Matlab进行一般插值和三次样条插值比较

合集下载

matlab自带的插值函数interp1的四种插值方法

matlab自带的插值函数interp1的四种插值方法

matlab自带的插值函数interp1的四种插值方法[plain] view plain copyprint?1.x=0:2*pi;2.y=sin(x);3.xx=0:0.5:2*pi;4.5.%interp1对sin函数进行分段线性插值,调用interp1的时候,默认的是分段线性插值6.y1=interp1(x,y,xx);7.figure8.plot(x,y,'o',xx,y1,'r')9.title('分段线性插值')10.11.%临近插值12.y2=interp1(x,y,xx,'nearest');13.figure14.plot(x,y,'o',xx,y2,'r');15.title('临近插值')16.17.%球面线性插值18.y3=interp1(x,y,xx,'spline');19.figure20.plot(x,y,'o',xx,y3,'r')21.title('球面插值')22.23.%三次多项式插值法24.y4=interp1(x,y,xx,'cubic');25.figure26.plot(x,y,'o',xx,y4,'r');27.title('三次多项式插值')(1) Nearest方法速度最快,占用内存最小,但一般来说误差最大,插值结果最不光滑。

(2) Spline三次样条插值是所有插值方法中运行耗时最长的,插值函数及其一二阶导函数都连续,是最光滑的插值方法。

占用内存比cubic方法小,但是已知数据分布不均匀的时候可能出现异常结果。

(3) Cubic三次多项式插值法中,插值函数及其一阶导数都是连续的,所以插值结果比较光滑,速度比Spline快,但是占用内存最多。

matlab三次样条插值函数

matlab三次样条插值函数

matlab三次样条插值函数
MATLAB是一个高级技术计算软件,它拥有强大的数值计算、绘图和数据分析功能。

在MATLAB中进行插值时,三次样条插值函数是一种优秀的插值方法。

三次样条插值函数是一种基于多项式的插值方法。

它通过使用离散数据集的低次多项式来拟合数据,然后利用这些多项式按照一定的规律来生成整个插值函数。

三次样条插值方法采用的多项式是二次函数,它会在两个数据点之间生成一条平滑的曲线。

在MATLAB中,三次样条插值函数为spline(x,y,xq),其中x和y分别代表已知离散数据集的x坐标和y坐标,xq为要进行插值的新数据点。

在调用spline函数时,需要将x和y从小到大进行排序。

在进行三次样条插值方法时,需要注意两个点。

第一,在插值函数两端需要加上边界条件,即插值函数在区间的两个端点处一阶导数值要相等,这使得插值函数在两端呈现出更平滑的性质。

第二,如果数据点x中有相同的值,则需要对数据进行处理以避免出现插值函数不确定的情况。

在使用MATLAB进行三次样条插值时,也可以借助MATLAB提供的其他函数,如ppval函数可以求解xq处插值函数的值,而fnplt函数可以绘制插值函数的图像。

总之,三次样条插值函数是一种十分有效的插值方法,可以通过MATLAB轻松地进行实现。

在进行插值时,需要注意边界条件和数据处理的细节问题。

matlab曲线插值方法

matlab曲线插值方法

matlab曲线插值方法摘要:一、引言1.MATLAB曲线插值方法背景介绍2.文章目的与意义二、MATLAB曲线插值方法分类1.线性插值2.二次多项式插值3.三次样条插值4.三次贝塞尔插值5.三次Hermite插值三、线性插值1.原理介绍2.示例代码及结果四、二次多项式插值1.原理介绍2.示例代码及结果五、三次样条插值1.原理介绍2.示例代码及结果六、三次贝塞尔插值1.原理介绍2.示例代码及结果七、三次Hermite插值1.原理介绍2.示例代码及结果八、比较与选择1.各种插值方法优缺点分析2.应用场景选择建议九、结论1.文章总结2.对未来研究的展望正文:matlab曲线插值方法在MATLAB中,曲线插值是一种常见的数据处理和可视化方法。

