空气动力学基础

合集下载

航空航天工程师的航天器空气动力学

航空航天工程师的航天器空气动力学

航空航天工程师的航天器空气动力学航空航天工程师在设计、制造和测试航天器时,空气动力学是一个至关重要的领域。

它涉及到航天器在大气中的运动和稳定性,以及空气对航天器的影响。

本文将重点介绍航天器空气动力学的基础知识和应用。

一、空气动力学基础空气动力学是研究物体在空气中运动的学科,对于航天器而言,它主要关注以下几个方面:1. 升力(Lift)和阻力(Drag)升力是航天器受到的垂直向上的力,它使得航天器能够在大气中飞行。

阻力则是与运动方向相反的力,它消耗航天器的能量。

航天器的设计需要通过合适的空气动力学原理来获得足够的升力和降低阻力。

2. 气动力系数气动力系数是衡量航天器受到空气力影响的参数。

常见的气动力系数有升力系数(Cl)和阻力系数(Cd)。

它们与航天器的气动外形、攻角以及空气性能密切相关。

3. 攻角(Angle of Attack)攻角是航天器前进方向与气流方向之间的夹角。

适当的攻角能够产生更大的升力,但过大的攻角会引发空气动力学失稳。

二、航天器的空气动力学设计航天器的空气动力学设计要考虑许多因素,包括以下几个方面:1. 气动外形航天器的气动外形决定了它在空气中的运动特性。

合理的气动外形可以减小阻力,提高升力,并确保航天器的稳定性和控制性。

2. 稳定性和控制性稳定性是指航天器在运动中维持平衡的能力,而控制性则是控制航天器运动的能力。

航天器的空气动力学设计应该使其具备良好的稳定性和控制性,从而实现预定的任务目标。

3. 气动力参数的计算与优化通过数值模拟和实验测试,航空航天工程师可以计算和优化航天器的气动力参数。

这有助于预测和改善航天器的性能,并提供参考数据供设计师参考。

三、航天器的空气动力学测试航天器的空气动力学测试是确保设计满足要求的重要环节。

以下是一些常见的测试方法:1. 风洞测试风洞测试是通过模拟真实的大气流场,对航天器进行静态或动态的空气动力学性能测试。

它可以提供航天器在各种飞行条件下的气动性能数据。

空气动力学基础 安德森 双语

空气动力学基础 安德森 双语

空气动力学基础安德森双语《空气动力学基础:安德森双语》1. 引言空气动力学是研究飞行器在空气中运动的力学原理,它对于航空航天工程领域有着深远的影响。

本文将以经典教材《空气动力学基础》(Fundamentals of Aerodynamics)为依据,结合安德森(John D. Anderson)提出的双语教学理念,深入探讨这一领域的基础知识。

2. 空气动力学基础概述2.1 空气动力学的定义与重要性2.2 安德森对于双语教学的理念解读2.3 《空气动力学基础》这一教材的特点和优势3. 空气动力学基本理论3.1 气体动力学方程及其意义3.2 麦克斯韦方程组在空气动力学中的应用3.3 安德森对于这些基本理论的教学方法4. 飞行器设计中的应用4.1 对于飞行器气动设计的要求4.2 安德森双语教学对于多国家工程师的启发4.3 气动优化在飞行器设计中的应用实例5. 个人观点与总结5.1 对于双语教学的认识与体会5.2 空气动力学基础对于航空航天领域的重要性5.3 对于《空气动力学基础》教材的个人评价在学完《空气动力学基础》这门课之后,我对于这一领域有了更加深入的理解。

