空气动力学基础知识 精编
空气动力学前六章知识要点
空气动力学基础前六章总结第一章 空气动力学一些引述1、 空气动力学涉及到的物理量的定义及相应的单位①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。
0,lim →⎪⎭⎫ ⎝⎛=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa②密度:定义为单位体积内的质量,具有点属性。
0,lim →=dv dvdm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡③温度:反应平均分子动能,在高速空气动力学中有重要作用。
单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。
单位:m/s ⑤剪切应力:dy dv μτ= μ:黏性系数 ⑥动压:212q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法空气动力及力矩的来源只有两个:①物体表面的压力分布 ②物体表面的剪应力分布。
气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。
力矩与所选的点有关系,抬头为正,低头为负。
cos sin L N A αα=- , s i n c o s D N A αα=+3、 气动力系数的定义及其作用气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),cq L c l ∞='(2D )L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C4、 压力中心的定义压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。
如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。
空气动力学数学知识点总结
空气动力学数学知识点总结1. 流体力学基础知识流体是一种连续的物质,可以流动并适应它所处的容器的形状。
在空气动力学中,我们关注的是气体流体,它遵循流体力学的基本原理。
这些原理包括连续方程、动量方程和能量方程。
这些方程描述了流体的运动和行为,并且可以通过数学模型来描述。
1.1 连续方程连续方程描述了流体中的质量守恒。
在欧拉描述中,连续方程可以用以下形式表示:∂ρ/∂t + ∇•(ρv) = 0其中ρ是流体的密度,t是时间,v是速度矢量。
这个方程表达了流体在空间和时间上的密度变化。
解决这种类型的偏微分方程需要深入的数学知识,如微分方程、变分法和复杂的数值计算技术。
1.2 动量方程动量方程描述了流体中的运动和力的作用。
在欧拉描述中,动量方程可以写成:∂(ρv)/∂t + ∇•(ρv⊗v) = -∇p + ∇•τ + ρg其中p是静压力,τ是应力张量,g是重力加速度。
这个方程描述了流体在外力下的运动。
解决这个方程需要运用向量微积分、非线性偏微分方程和数值方法等数学知识。
特别是应力张量的计算和解析是非常复杂的数学问题。
1.3 能量方程能量方程描述了流体内部的热力学过程。
在欧拉描述中,能量方程可以写成:∂(ρe)/∂t + ∇•(ρev) = ∇•(k∇T) + σ其中e是单位质量的内能,k是导热系数,T是温度,σ是能量源项。
解决这个方程需要运用热力学、热传导方程和数值计算技术等数学知识。
2. 边界层理论在空气动力学中,边界层理论是一个重要的概念。
边界层是指流体靠近固体物体表面的区域,流体在这里受到了物体表面的影响,速度变化很大。
边界层理论涉及到流体力学、热力学和数学物理等多个领域的知识。
2.1 边界层方程边界层方程描述了边界层中流体速度和温度的变化。
这些方程通常是非定常的、非线性的偏微分方程,包括动量方程、能量方程以及质量守恒方程。
解决这些方程需要运用复杂的数学方法和数值模拟技术。
2.2 边界层控制边界层控制是指通过改变固体表面的形状或表面条件,来控制边界层的性质,从而影响流体的运动。
空气动力学基础知识
空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。
空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。
空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。
根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。
在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。
空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。
这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。
空气动力学基础知识
3、中间层
