能量子状态数目的计算
2、系统微观状态的经典和量子描述
经典系统:-空间中的N个点 量子系统:定域和非定域、全同性、统计特性
3、等几率原理
平衡状态下系统的任何微观状态出现的几率都相等
4、系统的微观状态数 目的计算及其关系
对于遵从玻尔兹曼分 U=-N lnZ 布的定域系统、满足 经典极限条件的玻色、 费米系统,从玻尔兹 N Y - lnZ 曼分布得到系统的内 y 能和广义力的统计表 达式: 可分辨粒子系统:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCPV0
1
VCPV
n=0 n=
多方过程 PVn C (n为多方指数)
气体内进行的实际过程 一般情况可以多方指数为 1 n 多方过程近似代表。
例1:0.02kg的氦气(视为理想气体),温度由17℃升
为27℃,若在升温过程中,(1)体积不变;(2)压强
不变;(3)不与外界交换热量。
试分别求出气体内能的改变、吸收的热量、外界对气体
2) QcaAcaEc a
C ቤተ መጻሕፍቲ ባይዱQ dT
1)物质有关 2)过程有关
等体(等容)摩尔热容:(1mol物质)
dV 0 dA 0 p b.T2
dQ = dA + dE
dQdEi RdT 2
o
a.T1
V
CV
dQi R dT 2
等压摩尔热容:(1mol物质)
p
1.
.2
dQ dE dA
i RdTPdV 2
o V1
V2 V
等压摩尔热容:(1mol物质)
准静态过程 (quasi-static process)
一个过程,如果任意
时刻的中间态都无限接近
于一个平衡态,则此过程
为准静态过程。
R 电源
第七章 热力学基础 研究对象: 热力学第零定律 理想气体 热力学第一定律 平衡态 热力学第二定律 准静态过程
宏观运动能量
热运动能量
机械能引起系统热运动状态的变化 .
程 p1T c''
AV V 12PdV P1V1V V 12dVVpp1
1(p1,V1,T1)
Q0
P1V1 P2V2 1
p2
o V1
(p2,V2,T2) 2
V2 V
第二节 热力学第一定律对理想气体的应用
绝热线和等温线:
绝热过程曲线的斜率
p
T 常量
Q0
p A papT A C
B
pV 常量
pV 1dVVdp0
(ddVp)a
pA VA
等温过程曲线的斜率
o V A V V B V
绝热线的斜率大于等温 线的斜率.
pV常量
pdVV dp0
( dp dV
)T
pA VA
2、常见过程 等容过程 dV=0
等压过程 dP=0
等温过程 dT=0
绝热过程 dQ=0
等温过程 PVC
n=1
绝热过程 PV C
n=
等压过程 等容过程
热量
分子热运动
分子热运动
通过传热方式引起系统热运动 状态的变化
功与热量的物理本质不同 . 热功当量:1卡=4. 18J
R 电源
系统吸收的热量 摩尔热容C —— 1摩尔物质温度升高(或降低) 一度所吸收(或放出)的热量。
若气体的摩尔数为,气体的温度T1T2
气体吸收的热量 QC (T 2T 1)
若从外界吸收热量 dQ , 温度升高 dT
3)若Ead=40J,试求沿ad及dc过程各吸收热量多少?
解:1) Qab c Aab cΔaEc
P
Δ a c E Q ab A c ab 3 c 5 1 0 2 2J 6 2
b
c Qad c Aad cΔaEc
4 2222 46 J6
a
d 2)QcaAcaEca
V 8 4 22 3 4J 0
p 2
.II
o V1
V2 V
4、绝热过程(adiabatic process) 特点:dQ=0
绝热套
A E0
AEM mCVT2T1
PdVM mCVdT
PdVVdPmRdT
消去dT
M
Cp CVR
(C VR )Pd V C V VdP
分离变量得
dP dV 0 PV
绝 热 方
PV c
V1Tc'
PV C
Q =A + △E
Q—外界向系统传递的热量 (吸热Q>0,放热Q<0)
A—系统对外作的功 (对外作功 A>0,外界对系统作功A<0)
△E—系统的内能的增量 △E=E末E初
QC (T 2T 1)
dQCdT
V2
A PdV
dAPdV
V1
i
EE2E1M m2iRT2T1
dE RdT 2
例1 、p249 7-1一系统如图所示,由a沿abc到达c有 350J的热量传入系统,系统对外作功126J。 1)若沿adc时,系统作功42J,系统吸收多少热量? 2)当系统由c沿曲线ca返回a时,外界对系统作功84J, 系统是吸热还是放热?
A0;QΔE
(2)P=C
QM mCp(T2 T1) M mi22R(T2T1)
EM mCv(T2 T1)
1.04 130J
AQE41J7
M m2i R(T2 T1)
A外A41J7
(3)Q=0
00.0 .0022 348.3 11062J3E62J3
A外AE62J3
1、热力学第一定律 (first law of thermodynamics)
p
1、等体过程(isochoric process)
b.T2
特点: dV 0 dA 0
QEM mCVT2T1 o
a.T1
V
过程方程 : VC
2、等压过程(isobaric process) 特点: dP 0
p
APV 2V 1
热源Qp
1.
o V1
.2
EM mCVT2T1
V2 V QM mCPT2T1
过程方程 P=C
第七章 热力学基础
研究对象:
(basic of thermodynamics)
理想气体
热力学第零定律--温度(temperature) 热力学第一定律—能量守恒和转换定律
平衡态 准静态过程
热力学第二定律—热力学过程方向性的规律
热力学过程——当系统的状态(P、V、T等)
随时间变化时,我们就说系统在经历一个热 力学过程,简称过程。
p
dQ dEdA iRdTPdV 1. .2
2
PVRT
0
o V1 V2 V
PdV Vd R PdT 摩尔热容比:
PdV RdT dQi RdTRdT
γ CP i 2
Cv i
2
单原子分子:
Cpd dQ T (2 i1)RCVR
观察P252 图7-5 表7-1
γ 5 1.67 3
二、理想气体常见的等值过程
3、等温过程(isothermal process )
特点: E=0 功和热量:Q=A
QAE
Q T
A
V2
V1
Pd
V
(PV mRT) M
T 恒温大热源
M m VV12
RTdV V
m RTlnV2
M
V1
(P1V1P2V2)
RT ln P1 P2
p
p1 .I
过程方程:PV=RT=常量 P-V图一条双曲线,称为等温线
所作的功。
(2)P=C
(解1:)HVe=单C原 子A 分 子0;i=Q 3 ΔEQM mCp(T2 T1)
m EMCv(T2 T1)
M mi22R(T2T1)
M m2i R(T2 T1)
0.0238.3 11062J3
1.04 130J
EM mCv(T2 T1)
0.0024
解:He单原子分子 i=3 (1)V=C