安德森提出的双语教学理念不仅让更多的学生能够接触和学习到这一知识,也为多国家的工程师们带来了更多的启发与帮助。

希望未来能够看到更多的优质教材以及教学方法的出现,推动航空航天领域的发展与进步。

空气动力学是航空航天领域的核心学科之一,它研究飞行器在空气中的运动和受力情况。

在现代航空航天工程中,空气动力学的理论基础和应用技术被广泛应用于飞行器的设计、制造和运行中。

本文将继续深入探讨空气动力学基础的相关内容,并结合安德森提出的双语教学理念进行进一步的思考和解析。

在空气动力学基础概述部分,我们已经介绍了空气动力学的基本定义和重要性,以及安德森对于双语教学的理念解读。

空气动力学是研究飞行器在空气中受到的气动力学影响,包括升力、阻力和推进力等。

它对于飞行器的设计、性能和稳定性具有重要的影响。

空气动力学基础理论及应用

空气动力学基础理论及应用

空气动力学基础理论及应用空气动力学是研究空气对运动物体产生影响的学科,它是航空、航天、汽车、建筑等领域的重要基础理论。

空气动力学研究的对象是运动物体在空气中受力和运动状态等问题,这些问题涉及空气流动、气体压力、动量、能量等物理量。

本文将从空气动力学的基础理论、空气动力学在航空领域的应用以及未来的发展趋势三个方面进行探讨。

一、空气动力学基础理论1.1 空气的基本物理性质空气是由各种气体混合在一起形成的,其中最主要的成分是氮气、氧气和二氧化碳。

空气的物理性质包括密度、粘度、温度等等。

1.2 空气流动的基本形式空气流动包括定常流动和非定常流动,定常流动是指空气流动状态不随时间变化或是很缓慢地随时间变化,如静止空气中飞机飞行时的气流;非定常流动是指空气流动状态随时间变化而变化,如气象条件不断变化导致的气流。

1.3 空气动力学力学模型空气动力学力学模型分为二维模型和三维模型,二维模型是指将空气流动看作平面二维的,可以用二维平面的流体力学模型来描述;三维模型则是指考虑空气流动在三个维度上的变化,需要用三维流体力学模型来描述。

1.4 推导气体静压力公式静压力是指空气在物体表面上所产生的压力,它可以用气体动力学的基本理论,即流体静力学的连续性方程、动量守恒方程和能量守恒方程来推导出。

例如,对于一个静止的物体而言,其表面上的静压力可以表示为:P = ρgh其中,P表示静压力,ρ表示空气密度,g表示重力加速度,h表示物体表面上某一点与大气之间的距离。

二、空气动力学在航空领域的应用2.1 飞机的气动设计飞机的气动设计是指根据空气动力学的基本理论,对飞机的机翼形状、机身结构等进行设计,以便能够有效地减小空气阻力,并且能够更好地实现飞机的稳定飞行。

气动设计一般包括很多方面的内容,如翼型选取、机身布局设计、飞行控制系统设计等等。

2.2 飞行稳定性和控制飞行稳定性和控制是指在飞机受到外来干扰时,如何通过飞机自身的特性来保持飞行的稳定性和控制性,以便能够平稳地飞行。

空气动力学基础知识什么是空气动力学

空气动力学基础知识什么是空气动力学

空气动力学基础知识什么是空气动力学空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。

以下是由店铺整理关于空气动力学基础知识的内容,希望大家喜欢!空气动力学的分类通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度、温度、压力和密度等参量的变化规律,飞行器所受的升力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。

从这个意义上讲,空气动力学可有两种分类法:1)根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。

通常大致以400千米/小时(这一数值接近于地面1atm,288.15K下0.3Ma的值)这一速度作为划分的界线。

在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。

大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。

这种对应于高速空气动力学的流动称为可压缩流动。

2)根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。

除了上述分类以外,空气动力学中还有一些边缘性的分支学科。

例如稀薄气体动力学、高温气体动力学等。

空气动力学的研究内容在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、升力线理论、升力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。

在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动(压缩波与膨胀波的基本关系模型及其函数模型)、锥型流,等等。