中间层是在平流层之上,其顶端离地面的高度 大约为80~100公里。 中间层的特点: 1)随着高度的增加,空气的温度先升后降 中间层的气温,当高度增加到45公里时,由35 公里时的-56.5℃增加到40℃左右,再随着高度的 增加,到80公里时,温度降低到-65.5℃以下。 2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。 这层空气不利于飞机飞行,只有探空气球飞行。
四、国际标准大气(表)
飞机的飞行性能与大气状态(温度、气压、 密度等)密切相关,而大气状态是瞬息多变的, 为了便于比较飞机的飞行性能,就必须以一定 的大气状态作为衡量标准。国际航空协会组织 参照中纬度地区(北纬35º ~60º 之间)大气状态的 平均值,订出了大气的状态数值,作为计算和 试验飞行器的统一标准,以便于对飞机、发动 机和其他飞行器的试飞结果和计算结果加以比 较。处于这种状态下的大气,我们叫国际标准 大气。
2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。 影响空气压缩性的主要因素: 1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。 2) 空气的温度(t)。空气的温度越高, 空气的密度变化越小(或密度减小的越少) , 空气不易压缩(或空气的压缩性减小)。
4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。
空气动力学知识点
空气动力学知识点空气动力学是研究空气在机体表面运动时产生的力学效应的学科。
空气动力学知识点涵盖了各种与空气流动有关的原理和现象,对于飞机、汽车、火箭等交通工具的设计和性能优化发挥着至关重要的作用。
下面将介绍一些关键的空气动力学知识点。
1. 升力和阻力在空气动力学中,升力和阻力是两个最基本的概念。
升力是指机翼等物体在飞行或运动时受到的垂直向上的力,使得物体能够获得提升力以保持飞行。
阻力则是运动物体在空气中受到的阻碍力,是飞机、汽车等移动物体必须克服的力量。
升力和阻力的大小和方向取决于空气流动的速度、密度、物体的形状等因素。
2. 卡门涡街卡门涡街是指当流体经过物体时,流体两侧产生的交错的涡流。
这些涡流会在物体后部形成一串被称为卡门涡街的旋涡,对物体的性能和稳定性产生重要影响。
减小或控制卡门涡街可以提高交通工具的效率和性能。
3. 翼型翼型是用于生产升力的构件,通常指飞机机翼的截面。
不同的翼型设计会影响飞机的飞行稳定性、速度、升力和阻力等性能。
常见的翼型包括对称翼型、半对称翼型和非对称翼型,每种翼型都有其独特的特点和应用场景。
4. 涡流涡流是液体或气体在流动中形成的旋涡状结构。
在空气动力学中,涡流是产生升力和阻力的重要因素,也是风洞模拟实验和流场仿真计算的关键对象。
通过研究和控制涡流的生成和演变,可以改善飞机、汽车等交通工具的性能。
5. 马赫数马赫数是描述物体相对于音速运动速度的无量纲指标。
当飞机等物体的速度达到音速时,其马赫数为1,称为音速。
超音速则指马赫数大于1的速度范围,而亚音速则指马赫数小于1的速度范围。
马赫数的变化会对空气动力学效应和物体性能产生显著影响。
以上是关于空气动力学的一些基本知识点,这些知识点涵盖了空气流动、升力产生、阻力控制等领域的重要内容。
深入理解和掌握空气动力学知识,对于设计和优化交通工具的性能至关重要。
希望以上内容能为您对空气动力学有更深入的了解提供帮助。
空气动力学部分知识要点修订稿
空气动力学部分知识要点公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形能力上的不同。
2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。
3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗压缩变形的能力和特性称为弹性。
4、当马赫数小于时,气体的压缩性影响可以忽略不计。
5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。
6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。
流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。
在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。
8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强的量纲是[力]/[长度]210、标准大气规定在海平面上,大气温度为 15℃或 T0 = ,压强 p0 = 760 毫米汞柱 = 101325牛/米2,密度ρ0 = 千克/米311、从基准面到 11 km 的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加 1km,温度下降 K。
空气动力学部分知识讲解
