运用matlab建立三次样条插值函数
Matlab实验报告六(三次样条与分段线性插值)范文
![Matlab实验报告六(三次样条与分段线性插值)范文](https://img.taocdn.com/s3/m/6c6c0184b0717fd5360cdcb2.png)
本题是给出粗略等分点让你插入更多点用双线性插值法来作出更清晰的山区地貌图。
2.问题求解
x=0:400:2800;
y=0:400:2400;
z=[1430 1450 1470 1320 1280 1200 1080 940;
1450 1480 1500 1550 1510 1430 1300 1200;
2.分段线性插值与计算量与n无关;n越大,误差越小.
3.三次样条插值比分段线性插值更光滑。
4.‘linear’:分段线性插值;‘spline’:三次样条值。
【实验环境】
MatlabR2010b
二、实验内容
问题1对函数 ,x[-5,5],分别用分段线性插值和三次样条插值作插值(其中插值节点不少于20),并分别作出每种插值方法的误差曲线.
本次实验因为是我们课本没有的内容,心理上给了我很大的压力,幸好我们还能根据老师的课件以及例题去掌握这次实验所需要的各种插值法,但结果还好,两道题都做出来了。
plot(x,y,'*',x1,yl,'r',x1,y2,'b')
y0=1./(1+x1.^2);
y3=yl-y0;
y4=ys-y0;
holdon
plot(x1,y3,'y',x1,y4,'g')
3.结果
4误。
问题2山区地貌图在某山区(平面区域(0,2800)(0,2400)内,单位:米)测得一些地点的高程(单位:米)如表1,试作出该山区的地貌图.
1.分析问题
本题先取出少量的插值节点并作出图形,再用分段线性插值法和三次样条插值法做出更精确的图形,最后在作出误差曲线。
matlab三次样条插值例题解析
![matlab三次样条插值例题解析](https://img.taocdn.com/s3/m/fea9b67c5627a5e9856a561252d380eb63942378.png)
文章标题:深度解析Matlab三次样条插值1. 前言在数学和工程领域中,插值是一种常见的数值分析技术,它可以用来估计不连续数据点之间的值。
而三次样条插值作为一种常用的插值方法,在Matlab中有着广泛的应用。
本文将从简单到复杂,由浅入深地解析Matlab中的三次样条插值方法,以便读者更深入地理解这一技术。
2. 三次样条插值概述三次样条插值是一种利用分段三次多项式对数据点进行插值的方法。
在Matlab中,可以使用spline函数来进行三次样条插值。
该函数需要输入数据点的x和y坐标,然后可以根据需要进行插值操作。
3. 三次样条插值的基本原理在进行三次样条插值时,首先需要对数据点进行分段处理,然后在每个分段上构造出一个三次多项式函数。
这些多项式函数需要满足一定的插值条件,如在数据点处函数值相等、一阶导数相等等。
通过这些条件,可以得到一个关于数据点的插值函数。
4. Matlab中的三次样条插值实现在Matlab中,可以使用spline函数来进行三次样条插值。
通过传入数据点的x和y坐标,可以得到一个关于x的插值函数。
spline函数也支持在已知插值函数上进行插值点的求值,这为用户提供了极大的灵活性。
5. 三次样条插值的适用范围和局限性虽然三次样条插值在许多情况下都能够得到较好的插值效果,但也存在一些局限性。
在数据点分布不均匀或有较大噪音的情况下,三次样条插值可能会出现较大的误差。
在实际应用中,需要根据具体情况选择合适的插值方法。
6. 个人观点和总结通过对Matlab中三次样条插值的深度解析,我深刻地理解了这一插值方法的原理和实现方式。
在实际工程应用中,我会根据数据点的情况选择合适的插值方法,以确保得到准确且可靠的结果。
我也意识到插值方法的局限性,这为我在实际工作中的决策提供了重要的参考。
通过以上深度解析,相信读者已经对Matlab中的三次样条插值有了更加全面、深刻和灵活的理解。
在实际应用中,希望读者能够根据具体情况选择合适的插值方法,以提高工作效率和准确性。
用MATLAB计算等距三次样条插值问题
![用MATLAB计算等距三次样条插值问题](https://img.taocdn.com/s3/m/b4f2209ddaef5ef7ba0d3c0a.png)
2 表达式中系数的求解
S 4( π ) 中的任意一个三次样条函数可以表示成
38
n1