空气动力学的基础理论

空气动力学的基础理论

空气动力学的基础理论空气动力学是研究物体在空气中运动的科学,它对飞行器设计与性能优化具有重要意义。

本文将从空气动力学的基础理论入手,介绍气动力、流体力学以及相关的实验方法。

一、气动力学基本概念气动力学是研究运动物体与周围气流相互作用的学科,其中重要的概念包括气动力和气动力系数。

气动力是指空气对物体施加的力。

根据牛顿第二定律,物体所受的气动力与其质量和加速度成正比,与气流速度和密度有关。

气动力可分为升力和阻力两个方向,其中升力垂直于气流方向,使飞行器产生升力;阻力平行于气流方向,使飞行器受到阻碍。

气动力系数是将气动力与流体的速度、密度、物体特性等无量纲化的比值,是空气动力学研究中常用的参考指标。

常见的气动力系数有升力系数、阻力系数、升阻比等。

二、流体力学基本原理在空气中运动的物体受到空气流体的阻力和升力的影响,因此了解流体的基本原理对于理解空气动力学至关重要。

1. 理想流体模型理想流体模型假设流体是无黏性、无旋转、不可压缩的。

在此假设下,流体的运动可以通过欧拉方程或伯努利方程来描述。

欧拉方程描述了流体中的速度和压力分布。

通过欧拉方程,可以研究不可压缩理想流体的运动状态。

伯努利方程描述了流体在不同区域的速度、压力和高度之间的关系。

伯努利方程表明,当流体速度增大时,压力将下降,反之亦然。

2. 边界层理论在实际气流中,流体的黏性导致了边界层的存在。

边界层是沿着固体表面形成的流速逐渐变化的一层流体。

边界层理论通过分析边界层的速度分布和压力分布,研究物体与流体之间的摩擦力和压力分布。

边界层厚度和摩擦阻力是设计飞行器时需要考虑的重要因素之一。

三、空气动力学实验方法实验方法在研究空气动力学中起着关键作用,通过实验可以验证理论模型,并为飞行器的设计和改进提供依据。

1. 风洞实验风洞实验是模拟真实空气流动场景的方法之一。

通过在风洞中放置模型,可以获得模型在不同风速下的升力和阻力等数据,从而分析空气动力学性能。

2. 数值模拟数值模拟是使用计算机模拟和解析相关方程来研究空气动力学。

空气动力学知识点总结

空气动力学知识点总结

空气动力学知识点总结一、概述空气动力学是涉及空气对物体运动产生的力学现象的学科,是研究空气的流动和物体在空气中运动时所产生的力及其相互作用的学科。

空气动力学在现代工程设计、航空航天、交通运输、建筑设计、气象学等领域都有广泛的应用。

二、基本概念1.空气动力学基础学科:空气动力学是理论力学、气体力学、热力学、流体力学等多个领域交叉的学科。

2.气动力学:指空气运动对物体所产生的力学效应和物体所受的力学反作用。

3.机翼:是创造升力的部分,承受飞行器全部重量的部分。

4.升力:是指在流体中飞行的物体所受的上升力。

5.阻力:是指在流体中移动的物体所受的阻碍力。

三、空气动力学的应用1.飞行器在飞行器方面的应用,空气动力学的重要性相当突出。

要使飞机的设计、制造、试验及飞行达到令人安全放心的水平,必须依靠空气动力学的理论和方法。

2.轮船船的航行速度直接受到水流的阻力,而气体在飞行器上产生的阻力同样发生在船身上,空气动力学理论可用于轮船的设计和制造。

3.高速列车在铁路运输领域,高速列车的瞬息万变的空气动力学作用是影响其行驶稳定性和运输安全的重要因素。

4.建筑设计在建筑领域中,从设计建筑物的表面阻力与表面空气动力学特征,到楼宇的空气流体力学设计以及可持续建筑的改进,空气动力学在建筑设计上的作用愈发重要。

5.运动器材设计在运动器材设计方面,空气动力学可用于设计高尔夫球头、拉力器、船桨、滑翔机等不同型号和用途的器材。

四、空气动力学知识点总结1.空气动力学的研究对象,包括流体的流动状态、物体的运动状态以及流体和物体之间的相互作用。

2.气体的运动状态与流速、压力、温度和密度等相关。

3.常用的空气动力学运动模型,包括旋转圆盘模型、圆柱模型、球模型、机翼模型等。

4.空气动力学方程主要有牛顿运动定律、伯努利定理、连续性方程、动量守恒方程、热力学第一定律等。

5.空气动力学实验包含风洞实验,飞行器模型的地面试验,飞行器在空中的试飞试验等。

空气动力学基础知识

空气动力学基础知识

空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。

空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。

空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。

根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。

在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。

空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。

这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。

空气动力学的理论基础及实用方法

空气动力学的理论基础及实用方法

空气动力学的理论基础及实用方法空气动力学是研究气体在流体力学背景下的运动和力学行为的学科。

他是现代航空、天空科学中发展最快、知识量最大的分支之一,伴随着人类勇攀高空和深空的追求,空气动力学的发展也变得格外重要。

本文将从空气动力学的理论基础和实用方法两方面进行探讨。

一、理论基础1. Reynold数海洋的浪花漫过了沙滩,空气在空中飘荡。

然而,对于运动的物体而言,无论它们是飞机或者是汽车,来自气流的阻力就会阻碍物体前进的速度。

对于能够调整它们的运动方式,减少阻力的机制而言,Reynold数就是理论基础中的重要参数。

Reynold数可以看作是“速度除以粘性系数的比值”,用来判断气体是否可以被视为一层不可压缩的物质。

具体而言,如果Reynold数小于2100,那么气流被视为层流;如果Reynold数大于4000,那么气流被视为湍流;如果在2100和4000之间,则转换区域并不稳定,需要使用难度更大的数学公式进行分析。