它可以将离散的数据点连接成平滑的曲线,以便于分析和理解数据。

本文将介绍MATLAB中几种常见的曲线插值方法,包括线性插值、二次多项式插值、三次样条插值、三次贝塞尔插值和三次Hermite插值。

同时,我们将通过示例代码和结果展示这些插值方法的实现过程,并对各种插值方法进行比较和选择,以提供实际应用中的指导。

一、引言MATLAB作为一种广泛应用于科学计算和工程领域的编程语言,其强大的绘图功能为研究人员提供了便利。

在许多应用场景中,需要将离散的数据点连接成平滑的曲线,以直观地表现数据的变化规律。

曲线插值方法正是为了解决这一问题而提出的。

接下来,我们将介绍MATLAB中几种常见的曲线插值方法。

二、MATLAB曲线插值方法分类1.线性插值线性插值是一种简单的插值方法,它通过连接数据点形成一条直线。

在MATLAB中,可以使用`polyfit`函数进行线性插值。

```matlabx = [1, 2, 3, 4];y = [2, 4, 6, 8];p = polyfit(x, y, 1);```2.二次多项式插值二次多项式插值使用一个二次方程来拟合数据点。

在MATLAB中,可以使用`polyfit`函数进行二次多项式插值。

Matlab实验报告六(三次样条与分段线性插值)范文

Matlab实验报告六(三次样条与分段线性插值)范文
1.分析问题
本题是给出粗略等分点让你插入更多点用双线性插值法来作出更清晰的山区地貌图。
2.问题求解
x=0:400:2800;
y=0:400:2400;
z=[1430 1450 1470 1320 1280 1200 1080 940;
1450 1480 1500 1550 1510 1430 1300 1200;
2.分段线性插值与计算量与n无关;n越大,误差越小.
3.三次样条插值比分段线性插值更光滑。
4.‘linear’:分段线性插值;‘spline’:三次样条值。
【实验环境】
MatlabR2010b
二、实验内容
问题1对函数 ,x[-5,5],分别用分段线性插值和三次样条插值作插值(其中插值节点不少于20),并分别作出每种插值方法的误差曲线.
本次实验因为是我们课本没有的内容,心理上给了我很大的压力,幸好我们还能根据老师的课件以及例题去掌握这次实验所需要的各种插值法,但结果还好,两道题都做出来了。
plot(x,y,'*',x1,yl,'r',x1,y2,'b')
y0=1./(1+x1.^2);
y3=yl-y0;
y4=ys-y0;
holdon
plot(x1,y3,'y',x1,y4,'g')
3.结果
4误。
问题2山区地貌图在某山区(平面区域(0,2800)(0,2400)内,单位:米)测得一些地点的高程(单位:米)如表1,试作出该山区的地貌图.
1.分析问题
本题先取出少量的插值节点并作出图形,再用分段线性插值法和三次样条插值法做出更精确的图形,最后在作出误差曲线。

matlab三次样条插值例题解析

matlab三次样条插值例题解析

文章标题:深度解析Matlab三次样条插值1. 前言在数学和工程领域中,插值是一种常见的数值分析技术,它可以用来估计不连续数据点之间的值。

而三次样条插值作为一种常用的插值方法,在Matlab中有着广泛的应用。

本文将从简单到复杂,由浅入深地解析Matlab中的三次样条插值方法,以便读者更深入地理解这一技术。

2. 三次样条插值概述三次样条插值是一种利用分段三次多项式对数据点进行插值的方法。

在Matlab中,可以使用spline函数来进行三次样条插值。

该函数需要输入数据点的x和y坐标,然后可以根据需要进行插值操作。

3. 三次样条插值的基本原理在进行三次样条插值时,首先需要对数据点进行分段处理,然后在每个分段上构造出一个三次多项式函数。

这些多项式函数需要满足一定的插值条件,如在数据点处函数值相等、一阶导数相等等。

通过这些条件,可以得到一个关于数据点的插值函数。

4. Matlab中的三次样条插值实现在Matlab中,可以使用spline函数来进行三次样条插值。

通过传入数据点的x和y坐标,可以得到一个关于x的插值函数。

spline函数也支持在已知插值函数上进行插值点的求值,这为用户提供了极大的灵活性。

5. 三次样条插值的适用范围和局限性虽然三次样条插值在许多情况下都能够得到较好的插值效果,但也存在一些局限性。

在数据点分布不均匀或有较大噪音的情况下,三次样条插值可能会出现较大的误差。

在实际应用中,需要根据具体情况选择合适的插值方法。

6. 个人观点和总结通过对Matlab中三次样条插值的深度解析,我深刻地理解了这一插值方法的原理和实现方式。

在实际工程应用中,我会根据数据点的情况选择合适的插值方法,以确保得到准确且可靠的结果。

我也意识到插值方法的局限性,这为我在实际工作中的决策提供了重要的参考。

通过以上深度解析,相信读者已经对Matlab中的三次样条插值有了更加全面、深刻和灵活的理解。

在实际应用中,希望读者能够根据具体情况选择合适的插值方法,以提高工作效率和准确性。

用MATLAB计算等距三次样条插值问题

用MATLAB计算等距三次样条插值问题

2 表达式中系数的求解