空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形能力上的不同。
2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。
3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗压缩变形的能力和特性称为弹性。
4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。
5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。
6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。
流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。
在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。
8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强的量纲是[力]/[长度]210、标准大气规定在海平面上,大气温度为15℃或T0=288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 =1.225千克/米311、从基准面到11 km 的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加1km,温度下降6.5 K。
从11 km 到21km 的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。
空气动力学基础知识
分类:
低速 亚声速 跨声速 超声速(高超)
稀薄气体空气动力学、气体热化学动力学、电磁流体力 学等
工业空气动力学
研究方法:
(1)流体微团: 空气的小分子群,空气分子间的自由行程与飞行器相 比较 太小,可忽略分子的运动
(2)流线:
一、流场(续)
(3)流管:
多个流线形成流管
管内气体不会流出
管外气体也不会流入,不同的截面上,流量相同
(4)定常流:
流场中各点的速度、加速度以及状态参数等只是几
何位置的函数,与时间无关
(5)流动的相对性
质量守恒原理在流体力学中的应用
或写成:
d dV dA0 V A
VAm(常数)
在连续V小方、程小:范围内常 数 , d0 A大,V小
VA常数 A小,V大
三、伯努里方程(能量守恒定律)
在低速不可压缩的假设下,密度为常数
伯努里方程: 其中:p-静压,
p1V2 C(常数)
2
1/2V2 — 动压,单位体积的动能,与高
四、飞机的操纵机构
飞机:升降舵、方向舵、副翼及油门杆 导弹:摆动发动机喷管,小舵面 1.升降舵偏转角e
后缘下偏为正,产生正升力,正e产生负俯仰力矩M 2.方向舵偏转角r 方向舵后缘左偏为正,
正r产生负偏航力矩N 3.副翼偏转角a
右副翼后缘下偏 (左副翼随同上偏)为正 正a产生负滚转力矩L
五 、弹飞行运动的特点
刚体飞机,空间运动,有6个自由度:
三质、心飞x、行y、器z线运运动动的(自速度由增度减,升降,左右移动)
空气动力学基础
废阻力 Parasite Drag
升力
粘性
① 摩擦阻力
由于紧贴飞机表面的空气受到阻碍作用而流速降低到零,根据作 用力与反作用力定律,飞机必然受到空气的反作用,这个反作用力 与飞行方向相反,称为摩擦阻力,
第二章 第 63 页
●影响摩擦阻力的因素
摩擦阻力的大小与附面层的类型密切相关,此外还取决于空气 与飞机的接触面积和飞机的表面状况,
第二章 第 7 页
●对相对气流的现实应用
直流式风洞
第二章 第 8 页
回流式风洞
●风洞实验段及实验模型
第二章 第 9 页
●风洞的其它功用
第二章 第 10 页
2.1.3 迎角
迎角就是相对气流方向与翼弦之间的夹角,
第二章 第 11 页
●相对气流方向就是飞机速度的反方向
第二章 第 12 页
●相对气流方向是判断迎角大小的依据
v1 v2
P1 P2
●升力的产生原理
上下表面出现的压力差,在垂直于 远前方 相对气流方 向的分量,就是升力,
机翼升力的着力点,称为压力中心 Center of Pressure
第二章 第 43 页
2.2.2 翼型的压力分布
① 矢量表示法
当机翼表面压强低于大气压,称为吸力, 当机翼表面压强高于大气压,称为压力, 用矢量来表示压力或吸力,矢量线段长度为力的大小,方向为力的 方向,
粘性流动 沿物面法线方向速度不一致
② 附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强,
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静压, 它使理想流体的结论有了现实意义,
第二章 第 56 页
空气动力学基础知识
1第一章空气动力学基础知识(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第四单元飞机与飞机系统第一章空气动力学基础知识大气层和标准大气地球大气层地球表面被一层厚厚的大气层包围着。
飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。
根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。
对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。
对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。
大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。
另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。
对流层内空气的组成成分保持不变。
从对流层顶部到离地面约30公里之间称为平流层。
在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。
同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。
同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。
中间层从离地面30公里到80至100公里为止。
中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。
在这一层中,温度先随高度增加而上升,后来又下降。
中间层以上到离地面500公里左右就是电离层。
这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。
在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。
空气动力学基础
空气动力学基础空气动力学是研究空气对物体的作用力和物体在空气中运动规律的学科。
它在航空航天工程中起着重要的作用。
本文将介绍空气动力学的基本概念、主要原理和应用。
一、空气动力学概述空气动力学是围绕着气体流动学和力学展开的学科,主要研究气体与物体相互作用产生的力以及物体在气体中的运动。
空气动力学基础理论包括气体流动方程、边界条件和流场特性等。
它是航空航天工程设计和性能分析的重要依据。
二、空气动力学原理1. 气体流动方程空气动力学中的主要流动方程是连续性方程、动量方程和能量方程。
连续性方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。
2. 升力和阻力在运动中的物体受到空气的作用力,其中最重要的是升力和阻力。
升力使得物体能够克服重力向上运动,而阻力则阻碍物体的运动。
这两个力的大小和方向与物体的形状、速度和气体性质等有关。
3. 测试和模拟为了研究物体在空气中的行为,人们通常会进行实验和数值模拟。
实验方法包括风洞试验和模型试飞等,而数值模拟则利用计算机技术对气体流动进行数值计算和模拟。
三、空气动力学应用1. 飞行器设计空气动力学是飞行器设计的重要基础。
通过研究飞行器在不同速度和高度下的空气动力学特性,可以优化飞行器的外形设计,提高其升阻比,提高飞行效率和安全性。
2. 空气动力学仿真使用计算机模拟和仿真技术,可以在设计阶段对飞行器进行空气动力学分析。
这样可以预测飞行器在各种工况下的性能和稳定性,指导设计改进。
3. 空气动力学研究空气动力学研究不仅应用于飞行器设计,还广泛用于其他领域,如汽车、建筑物和体育器材等的设计和优化。
通过研究空气动力学原理,可以改进产品性能,提高安全性和舒适度。
四、结论空气动力学作为研究物体在空气中运动的学科,对于航空航天工程和其他领域的设计和性能分析至关重要。
通过学习空气动力学的基本概念和原理,并运用到实际应用中,可以推动科技的进步,提升产品的质量和性能。
空气动力学部分知识要点
精心整理空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形2、3、4、5、6、力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。
在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。
8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。
由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强10、毫米11、11km12、13、14、连续方程是质量守恒定律在流体力学中具体表达形式。
由于连续方程仅是运动的行为,与受力无关,因此既适用于理想流体也适用于粘性流体。
15、定常流是指在流场中任一固定点的所有流体属性(如流速、压力、密度等)都和时间无关的流动,在定常流情况下,所有参数对时间的导数都等于0。
非定常流是指流场任一固定点的一个或多个速度分量或其他流体属性随时间发生变化的流动。
注:流动类型:定常流/非定常流,可压缩流动/不可压缩流动,无粘流动/粘性流动,有旋流动/无旋流动。