2. 化学反应在空气动力学中,化学反应同样是理论基础的重要组成部分。

一些创新的技术,如喷水等操作,都是基于控制化学反应过程来实现的。

例如,在涡流喷气发动机(turbofan)中,高压气流经过燃料喷嘴时,与燃料相互作用,产生高能量燃烧反应,从而提供大量的推力。

但是,要了解从燃料到推力的过程涉及到大量的化学和物理学知识,这些学科相互依存,彼此交错。

因此,在工程领域中实际应用这些基础理论时,必须进行准确和细致的计算和论证。

3. Navier-Stokes方程Navier-Stokes方程是描述气动力学现象的一组完整的方程式。

它是描述空气运动、热、质量传递和化学反应的主要背景,几乎出现在每个研究气动力学问题的工程师和科学家的笔记本上。

Navier-Stokes方程的组合与运动物体的物理性质相互交互,为研究气动力学现象打下了基础。

二、实用方法1. 试验试验是空气动力学研究的中心,通过对实际的研究对象进行测量和分析,来验证和完善理论预测。

空气动力学基础知识

空气动力学基础知识

3、中间层


中间层是在平流层之上,其顶端离地面的高度 大约为80~100公里。 中间层的特点: 1)随着高度的增加,空气的温度先升后降 中间层的气温,当高度增加到45公里时,由35 公里时的-56.5℃增加到40℃左右,再随着高度的 增加,到80公里时,温度降低到-65.5℃以下。 2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。 这层空气不利于飞机飞行,只有探空气球飞行。

四、国际标准大气(表)

飞机的飞行性能与大气状态(温度、气压、 密度等)密切相关,而大气状态是瞬息多变的, 为了便于比较飞机的飞行性能,就必须以一定 的大气状态作为衡量标准。国际航空协会组织 参照中纬度地区(北纬35º ~60º 之间)大气状态的 平均值,订出了大气的状态数值,作为计算和 试验飞行器的统一标准,以便于对飞机、发动 机和其他飞行器的试飞结果和计算结果加以比 较。处于这种状态下的大气,我们叫国际标准 大气。

2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。 影响空气压缩性的主要因素: 1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。 2) 空气的温度(t)。空气的温度越高, 空气的密度变化越小(或密度减小的越少) , 空气不易压缩(或空气的压缩性减小)。



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

空气动力学的基础理论与应用

空气动力学的基础理论与应用

空气动力学的基础理论与应用空气动力学是研究物体在空气中运动时,所受到的气动力及其作用性能的科学。

自人类研制飞行器以来,空气动力学便成为飞行器设计和研究的重要领域。

但实际上,空气动力学研究的范围远不止飞行器,还适用于汽车、高铁、桥梁等领域。

本文将介绍空气动力学的基础理论和应用。

一、空气动力学的基础理论1.流体力学空气动力学的基础理论是流体力学,它主要研究流体的运动方式和运动规律。

在空气动力学中,流体大多指气体。

气体的流动可以分为层流和湍流。

层流指气流的运动呈现平滑的状态,流线整齐,速度分布均匀,剪应力小。

而湍流则是气流的运动方式呈现混沌、无规律的状态,流线混乱,速度分布不均匀,剪应力大。

2.空气动力学基本方程空气动力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述的是气体内部质量的守恒。