S 4( π ) 中的任意一个三次样条函数可以表示成
38
n1
四川工业学院学报 2003 年 x ), x ∑ k iB i( ∈ [ a , b] ( 2) 于是求满足条件( 3) 、 ( 4) 的 三次插值样条函数( 2)的 问题转换为求解线性方程组( 7) 的问题 。 只要从( 7)中 解出 k i( i =-1 , 0 , …, n -3) , 即可求得样条函数 。
T
k n -1 = y n 及中间系数满足的等式 k -1 B -1( x 1)+ k 0 B 0( x 1)= y 1 - y 0 + h y′ 0 Bx 1) 2( 3
ki 3 B i3( x i) +k i 2 B i2( xi ) +k i 1 B i1 ( xi )= y i i = 2 , 3 , … , n -2 k n -4 B n -4( xn -1)+k n -3 B n -3 = y n -1 h - y n - y ′ B ( x )= y i 3 n n -2 n -1 ( 6) 利用基函数( 1) , 及已知数据( 3) , 可将( 6) 式写成矩阵 形式 : 7 2 1 4 0 1 1 4 1 1 4 2 1 7 · k -1 k0 k1 ┇ k n -4 k n -3
用matlab计算等距三次样条插值问题matlab等距节点插值三次样条插值matlabmatlab样条插值matlab样条插值函数matlab样条插值求曲率matlabb样条插值拟合matlab中三次样条插值matlabb样条插值双三次样条插值matlab
四川工业学院学报
Journa l of Sichua n University o f Science and Technolog y

matlab插值(详细 全面)

matlab插值(详细 全面)

Matlab中插值函数汇总和使用说明MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为: 27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。

该命令对数据点之间计算内插值。

它找出一元函数f(x)在中间点的数值。

其中函数f(x)由所给数据决定。

x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi = interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。

参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。

yi是阶数为length(xi)*size(Y,2)的输出矩阵。

matlab三次样条插值的方法

matlab三次样条插值的方法

matlab三次样条插值的方法Cubic spline interpolation is a common method used in MATLAB to approximate values between specified data points. This technique involves fitting a piecewise cubic polynomial to the data points, ensuring that the function is smooth and continuous at the knots. Through this process, the spline curve can accurately represent the overall trend of the data, making it particularly useful in various scientific and engineering applications.三次样条插值是MATLAB中常用的一种方法,用于在指定数据点之间近似数值。

这种技术涉及将分段三次多项式拟合到数据点,确保在节点处函数平滑连续。

通过这个过程,样条曲线可以准确地表示数据的总体趋势,使其特别适用于各种科学和工程应用。

One advantage of cubic spline interpolation is its ability to capture the local behavior of the data while maintaining global smoothness. This is achieved by constructing individual cubic polynomials between adjacent data points, ensuring that the interpolated curve passes through each data point without introducing significant oscillations or deviations. As a result, cubic splines provide a reliableand visually appealing way to interpolate data that may exhibit complex patterns or fluctuations.三次样条插值的一个优点是能够捕捉数据的局部行为,同时保持全局的平滑性。