四川工业学院学报 2003 年 x ), x ∑ k iB i( ∈ [ a , b] ( 2) 于是求满足条件( 3) 、 ( 4) 的 三次插值样条函数( 2)的 问题转换为求解线性方程组( 7) 的问题 。 只要从( 7)中 解出 k i( i =-1 , 0 , …, n -3) , 即可求得样条函数 。
T
k n -1 = y n 及中间系数满足的等式 k -1 B -1( x 1)+ k 0 B 0( x 1)= y 1 - y 0 + h y′ 0 Bx 1) 2( 3
ki 3 B i3( x i) +k i 2 B i2( xi ) +k i 1 B i1 ( xi )= y i i = 2 , 3 , … , n -2 k n -4 B n -4( xn -1)+k n -3 B n -3 = y n -1 h - y n - y ′ B ( x )= y i 3 n n -2 n -1 ( 6) 利用基函数( 1) , 及已知数据( 3) , 可将( 6) 式写成矩阵 形式 : 7 2 1 4 0 1 1 4 1 1 4 2 1 7 · k -1 k0 k1 ┇ k n -4 k n -3
用matlab计算等距三次样条插值问题matlab等距节点插值三次样条插值matlabmatlab样条插值matlab样条插值函数matlab样条插值求曲率matlabb样条插值拟合matlab中三次样条插值matlabb样条插值双三次样条插值matlab
四川工业学院学报
Journa l of Sichua n University o f Science and Technolog y
计算方法上机作业——求三次样条插值函数的matlab程序
![计算方法上机作业——求三次样条插值函数的matlab程序](https://img.taocdn.com/s3/m/db8e93fb6294dd88d0d26b68.png)
附录 3 求三次样条插值函数的 matlab 程序 for f = 2:n-1; ly = 0; for g = 1:f-1 ly = ly+l(f,g)*yy(g); end yy(f) = D(f)-ly; end M1(n-1) = yy(n-1)/u(n-1,n-1); for rr=1:n-2 r = n-1-rr; uM1 = 0; for s=r+1:n-1 uM1 = uM1+u(r,s)*M1(s); end M1(r) = (yy(r)-uM1)/u(r,r); end M = [M1(n-1,1);M1]; end ss = 0; for t=1:n-1 S(t,1) = (M(t+1)-M(t))/(6*h(t)); S(t,2) = (M(t)*x(t+1)-M(t+1)*x(t))/(2*h(t)); S(t,3) = (M(t+1)*x(t)^2-M(t)*x(t+1)^2)/(2*h(t))+(y(t+1)-y(t))/h(t)+h(t)*(M(t)-M(t+1))/6; S(t,4) = (M(t)*x(t+1)^3-M(1)*x(t)^3)/(6*h(t))+(y(t)*x(t+1)-y(t+1)*x(t))/h(t)+h(t)*(M(t+1)* x(t)-M(t)*x(t+1))/6; for x1 = x(t):(x(t+1)-x(t))/100:x(t+1) ss = ss+1; xx(ss) = x1; SS(ss) = S(t,1)*x1^3+S(t,2)*x1^2+S(t,3)*x1+S(t,4); end end plot(xx,SS,'-k','linewidth',2); hold on plot(x,y,'*k','markersize',10); hold on xlabel('x'); ylabel('S(x)'); grid; fprintf('\n 所求的三次样条插值函数为:\n'); for uu=1:n-1 fprintf('S(x) = %10.5f*x^3+%10.5f*x^2+%10.5f*x+%10.5f, %8.4f<= x <=%8.4f\n',S(uu,1),S(uu,2),S(uu,3),S(uu,4),x(uu),x(uu+1)); end
三次样条插值端点约束条件的构造与Matlab实现
![三次样条插值端点约束条件的构造与Matlab实现](https://img.taocdn.com/s3/m/d98a66ec760bf78a6529647d27284b73f2423694.png)