动量守恒方程描述的是气体内部动量的守恒。

能量守恒方程描述的是气体内部能量的守恒。

这些方程组成了解决气体流动问题的数学基础。

3.气动力学气动力学研究物体在空气中运动时所受到的气动力。

气动力可以由压力力和剪力组成。

气体静压力是气体由于分子速度和数密度变化产生的压力。

气体剪切力是气体分子之间的相互作用力,作用在物体表面上。

二、空气动力学的应用1.飞行器在飞行器设计中,空气动力学是不可或缺的。

飞行器的气动外形和气动力性能的研究需要应用空气动力学的基础理论和计算方法。

在工程实践中,需要进行气动计算、模拟和试验研究,以验证新型设计的气动性能,并进行数据分析和优化。

2.汽车汽车空气动力学研究主要是优化车身外形和改善车辆的空气动力性能。

优化车辆外形可以提高燃油效率、降低汽车空气阻力、提高安全性和稳定性。

在汽车设计中,也需要进行气动计算、模拟和试验研究,以验证新型设计的气动性能,并进行数据分析和优化。

3.高铁高铁空气动力学研究主要是优化列车外形和改善列车的空气动力性能。

在高速列车行驶过程中,空气阻力对列车运行速度和能源消耗有着重要影响。

空气动力学基础知识

空气动力学基础知识
20世纪创建完整的空气动力学体系:儒可夫斯基、普朗 特、冯卡门、钱学森等,包括无粘和粘性流体力学。 1903年莱特兄弟实现飞行,60年代计算流体力 学。。。。。。
分类:
低速 亚声速 跨声速 超声速(高超)
稀薄气体空气动力学、气体热化学动力学、电磁流体力 学等
工业空气动力学
研究方法:
(1)流体微团: 空气的小分子群,空气分子间的自由行程与飞行器相 比较 太小,可忽略分子的运动
(2)流线:
一、流场(续)
(3)流管:
多个流线形成流管
管内气体不会流出
管外气体也不会流入,不同的截面上,流量相同
(4)定常流:
流场中各点的速度、加速度以及状态参数等只是几
何位置的函数,与时间无关
(5)流动的相对性
质量守恒原理在流体力学中的应用
或写成:
d dV dA0 V A
VAm(常数)
在连续V小方、程小:范围内常 数 , d0 A大,V小
VA常数 A小,V大
三、伯努里方程(能量守恒定律)
在低速不可压缩的假设下,密度为常数
伯努里方程: 其中:p-静压,
p1V2 C(常数)
2
1/2V2 — 动压,单位体积的动能,与高
四、飞机的操纵机构
飞机:升降舵、方向舵、副翼及油门杆 导弹:摆动发动机喷管,小舵面 1.升降舵偏转角e
后缘下偏为正,产生正升力,正e产生负俯仰力矩M 2.方向舵偏转角r 方向舵后缘左偏为正,
正r产生负偏航力矩N 3.副翼偏转角a
右副翼后缘下偏 (左副翼随同上偏)为正 正a产生负滚转力矩L
五 、弹飞行运动的特点
刚体飞机,空间运动,有6个自由度:
三质、心飞x、行y、器z线运运动动的(自速度由增度减,升降,左右移动)