基于多项式插值与三次样条插值曲线拟合的比较

基于多项式插值与三次样条插值曲线拟合的比较

《数值分析》课外课堂大作业论文题目:基于多项式插值与三次样条插值曲线拟合的比较姓名:学号:学院:专业方向:联系方式:(QQ号)(手机号)导师姓名:完成人(亲笔)签字基于多项式插值与三次样条插值曲线拟合的比较摘要:在数值计算中经常要计算函数,当函数只在有限点集上给定函数值要包含改点集的区间上用公式给出函数的简单表达式,这就涉及在已知区间上用简单函数逼近已知复杂函数问题。

本文为了解决这类问题就采用多项式插值与三次样条插值两种插值法并利用MATLAB数值分析软件进行编程,实现相应数据的曲线拟合以获得最佳曲线模型与相应数据的曲线拟合,选出最优的插值法以解决所给数据的曲线拟合问题。

关键词:函数;多项式插值;三次样条插值;曲线拟合;MATLABAbstract:In numerical analysis ,the function value is often calculated .when the function is only given a function point set ,the simple expression of the function is given by the interval .which involves the use of a simple function to approximate the known complex function .in order to solve this problem ,we use polynomial interpolation and cubic spline interpolation tow kind of interpolation method and use MATLAB numerical analysis software to program ,to achieve the curve fitting of the corresponding date to obtain the best cure fitting ,and to choose the best interpolation method to solve the problem of curve fitting to the date.Keyword: Function ; Polynomial interpolation ; Cubic spline interpolation ; Fitting of a curve ; MATLAB前言现代科学研究中,物理量之间的相互关系通量是用函数来描述的,许多实际问题都用函数y=f(x)来表示某种内在规律的数量关系其中相当一部分函数是通过试验或观测得到的也有少量函数关系是由经典物理分析推导得到的,但许多实际问题很难用经典理论分析得出,因为虽然f(x)在某个区间[a,b]上是存在的,有的还是连续的,但往往这个f(x)并不包含我们所得函数表的所有值因此我们希望根据给定的函数表做一个即能反应函数f(x)的特行,又便于计算的简单函数p(x),用p(x)近似f(x),这样确定的p(x)就是我们希望得得到的插值函数。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

数值分析实验报告-插值、三次样条

数值分析实验报告-插值、三次样条

实验报告:牛顿差值多项式&三次样条问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。

实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。

应用所编程序解决实际算例。

实验要求:1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。

实验原理:详见《数值分析 第5版》第二章相关内容。

实验内容:(1)牛顿插值多项式1.1 当n=10时:在Matlab 下编写代码完成计算和画图。

结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.^2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36* x^4+2.0202e-14*x^3-16.855*x^2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。

Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。

本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。

一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。