三次样条插值端点约束条件的构造与Matlab实现邢丽【摘要】Spline interpolation techniques are increasingly important in engineering calculations. The boundary conditions of the cubic spline interpolation are given according to the actual problem in the state of the endpoint. Through researching cubic spline function interpolation constraints for different endpoints, using Matlab computational analysis, each interval segment cubic spline function body expression is showed. The point of interpolation is calculated and each interval segment graph is displayed which is applied to practical problems. Endpoint constraints as well as mixed boundary conditions is focused on.% 在工程计算中,样条插值技术的研究越来越重要。
三次样条插值的边界条件是根据实际问题在端点的状态给出。
通过研究三次样条函数插值,针对不同的端点约束,用 Matlab 计算分析,显示各区间段三次样条函数体表达式,计算出已给点插值并显示各区间分段曲线图,并应用到实际问题中。
重点讨论端点约束条件以及混合边界条件。
【期刊名称】《上海第二工业大学学报》【年(卷),期】2012(000)004【总页数】5页(P319-323)【关键词】计算数学;三次样条插值;端点约束;Matlab【作者】邢丽【作者单位】上海第二工业大学理学院,上海201209【正文语种】中文【中图分类】P315.31在工程计算中,插值技术的研究越来越重要。
三次样条插值函数的构造与Matlab实现
![三次样条插值函数的构造与Matlab实现](https://img.taocdn.com/s3/m/e400ca05cc175527072208fa.png)
自动测量与控制 Automatic Measurement and Control
O. I. Automation 2006, Vol. 25, No. 11
三次样条插值函数的构造与 Matlab 实现
许小勇 1 ,钟太勇 1,2 ( 1. 云南民族大学 数学与计算机科学学院, 云南 昆明 650031 ; 2. 郧阳师范高等专科学校 数学系, 湖北 丹江口 442700 ) 摘要: 三次样条插值函数边界条件由实际问题对三次样条插值在端点的状态要求给出。以第 1 边界条件为例, 用节点处二阶导数表示三次样条插值函数,用追赶法求解相关方程组。通过 Matlab 编制三次样条函数的通用程序, 可直接显示各区间段三次样条函数体表达式,计算出已给点插值并显示各区间分段曲线图。 关键词: 三次样条;插值函数; Matlab 程序 中图分类号: O242.1 文献标识码: A
注意到 S(x) 在 [x j, x j+1 ]( j=1,2,… ,n- 1 )上是三 次多项式,于是 S"(x)在 [x j, x j+1 ] 上是一次多项式, 如果 S"(x) 在 [x j,x j+1 ]( j=1,2,… ,n -1)两端点上的值 已知,设 S"(x j)=M j,S"(x j+1 )=M j+1 ,则 S"(x) 的表达 x j+1 − x x −xj Mj + M j+1 , 其 中 h j = 式 为 : S'' ( x ) = hj hj x j+1 -x j,对 S"(x) 进行两次积分,则得到 1 个具有 2
S j (x) = a j x 3 + b j x 2 + c j x + d j , (j = 1,2, … ,n - 1) (1)
三次样条插值matlab代码实现
![三次样条插值matlab代码实现](https://img.taocdn.com/s3/m/cb98fe4dcd1755270722192e453610661ed95afe.png)
三次样条插值matlab代码实现
三次样条插值是一种常用的数值分析方法,用于在给定的数据点上拟合出一个光滑的曲线。
在Matlab中,可以使用内置的spline函数来实现三次样条插值。
以下是一个简单的示例代码:
matlab.