空气动力学基础原理与应用

空气动力学基础原理与应用

空气动力学基础原理与应用空气动力学是研究空气流动对物体运动和空间结构影响的学科,它是现代工程学和航空航天工程的重要组成部分。

在工程和技术应用中,空气动力学被用于设计和优化飞行器、汽车、摩托车、建筑物、桥梁等结构。

本文将介绍空气动力学的基础原理和应用。

一、气体动力学基础气体动力学是空气动力学的基础,研究气体的流动和力学特性。

气体的动力学性质包括压力、密度、速度和温度等参数,这些参数随着空气流动而发生变化。

气体的流动可以分为层流和湍流两种状态。

在层流状态下,气体流动沿着一条直线或曲线运动,并具有稳定和预测性。

在湍流状态下,气体流动呈现为混沌状态,具有不可预测性和不规则性。

二、空气动力学的基本原理空气动力学的基本原理包括如下几个方面:1、伯努利定理伯努利定理是空气动力学的核心原理之一,它描述了气体在不同速度下的压力变化规律。

伯努利定理认为,在气体流动过程中,流速越大,压力越低,反之亦然。

在翼型表面上,气流在表面上方流动的速度比表面下方流动的速度快,因此表面上方的压力低于表面下方的压力。

这种压力差产生的升力是翼型飞行的基础。

2、牛顿定律牛顿定律是描述力学系统的基本原理之一。

在空气动力学中,牛顿定律用于分析物体在气流中运动的动力学行为。

牛顿第一定律认为,除非受到外力的作用,物体将保持匀速直线运动或静止状态。

牛顿第二定律则描述了物体在受到外力作用下的加速度。

在空气动力学中,牛顿定律用于分析物体在气流中所受的阻力和升力。

3、概率论及分布函数在空气动力学中,概率论和分布函数应用十分广泛。

概率论和统计学方法被用于研究气体流动的随机过程和不确定性。

分布函数则用于描述气体动力学参数的变化情况,如速度、压力、密度等参数的空间和时间分布情况。

三、空气动力学的应用空气动力学的应用范围十分广泛,包括下列几个方面:1、航空航天工业航空航天工业是空气动力学的主要应用领域之一。

在飞行器设计和优化中,空气动力学可以帮助设计师选择和优化翼型和飞行速度等参数,以达到最佳的升阻比和燃料效率。

空气动力学与飞行原理,基础执照考题

空气动力学与飞行原理,基础执照考题

空气动力学与飞行原理,基础执照考题一、引言空气动力学是研究气体在物体表面周围的运动规律与变化的学科,它是航空学的重要基础学科。

本文将会介绍空气动力学的相关知识,以及飞行原理的基础考题,希望能够对相关人员的学习和工作有所帮助。

二、空气动力学基础知识1. 常用的气体状态方程气体状态方程是描述气体状态的基本方程之一。

常用的气体状态方程有理想气体状态方程、实际气体状态方程和状态方程拟合公式等。

其中最常用的是理想气体状态方程,其公式为:P * V = n * R * T其中,P为气体的压力,V为气体的体积,n为气体的物质量,T为气体的温度,R为气体常数。

2. 卡门涡旋卡门涡旋是指在涡旋流场中,由于流体的离心作用而形成的特殊流线。

在卡门涡旋的中心区域内,压力很低,而旋涡周围则会产生相应的高压区域。

3. 粘性流体与雷诺数粘性流体的特点是它的运动状态与时间有关,它的运动越迅速,粘度就越容易被忽略。

而雷诺数则是描述流体状态的参数之一,基本上是将惯性力和粘性力进行比较,当雷诺数很小时,粘性力的作用越来越重要。

三、飞行原理基础考题1. 机翼的气流分离声音机翼的气流分离声音是发生在某些飞机上的声音,这种声音是由于机翼表面的气流向后分离造成的。

当气流分离之后,将会在空中形成一束漩涡,是附着在机翼后缘的一个封闭的环形。

当这个漩涡碰到空气时,就会发出气流分离声音。

2. 空气动力学的基本公式空气动力学的基本公式可以用来描述机翼产生升力的物理过程,公式如下:L = ½ * p * V^2 * S * Coefficient of Lift其中,L为机翼产生的升力,p为空气密度,V为飞机的速度,S为机翼的面积,Coefficient of Lift为升力系数。

3. 异常气流对飞行的影响飞行中的异常气流可以对机体产生严重的影响,如:•微气流会导致飞机在空中晃动;•龙卷风会导致飞机失去控制;•空气湍流会对机体产生危险的区域颠簸。

空气动力学基础知识

空气动力学基础知识

1第一章空气动力学基础知识(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第四单元飞机与飞机系统第一章空气动力学基础知识大气层和标准大气地球大气层地球表面被一层厚厚的大气层包围着。

飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。

根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。

对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。

对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。

大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。

另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。

对流层内空气的组成成分保持不变。

从对流层顶部到离地面约30公里之间称为平流层。

在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。

同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。

同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。

中间层从离地面30公里到80至100公里为止。

中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。

在这一层中,温度先随高度增加而上升,后来又下降。

中间层以上到离地面500公里左右就是电离层。

这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。

在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。

空气动力学基础

空气动力学基础
流体流过流管时,在同一时间流过流管任意截面的 流体质量相等。
质量守恒定律是连续性定理的基础。
第二章 2第1 页
●连续性定理
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1 同理,单位时间内流过截面2的流体质量为 2 v2 A2
第二章 4第3 页
●驻点和最低压力点
A点,称为驻点,是正压最大的点,位于机翼前缘附近,该处气流 流速为零。
B点,称为最低压力点,是机翼上表面负压最大的点。
第二章 4第4 页
② 坐标表示法
从右图可以看出,机翼升力的产 生主要是靠机翼上表面吸力的作用, 尤其是上表面的前段,而不是主要靠 下表面正压的作用。
本章主要内容
2.1 低速空气动力学 2.2 升力 2.3 阻力 2.4 增升装置的增升原理
第二章 第1 页
2.1 空气流动的描述
空气动力是空气相对于飞机运动时产生的,要学习 和研究飞机的升力和阻力,首先要研究空气流动的基 本规律。
第二章 第3 页
2.1.1 流体模型化
① 理想流体,不考虑流体粘性的影响。 ② 不可压流体,不考虑流体密度的变化,Ma<0.4。 ③ 绝热流体,不考虑流体温度的变化,Ma<0.4。
③ 与动压、静压相关的仪表
空速表
高度表
第二章 3第2 页
升降速度表
●空速表
第二章 3第3 页
●升降速度表
第二章 3第4 页
●高度表
第二章 3第5 页
本章主要内容
2.1 空气流动的描述 2.2 升力 2.3 阻力 2.4 飞机的低速空气动力特性 2.5 增升装置的增升原理