在Matlab中,可以使用interp1函数进行一维线性插值。

下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。

通过interp1函数,可以得到插值结果yi=5。

线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。

2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。

在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。

以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。

三次样条插值适用于数据点较多且变化较为复杂的情况。

3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。

以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。

matlab插值法

matlab插值法
样条插值
样条插值是一种分段插值方法,它在每个小区间上使用低 次多项式进行插值,同时保证整个插值函数的连续性和光 滑性。
MATLAB中实现插值法
MATLAB提供的插值函数
MATLAB提供了多种内置函数来实现不同类型的插值,如`interp1`、`interp2`、`interp3` 等,分别用于一维、二维和三维数据的插值。
03
二维数据插值方法
网格数据插值
线性插值
基于已知网格点上的数据,通过 线性插值方法计算未知点的值。 这种方法简单快速,但可能不够 精确。
双三次插值
使用周围的16个网格点上的数据 ,构建一个双三次多项式来逼近 未知点的值。这种方法比线性插 值更精确,但计算量较大。
散点数据插值
最近邻插值
将未知点的值设置为距离其最近的已知点的值。这种方法简 单快速,但可能导致不连续的结果。
信号调制与解调中应用
信号调制
在通信系统中,插值法可用于实现信号的调制处理,将基带信号 转换为适合在信道中传输的已调信号。
信号解调
接收端在接收到已调信号后,可以使用插值法对信号进行解调处理 ,还原出原始的基带信号。
符号同步与定时恢复
在数字通信系统中,插值法可用于实现符号同步和定时恢复,确保 接收端能够准确地提取出传输的符号信息。
07
总结与展望
回顾本次课程重点内容
插值法基本概念
插值法是一种通过已知数据点估算未知数据点的方法,广泛应用于 数据分析和科学计算领域。
MATLAB插值法实现
通过MATLAB提供的插值函数,如`interp1`、`interp2`、`interp3` 等,实现一维、二维和三维数据的插值计算。
插值法应用场景
图像修复与增强中应用

matlab数值分析第三章插值

matlab数值分析第三章插值

• 一个多项式通常不用拉格朗日形式表示,它更 常见的写成类似
x 2x 5
3
• 的形式。其中简单的x的次方项称为单项式, 而多项式的这种形式称为使用幂形式的多项式。 • 插值多项式使用幂形式表示为
P( x) c1x c2 x ... cn1x cn
n1Βιβλιοθήκη n 2• 其中的系数,原则上可以通过求解下面的线性代 数方程组得到。
3.2 分段线性插值
• • • • 通过两步操作可以绘制出一个简单的图形: 第一步用圆圈在坐标系中标出个数据点plot(x,y,'o'); , 第二步用直线段依次连接这些数据点plot(x,y'-'); 。 下面的语句执行这样的操作,生成图3-3.
• x = 1:6; • y = [16 18 21 17 15 12]; • plot(x,y,'o',x,y,'-');
3.4 保形分段三次插值
• pchip实际是“分段三次埃米特插值多项式”
(piecewise cubic Hermite interpolating polynominal)的
英文首字母缩写。有意思的是,根据这个名字并不能 确定它到底是哪一种分段三次埃米特插值多项式,因 为样条插值函数实际也是分段三次埃米特插值多项式, 只是对斜率的限制条件不同而已。 • 在这里,我们说的pchip实际上是一个最近才引入 MATLAB、保形的(shape-preserving)且看上去不 错的特定插值函数。它基于一个由Fritsch和Carlson 编写的旧的Fortran程序,在Kahaner、Moler和 Nash的书【33】中可以找到相关的介绍。
V=vander(x) 生成 V = 0 0 1 1 8 4 27 9 然后,输入命令 c=V\y' 计算出插值系数 c = 1.0000 0.0000 -2.0000 -5.0000

数值分析实验报告-插值、三次样条

数值分析实验报告-插值、三次样条

实验报告:牛顿差值多项式&三次样条... . (1)问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数f (x)---作多项式插25 x 2值及三次样条插值对每个n值,分别画出插值函数矽(x)的图形。

实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。