% 创建一些示例数据点。
x = 1:5;
y = [3 6 5 8 9];
% 使用spline函数进行三次样条插值。
xx = 1:0.1:5;
yy = spline(x, y, xx);
% 绘制原始数据点和插值结果。
plot(x, y, 'o', xx, yy, '-');
legend('原始数据', '插值结果');
在这个示例中,我们首先创建了一些示例数据点x和y。
然后使用spline函数对这些数据点进行三次样条插值,得到了插值结果xx和yy。
最后,我们使用plot函数将原始数据点和插值结果进行了可视化展示。
需要注意的是,样条插值是一种较为复杂的数值计算方法,需要对输入数据进行适当的处理和理解。
在实际应用中,可能需要根据具体情况对插值方法进行调整和优化,以获得更好的结果。
希望这个简单的示例能够帮助你理解如何在Matlab中实现三次样条插值。
如果你有更多的问题或者需要进一步的解释,请随时告诉我。
MATLAB 三次样条
![MATLAB 三次样条](https://img.taocdn.com/s3/m/6a41c7f804a1b0717fd5ddb1.png)
12.1
基本特征
在三次样条中,要寻找三次多项式,以逼近每对数据点间的曲线。在样条术语中,这 些数据点称之为断点。因为,两点只能决定一条直线,而在两点间的曲线可用无限多的三 次多项式近似。因此,为使结果具有唯一性。在三次样条中,增加了三次多项式的约束条 件。通过限定每个三次多项式的一阶和二阶导数,使其在断点处相等,就可以较好地确定 所有内部三次多项式。此外,近似多项式通过这些断点的斜率和曲率是连续的。然而,第 一个和最后一个三次多项式在第一个和最后一个断点以外,没有伴随多项式。因此必须通 过其它方法确定其余的约束。最常用的方法,也是函数 spline 所采用的方法,就是采用非 扭结(not-a-knot)条件。这个条件强迫第一个和第二个三次多项式的三阶导数相等。对最后 一个和倒数第二个三次多项式也做同样地处理。 基于上述描述,人们可能猜想到,寻找三次样条多项式需要求解大量的线性方程。实 际上,给定 N 个断点,就要寻找 N-1 个三次多项式,每个多项式有 4 个未知系数。这样, 所求解的方程组包含有 4*(N-1)个未知数。把每个三次多项式列成特殊形式,并且运用各种 约束,通过求解 N 个具有 N 个未知系数的方程组,就能确定三次多项式。这样,如果有 50 个断点,就有 50 个具有 50 个未知系数的方程组。幸好,用稀疏矩阵,这些方程式能够简 明地列出并求解,这就是函数 spline 所使用的计算未知系数的方法。
0 7.0000 0.0007 -0.0083 0.0042 0.3542 0.1635 4.9136 0.9391
1.0000 8.0000 0.0007 0.1068 0.0072 -0.2406 0.1925 0 1.2088
2.0000 9.0000 0.0010 -0.1982 0.0109 4.2439 0.2344 0.1263 1.5757
matlab---三次样条插值
![matlab---三次样条插值](https://img.taocdn.com/s3/m/59c49d21647d27284b735152.png)
4多项式插值与函数最佳逼近37(上机题)3次样条插值函数:(1)编制求第一型3次样条插值函数的通用程序;(2)已知汽车门曲线型值点的数据如下:端点条件为8.0'0=y ,2.0'10=y ,用所编程序求车门的3次样条插值函数S (x ),并打印出9,,1,0),5.0(⋯=+i i S 。
用matlab 编写通用程序为:function [Sx ]=Threch(X,Y,dy0,dyn )%X 为输入变量x 的数值%Y 为函数值y 的数值%dy0为左端一阶导数值%dyn 为右端一阶导数值%Sx 为输出的函数表达式n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:n %求函数的一阶差商h(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:n %求函数的二阶差商f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);endd(1)=6*(f1(1)-dy0)/h(1);d(n+1)=6*(dyn-f1(n-1))/h(n-1);%赋初值A=zeros(n+1,n+1);B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=1;A(n+1,n)=1;for i=1:n+1A(i,i)=2;endfor i=2;nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;syms x;for i=1:nSx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))...+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3);digits(4);Sx(i)=vpa(Sx(i));endfor i=1:ndisp('S(x)=');fprintf('%s(%d,%d)\n',char(Sx(i)),X(i),X(i+1));endS=zeros(1,n);for i=1:nx=X(i)+0.5;S(i)=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))...