空气动力学基础

空气动力学基础

空气动力学基础空气动力学是研究空气对物体的作用力和物体在空气中运动规律的学科。

它在航空航天工程中起着重要的作用。

本文将介绍空气动力学的基本概念、主要原理和应用。

一、空气动力学概述空气动力学是围绕着气体流动学和力学展开的学科,主要研究气体与物体相互作用产生的力以及物体在气体中的运动。

空气动力学基础理论包括气体流动方程、边界条件和流场特性等。

它是航空航天工程设计和性能分析的重要依据。

二、空气动力学原理1. 气体流动方程空气动力学中的主要流动方程是连续性方程、动量方程和能量方程。

连续性方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。

2. 升力和阻力在运动中的物体受到空气的作用力,其中最重要的是升力和阻力。

升力使得物体能够克服重力向上运动,而阻力则阻碍物体的运动。

这两个力的大小和方向与物体的形状、速度和气体性质等有关。

3. 测试和模拟为了研究物体在空气中的行为,人们通常会进行实验和数值模拟。

实验方法包括风洞试验和模型试飞等,而数值模拟则利用计算机技术对气体流动进行数值计算和模拟。

三、空气动力学应用1. 飞行器设计空气动力学是飞行器设计的重要基础。

通过研究飞行器在不同速度和高度下的空气动力学特性,可以优化飞行器的外形设计,提高其升阻比,提高飞行效率和安全性。

2. 空气动力学仿真使用计算机模拟和仿真技术,可以在设计阶段对飞行器进行空气动力学分析。

这样可以预测飞行器在各种工况下的性能和稳定性,指导设计改进。

3. 空气动力学研究空气动力学研究不仅应用于飞行器设计,还广泛用于其他领域,如汽车、建筑物和体育器材等的设计和优化。

通过研究空气动力学原理,可以改进产品性能,提高安全性和舒适度。

四、结论空气动力学作为研究物体在空气中运动的学科,对于航空航天工程和其他领域的设计和性能分析至关重要。

通过学习空气动力学的基本概念和原理,并运用到实际应用中,可以推动科技的进步,提升产品的质量和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
结论:空气流过一流管时,流速大小与截面积成反比。
河水在河道窄的地方流
●日常的生活中的连续性定理 得快,河道宽的地方流
得慢 山谷里的风通常比平原大
高楼大厦之间的对流 通常比空旷地带大
24
1.6 伯努利定理
同一流管的任意截面上,流体的静压与动压之和保 持不变。
能量守恒定律是伯努力定理的基础。
25
质量守恒定律是连续性定理的基础。
22
●连续性定理
1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1 同理,单位时间内流过截面2的流体质量为 2 v2 A2
则根据质量守恒定律可得:
1 v1 A1 2 v2 A2 即 v1 A1 v2 A2 C常数
28
●深入理解动压、静压和总压 同一流管: 截面积大,流速小,压力大。 截面积小,流速大,压力小。
29
●伯努利定理适用条件
➢ 气流是连续、稳定的,即流动是定常的。 ➢ 流动的空气与外界没有能量交换,即空气是绝热的。 ➢ 空气没有粘性,即空气为理想流体。 ➢ 空气密度是不变,即空气为不可压流。 ➢ 在同一条流线或同一条流管上。
41
●升力的产生原理
P1
1 2
v12
P0
P1 v1
P2 v2
P2
1 2
v22
P0
P1
1 2
v12
P2
1 2
v22
v1 v2
P1 P2
42
●升力的产生原理
上下表面出现的压力差,在垂直于(远前方)相对气 流方向的分量,就是升力。
机翼升力的着力点,称为压力中心(Center of Pressure)
30
1.7 连续性定理和伯努利定理的应用
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2
v2 2P1 P2 / 1 A22 / A12
v1
v2
A2 A1
文邱利管测流量
1 2
v12
P1
1 2
v22
P2
31
② 空速管测飞行速度的原理
1 2
v2
P
P0
v
2(P0 P) 32
12
●相对气流方向是判断迎角大小的依据