应用所编程序解决实际算例。

实验要求:1.认真分析问题,深刻理解相关理论知识并能熟练应用;2.编写相关程序并进行实验;3.调试程序,得到最终结果;4.分析解释实验结果;5.按照要求完成实验报告。

实验原理:详见《数值分析第5版》第二章相关容。

实验容:(1)牛顿插值多项式1.1 当 n=10 时:在Matlab下编写代码完成计算和画图。

结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.八2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i) = (f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25火x八2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x )=-220.94*x A10+494.91*x A8-9.5065e-14*x A7-381.43*x A6-8.504e-14*x A5+123.36*x A4+2.0202e-14*x A3-16.855*x A2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。

matlab插值类型

matlab插值类型

matlab插值类型在MATLAB中,插值是一种常用的数据处理技术,用于估计在已知数据点之间的数值。

MATLAB提供了多种插值方法,每种方法都有其适用的情况和特点。

以下是一些常见的插值类型:1. 线性插值(linear interpolation),线性插值是一种简单的插值方法,通过已知数据点之间的直线来估计新的数据点。

在MATLAB中,可以使用interp1函数来进行线性插值。

2. 三次样条插值(cubic spline interpolation),三次样条插值是一种平滑的插值方法,它利用已知数据点之间的三次多项式来估计新的数据点。

在MATLAB中,可以使用interp1函数并指定'cubic'选项来进行三次样条插值。

3. 最近邻插值(nearest neighbor interpolation),最近邻插值是一种简单的插值方法,它通过找到最接近新数据点的已知数据点来进行估计。

在MATLAB中,可以使用interp1函数并指定'nearest'选项来进行最近邻插值。

4. 二维插值(2D interpolation),除了在一维数据上进行插值外,MATLAB还提供了在二维数据上进行插值的方法。

可以使用interp2函数来进行二维插值,同样可以选择线性插值、三次样条插值或最近邻插值。

除了上述提到的插值方法,MATLAB还提供了其他一些特定的插值函数,如interpft、interpn等,用于处理不同类型的数据和插值需求。

选择合适的插值方法取决于数据的特点、插值精度的要求以及计算效率等因素。

在实际应用中,需要根据具体情况选择合适的插值方法来进行数据处理和分析。

matlab曲线插值方法

matlab曲线插值方法

matlab曲线插值方法
在MATLAB中,有多种方法可以进行曲线插值。

以下是一些
常用的方法:
1. 线性插值:使用线性函数将给定数据点之间的空白区域填充。

在MATLAB中,可以使用`interp1`函数实现线性插值。

2. 多项式插值:使用一个多项式函数来逼近数据点。

在MATLAB中,可以使用`polyfit`函数拟合数据点,并使用
`polyval`函数计算插值点。

3. 样条插值:使用分段多项式来逼近数据点,形成平滑的曲线。

在MATLAB中,可以使用`interp1`函数的`'spline'`选项进行样
条插值。

4. Lagrange插值:使用Lagrange插值多项式逼近数据点。

在MATLAB中,可以使用`polyfit`函数的第三个参数指定插值多
项式的次数。

5. 三次样条插值:使用三次多项式来逼近数据点,并确保曲线在数据点之间是连续且光滑的。

在MATLAB中,可以使用
`csape`函数进行三次样条插值。

这些方法在MATLAB中都有相应的函数可以直接调用,并提
供了灵活的参数选项来满足不同的插值需求。

三次样条插值的MATLAB实现

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。

其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法:对插值区间[]b a ,进行划分:b x x x a n ≤<⋯⋯<<≤10,函数()x f y =在节点i x 上的值()()n i x f y i i ⋯⋯==,2,1,0,并且如果函数()x S 在每个小区间[]1,+i i x x 上是三次多项式,于[]b a ,上有二阶连续导数,则称()x S 是[]b a ,上的三次样条函数,如果()x S 在节点i x 上还满足条件()()n i y x S i i ⋯⋯==,1,0则称()x S 为三次样条插值函数。