16、环量的定义:在流场中任取一条封闭曲线,速度沿该封闭曲线的线积分称为该封闭曲线的速度环量。
速度环量的符号不仅决定于流场的速度方向,而且与封17、18、19、涡线是20、沿平面上一封闭围线L做速度的线积分,所得的环量等于曲线所围面积上每个微团角速度的2倍乘以微团面积之和,即等于通过面积S的涡通量。
21、当无涡线穿过给定曲线L1时,沿L1的速度环量Γ1等于零;当有涡线穿过给定曲线L2时,沿L2的速度环量Γ2等于过曲线所围面积内的涡通量,也等于该区域的涡强度;如果曲线所围面积内涡通量越大,则沿该曲线的速度环量越大,该区域内涡的强度越大;过同一曲线上张开的不同曲面,其涡通量是相同的,都等于沿该曲线的速度环量,都代表s1和s2面上旋涡的强度;22、理想流中涡定理:沿涡线或涡管涡强不变;一根涡管在流体里不可能中断,可以伸展到无限远去,可以自相连接成一个涡环(不一定是圆环),也可以止于边界(固体的边界或自由边界如自由液面)。
空气动力学的基本概念气动力升力和阻力等知识
空气动力学的基本概念气动力升力和阻力等知识空气动力学是研究物体在空气中运动时受到的力学影响的科学。
它不仅被广泛应用于航空航天领域,也涉及到了其他工程学科如汽车、建筑等。
本文将介绍空气动力学的基本概念以及气动力中的升力和阻力等知识。
一、空气动力学的基本概念空气动力学是力学中的一个重要分支,研究物体在空气中运动时所受到的力学影响。
它主要涉及到物体与空气之间的相互作用,通过数学和物理方法来分析物体受力的情况,从而达到控制和优化物体运动状态的目的。
二、气动力中的升力和阻力升力和阻力是空气动力学中两个重要的概念,它们对物体在空气中的运动起到至关重要的作用。
1. 升力升力是指垂直于物体运动方向向上的力。
对于飞行器来说,升力起到支持和提供升力的作用,使其能够在空中飞行。
升力的大小与物体的形状、攻角、速度以及空气密度等因素有关。
通常情况下,升力与攻角呈正比,与速度的平方呈正比。
2. 阻力阻力是指垂直于物体运动方向向后的力。
对于飞行器来说,阻力是其运动过程中必须克服的力,同时也会对飞行速度和效能造成影响。
阻力的大小与物体的形状、速度、表面粗糙度以及空气密度等因素有关。
通常情况下,阻力与速度的平方呈正比,与物体的形状和表面特征有关。
三、空气动力学的应用领域空气动力学作为一门重要的工程科学,被广泛应用于航空航天领域以及其他工程学科。
1. 航空航天领域在航空航天领域,空气动力学可以用来研究和分析飞机、火箭、导弹等飞行器的性能和运动状态,从而优化设计和改进飞行控制系统。
通过研究空气动力学,可以提高飞行器的安全性、稳定性和效率。
2. 汽车工程在汽车工程中,空气动力学的研究可以帮助改进汽车的空气动力性能,减小阻力,提高燃油效率和稳定性。
比如在车身外形设计上考虑空气动力学因素,可以降低风阻,提高汽车的行驶速度和燃油经济性。
3. 建筑工程在建筑工程领域,空气动力学的研究可以应用于高楼大厦、桥梁等建筑物的风载荷分析和抗风设计。
通过了解物体在风中的运动状态和受力情况,可以优化建筑物的结构设计,从而提高其抗风性能和稳定性。
2020年空气动力学1-11精编版
第一章 流体介质习题:1-1.气瓶容积为315.0m ,在K 303时,瓶中氧气的压强是26/105m N ⨯,求气瓶中氧气的重量。
解:由完全气体状态方程RT p ρ=……………………①和质量体积关系Vm=ρ……………………………② 得:N KK s m s m m m N RT pVg mg G 50.84303)/(053.287/8.915.0/105222326≈⨯⋅⨯⨯⨯=== 所以气瓶中氧气的重量为N 50.84。
1-2.两平行圆盘,直径都为D ,两者相距h ,下盘固定,上盘以匀角速度ω旋转。
盘间有一种粘性系数为μ的液体。
假设与直径D 相比两盘的距离h 为小量,两盘之间液体的速度分布呈线性关系。
试推导粘性系数μ与转矩T 及角速度ω之间的关系式。
解:如右图建立平面直角坐标系xy o -,上盘的轴向速度设为:()r n r ωυ=,,因为两盘之间液体速度呈线性分布,所以两盘之间液体的周向速度为:()r h yn r ωυ=,……………………………①摩擦应力为:dyd υμτ=………………………② 取上盘dr 微段圆环为研究对象,其转矩为:r ds dT ⋅⋅=τ ……………………………③ ∵θrdrd ds =……………………………④ ∴①、②、④代入③得:θμωτdrd hr dr ds dT 3=⋅⋅=两边积分得:hD drd hr T D 3242023πμωθμωπ==⎰⎰,即为粘性系数μ与转矩T 及角速度ω之间的关系。
1-3.用容积为31000m 的金属罐作水压试验。
先在容器内注满一个大气压的水,然后加压注水,使容积内压强增加到25/107m N ⨯,问需再注入多少水?解:有水的体积弹性模数公式可知水压试验后容器内的液体密度增量为:ρρE =∆,则多注入水的体积为:3293225285.0/101.21000)/101325/107(m mN m m N m N E V p V E p VmV ≈⨯⨯-⨯=⋅∆=⋅⋅∆=⋅∆=∆=∆ρρρρρ。