平飞中,可以通过机头高低判断迎角大小。而其他飞 行状态中,则不可以采用这种判断方式。
13
●水平飞行、上升、下降时的迎角
上升
平飞
下降
14
●迎角探测装置
15
1.4 流线和流线谱
空气流动的情形一般用流线、流管和流线谱来描述。 流线:流场中一条空间曲线,在该曲线上流体微团的 速度与曲线在该点的切线重合。对于定常流,流线是 流体微团流动的路线。
➢ 物体形状不同,空气流过物体的流线谱不同。
➢ 物体与相对气流的相对位置(迎角)不同,空气流 过物体的流线谱不同。
➢ 气流受阻,流管扩张变粗,气流流过物体外凸处或 受挤压 ,流管收缩变细。
➢ 气流流过物体时,在物体的后部都要形成涡流区。
21
1.5 连续性定理
流体流过流管时,在同一时间流过流管任意截面的 流体质量相等。
1 2
v2—动压,单位体积空气所具有的动能。这是一种附加的压
力,是空气在流动中受阻,流速降低时产生的压力。
P —静压,单位体积空气所具有的压力能。在静止的空气中, 静压等于当时当地的大气压。
P0
—总压(全压),它是动压和静压之和。总压可以理解为, 27 气流速度减小到零之点的静压。
●深入理解动压、静压和总压 同一流线: 总压保持不变。 动压越大,静压越小。 流速为零的静压即为总压。
43
2 翼型的压力分布
① 矢量表示法
当机翼表面压强低于大气压,称为吸力。 当机翼表面压强高于大气压,称为压力。 用矢量来表示压力或吸力,矢量线段长度为力的大小,方向为 力的方向。
44
●驻点和最低压力点
A点,称为驻点,是正压最大的点,位于机翼前缘附近,该处气流 流速为零。
B点,为最低压力点,是机翼上表面负压最大的点。
16
流管:由许多流线所围成的管状曲面。
17
●流线和流线谱
流线谱是所有流线的集合。
18
●流线和流线谱的实例
19
●流线的特点 ➢ 该曲线上每一点的流体微团速度与曲线在该点的切线 重合。 ➢ 流线每点上的流体微团只有一个运动方向。
➢ 流线不可能相交,不可能分叉。
20
●流线谱的特点
➢ 流线谱的形状与流动速度无关。
5
1.2 相对气流
相对气流方向
自然风方向
运动方向
6
●飞机的相对气流方向与飞行速度方向相反 只要相对气流速度相同,飞机产生的空气动力就相同。
7
●对相对气流的现实应用 直流式风洞
回流式风洞
8
●风洞实验段及实验模型
9
●风洞的其它功用
10
1.3 迎角
迎角就是相对气流方向与翼弦之间的夹角。
11
●相对气流方向就是飞机速度的反方向
●伯努利定理
空气能量主要有四种:动能、压力能、热能、重力势能。 低速流动,热能可忽略不计;空气密度小,重力势能可忽略不计。 因此,沿流管任意截面能量守恒,即为:动能+压力能=常值。公式 表述为:
1 2
v2
P
P0
上式中第一项称为动压,第二项称为静压,第三项称为总压。
26
●伯努利定理
1 2
v2
P
P0
低速空气动力学基础
本章主要内容
1 低速空气动力学 2 升力 3 阻力 4 增升装置的增升原理
2
1 空气流动的描述
空气动力是空气相对于飞机运动时产生的,要学习 和研究飞机的升力和阻力,首先要研究空气流动的基 本规律。
4
1.1 流体模型化
① 理想流体,不考虑流体粘性的影响。 ② 不可压流体,不考虑流体密度的变化,Ma<0.4。 ③ 绝热流体,不考虑流体温度的变化,Ma<0.4。
③ 与动压、静压相关的仪表
空速表
高度表
升降速度表
33
●空速表
34
●升降速度表
35
●高度表
36
本章主要内容
1 空气流动的描述 2 升力 3 阻力 4 飞机的低速空气动力特性 5 增升装置的增升原理
37
2 升力
升力垂直于飞行速度方向,它将飞机支托在空中, 克服飞机受到的重力影响,使其自由翱翔。
45
② 坐标表示法
升力 Lift
拉力 Pull
重力 Weight
阻力 Drag
39
1 升力的产生原理
相同的时间,相同的起点和终点,小狗的速度和人 的速度哪一个更快?




40
●升力的产生原理
前方来流被机翼分为 了两部分,一部分从 上表面流过,一部分 从下表面流过。
由连续性定理或小狗 与人速度对比分析可 知,流过机翼上表面 的气流,比流过下表 面的气流的速度更快。
相关文档
最新文档