三次样条插值问题提法:对[]b a ,上给定的数表如下.求一个分段三次多项式函数()x S 满足插值条件()()n i y x S i i ⋯⋯==,1,0 式,并在插值区间[]b a ,上有二阶连续导数。

这就需要推导三次样条插值公式:记()x f '在节点i x 处的值为()i i m x f ='(n i ⋯⋯=,1,0)(这不是给定插值问题数表中的已知值)。

在每个小区间[]1,+i i x x 利用三次Hermite 插值公式,得三次插值公式:()()()()1111+++++++=i i i i i i i i i m m x y x y x x S ββαα,[]1,+∈i i x x x 。

为了得到这个公式需要n 4个条件:(1).非端点处的界点有n 2个;(2).一阶导数连续有1-n 个条件;(3).二阶导数连续有1-n 个条件,其中边界条件:○1()()n n m x S m x S ='=' 00 ○2()()αα=''=''n x S x S 00 ○3()()()()16500403βααβαα=''+'=''+'n n x S x S x S x S○4n y y =0 ()()()()000000-''=+''-'=+'n nx S x S x S x S 其中:()⎩⎨⎧=≠=j i j i x j i,1,0α ()0='j i x α ()0=j i x β 且(1,0,=j i )。

基于matlab的常见插值法及其应用

基于matlab的常见插值法及其应用

基于matlab的常见插值法及其应用郭小乐【摘要】本文就数值分析中几种常见的插值法:拉格朗日插值、牛顿插值、Hermite插值及三次样条插值,讨论其不同形式的表达式及误差,结合matlab给出具体实例,对比分析.此外还就三次样条插值的不同计算方法进行归纳、总结.【期刊名称】《赤峰学院学报(自然科学版)》【年(卷),期】2017(033)007【总页数】3页(P5-7)【关键词】拉格朗日插值;牛顿插值;Hermite插值;三次样条插值;matlab【作者】郭小乐【作者单位】宁夏大学数学统计学院,宁夏银川 750021【正文语种】中文【中图分类】O241.3在许多工程问题中,有时我们只能给出某一函数在一些离散点的值,给不出具体的函数表达式,或者函数的表达式过于复杂不利于计算,这时我们就需要构造这个函数的近似函数,数学上我们把这种方法称为插值[1].插值法作为函数逼近、数值微积分及微分方程数值解的基础,在当今社会被越来越多的学者所关注.尤其随着计算机的普及,很多学者将插值与matlab等软件结合,使得插值法得到了更广泛的应用.常用的插值法包括:拉格朗日 (Lagrange)插值、牛顿(Newton)插值、Hermite 插值、三次样条插值,本文就这四种插值法,结合matlab,从其公式的构造、余项出发,对不同的插值法通过数值实例进行对比研究.此外,还就具有良好收敛性的三次样条函数,归纳出不同的计算方法.由于代数多项式具有简单和一些良好的特性,如多项式是无穷光滑的,容易计算它的导数及积分.故本文选择代数多项式作为插值函数.下面依次就这几种插值法进行讨论.2.1 Lagrange插值所谓n次Lagrange插值即给定平面上的n+1个互不相同的插值点(xi,f(xi)),i=0,1,2,…,n,利用插值基函数构造唯一的一条次数不高于n次的插值多项式.2.1.1 n次Lagrange插值多项式形式及误差拉格朗日插值公式的优点是格式整齐和规范,在理论分析中有重要的价值.它的缺点是没有承袭性质,当需要增加插值节点时,需要重新计算所有的插值基函数,计算繁琐.2.2 Newton插值Newton插值是利用差商计算的,下面我们首先给出差商的概念.定义1[1]设x0,x1,…,xk互不相同,f(x)关于x0,x1,…,xk的k阶差商为2.2.1 n次Newton插值多项式的形式及误差牛顿插值具有拉格朗日插值没有的承袭性,当增加插值节点时,只需再计算一项即可得到相应的插值多项式.由插值多项式的唯一性可知二者是同一插值多项式的不同表达形式.2.3 Hermite插值常用Hermite插值描述如下[1]:对于f(x)具有一阶连续导数,以及插值点xi,i=0,1,…,n,xi互不相同,若有至多为2n+1次的多项式函数H2n+1(x)满足:则称H2n+1(x)为f(x)关于节点{xi}ni=0的Hermite插值多项式.2.3.1 Hermite插值多项式的形式及误差:2.4 三次样条插值在实际计算中,人们很少采用高次插值,其主要原因有两个:其一,由于受到所要通过的插值节点的约束,高次插值描绘的代数曲线是摆动的.即我们常说的Runge(龙格)现象;其二,从计算的舍入误差看,对于等距结点的差分形式,结点上函数值的微小变化可能导致高阶差分的很大变动.故在应用中主要采用的是分段低次插值.实践证明,用分段的低次插值多项式逼近被插函数比在全区间上用高次插值多项式效果好.一般来说,分段插值所描绘的曲线是不光滑的.为了能获得一条足够光滑的插值曲线,近年来人们采用了分段多项式光滑插值法,即著名的样条函数插值法.本文我们主要介绍具有良好的收敛性,具有二阶光滑性的三次样条插值.2.4.1 三次样条函数定义2[5]给定[a,b]上n+1个节点a=x0<x1<…<xn-1<xn=b以及这些点上的函数值f(xi)=yi(i=0,1,…,n).若函数s(x)满足:(1)s(xi)=yi,i=0,1,2,…,n;(2)在每个小区间[xi,xi+1]上是一个次数不超过三次的多项式;(3)s(x)、s'(x)、s"(x)在[a,b]上都连续.则称s(x)为函数f(x)关于节点x0,x1,…,xn的三次样条函数.2.4.2 三次样条插值的几种计算方法2.4.2.1 利用二阶导数为线性函数求解令s"(xj)=Mj,j=0,1,…,n.因为s(x)为分段三次多项式,故s"(x)在[xj,xj+1]上是线性函数.可表示为其中hj=xj+1-xj为了求出s(x)在[xj,xj+1]上的表达式,需要对上式积分两次,并利用s(xj)=yi及s(xj+1)=yj+1可求出积分常数.得三次样条函数表达式:再利用光滑连接条件s'(xj-0)=s'(xj+0),并对s(x)求导得为了确定唯一的Mj(j=0,1,…,N),补充三个边界条件:(1)假定s'(x0)=f'0,s'(xn)=f'n;(2)假定 s"(x0)=f"(x0),s"(xn)=f"(xn)直接得端点方程M0=f"0,Mn=f"n;(3)假定M0=MN=0,即为自然边界条件,可得M0=Mn,λnM1+μnMn-1+2Mn=dn;以上三个边界条件将其写成矩阵形式,得关于Mj(j=0,1,…,n)的三对角线性方程组,利用追赶法[2]求出唯一的Mj(j=0, 1,…,n),将其代入s(x)即可.2.4.2.2 利用特殊形式的埃尔米特插值公式求解若插值节点取为xk,xk+1,插值多项式为H3(x),则采用基函数法,令H3(x)=αk(x)yk+αk+1yk+1+βk(x)mk+βk+1(x)mk+1其中αk(x),αk+1(x),βk(x),βk+1(x)是关于插值节点 xk,xk+1的三次Hermite插值基函数.上式即为由特殊的埃尔米特插值公式推导的三次样条插值的计算方法之一.例设,x3=4.利用不同的插值法构造f(x)在[,4]上的插值多项式,使其满足P(xi)=f(xi) (i=0,1,2,3),P'(x0)=f'(x0).下图是利用matlab(2012b)编程软件绘制的上述条件下四种不同算法在[0.25,4]插值函数曲线图(a)及其相对误差曲线图(b),直观明了地展示不同插值算法的效果.从图a中可看出不同插值方法对原函数的逼近效果相差不大.但从图b中的不同插值法的相对误差大小可知,这四种插值方法中,Lagrange插值和Newton插值的效果是一样的,相对另外两种插值方法来说,这两种方法的逼近效果较差,其次是Hermite插值的逼近效果较好,而具有良好收敛性及二阶光滑性的三次样条插值来说,其误差最小,逼近效果最好.本文根据运用的插值条件的不同,对《数值分析》中常用的四种插值法进行归纳总结.通过具体的数值实例,结合matlab编程软件,通过图像直观明了地展示不同方法的逼近效果,还绘制了不同插值方法的相对误差曲线图,从误差的角度分析不同方法的效果.为不同领域的科研工作者提供理论基础.〔1〕张韵华,奚梅成,陈效群.数值计算方法与算法[M].北京:科学出版社,2006. 〔2〕李庆扬,王超能,易大义.数值分析(第五版)[M].北京:清华大学出版社,2008. 〔3〕徐利治,周蕴时,孙玉柏.逼近论[M].北京:国防工业出版社,1985.〔4〕吕晓亚,张莉.插值法在数值分析中的教学实践[J].唐山师范学院学报,2011,33(2):123-125.〔5〕张希娜,李亚红,郭中凯.关于三次样条插值的教学研究[J].长沙大学学报,2012,26(2):131-132.〔6〕张丽娟.三种插值方法的应用与比较[J].赤峰学院学报(自然科学版),2010,26(3):1-3.〔7〕林昌华,杨岩.拉格朗日插值法在工程设计及CAD中的应用[J].重庆理工大学学报(自然科学版),2013,27(12):34-37.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab进行一般插值和三次样条插值比较对于一组给定的随机点(x,y),用lagrange插值加深对高次插值产生Runge现象的理解,并与三次样条插值比较,观察插值图形,了解三次样条插值的优越性。

先进行lagrange插值的程序编写,我们知道matlab软件中没有直接进行lagrange插值的函数,故先自己编写一个函数M文件,该M文件是lagrange插值的算法表示过程,编好后可以直接调用,编写如下:
我这里的函数名是lagrange3,可以自由定义,但在matlab命令窗口中调用函数时应和定义的函数名一致:
程序编好以后就出图了,lagrange插值的图形:
f(x)是数据的散点图,p(x)是lagrange插值图,可见高次的误差很大,就产生了runge 现象
再来三次样条插值,matlab直接定义了三次样条插值的函数名和出图函数,只需在命
令窗口直接编程:
再就是三次样条插值出图了;
最后把散点图,lagrange插值图和三次样条插值图生成在一个图像里,便于观察:
带*号得曲线在图中表示样条插值,在大坐标情况下几乎与散点图重合,至此,讨论结束,三次样条插值比lagrange插值更好。

相关文档
最新文档