+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3;enddisp('S(i+0.5)');disp('i X(i+0.5)S(i+0.5)');for i=1:nfprintf('%d%.4f%.4f\n',i,X(i)+0.5,S(i));endEnd在运行窗口输入:>>X=[012345678910];Y=[2.513.304.044.705.225.545.785.405.575.705.80]; Threch(X,Y,0.8,0.2)运行结果如下:S(x)=-0.005714*x^3-0.004286*x^2+0.8*x+2.51(0,1)S(x)=-0.01286*x^3+0.01714*x^2+0.7786*x+2.517(1,2) S(x)=-0.015*x^3+0.03*x^2+0.795*x+2.45(2,3)S(x)=-0.015*x^3+0.03*x^2+0.865*x+2.24(3,4)S(x)=0.03*x^3-0.51*x^2+3.08*x-0.86(4,5)S(x)=-0.135*x^3+1.965*x^2-9.09*x+18.74(5,6)S(x)=0.2925*x^3-5.73*x^2+36.96*x-72.9(6,7)S(x)=-0.1475*x^3+3.51*x^2-27.55*x+76.87(7,8)S(x)=0.0025*x^3-0.09*x^2+1.118*x+1.11(8,9)S(x)=0.04625*x^3-1.271*x^2+11.72*x-30.53(9,10)S(i+0.5)i X(i+0.5)S(i+0.5)10.5000 2.90822 1.5000 3.68023 2.5000 4.39064 3.5000 4.99195 4.5000 5.40636 5.5000 5.72567 6.5000 5.596687.5000 5.437298.5000 5.6416109.5000 5.7383。
Matlab Spline 三次样条插值多项式表达式问题
![Matlab Spline 三次样条插值多项式表达式问题](https://img.taocdn.com/s3/m/5cb0001e79563c1ec5da7125.png)
如何运用MATLAB 三次样条插值的问题,今天做作业,突然想用Matlab搞搞。
题目如下:清华大学出版社的《数值分析(第5版)》P49,20题。
x=[0.25 0.3 0.39 0.45 0.53];y=[ 0.5 0.5477 0.6245 0.6708 0.7280 ]pp=csape(x,y,'second',[0,0.0]);disp(pp.coefs);其中COEFS的含义是在Xi-Xi+1区间上的多项式是,例如COEFS数组第一行的意思是在X=0.25到X=0.3的区间上时表达式是-6.2652*(X-0.25)^3+0.9697*(X-0.25)^1+0.5;-6.2652 0.0000 0.9697 0.50001.8813 -0.9398 0.9227 0.5477-0.4600 -0.4318 0.7992 0.62452.1442 -0.5146 0.7424 0.6708关于csape的用法引用自:/ck436/blog/item/6fe40c46400d3c046b63e52b.htmlcsape,是计算在各种边界条件下的三次样条插值。
pp = csape(x,y,conds)其中conds主要有以下的选项variational(自然边界条件,首末点二阶导数均为0),second (指定首末点的二阶导数),periodic(周期性边界条件,首末点的0~2阶导数相等),complete (给定导数情况,默认)function pp = csape(x,y,conds,valconds)%pp=csape(x,y,'变界类型','边界值'),生成各种边界条件的三次样条插值. 其中,(x,y)为数据向量%边界类型可为:'complete',给定边界一阶导数.% 'not-a-knot',非扭结条件,不用给边界值.% 'periodic',周期性边界条件,不用给边界值.% 'second',给定边界二阶导数.% 'variational',自然样条(边界二阶导数为0)% .%例考虑数据% x | 1 2 4 5% ---|-------------% y | 1 3 4 2%边界条件S''(1)=2.5,S''(5)=-3,% x=[1 2 4 5];y=[1 3 4 2];% pp=csape(x,y,'second',[2.5,-3]);pp.coefs % xi=1:0.1:5;yi=ppval(pp,xi);% plot(x,y,'o',xi,yi);。
MATLAB大作业 给定一个时间序列,使用三次样条插值方法进行均匀内插
![MATLAB大作业 给定一个时间序列,使用三次样条插值方法进行均匀内插](https://img.taocdn.com/s3/m/811770e881c758f5f61f67c1.png)
MATLAB作业给定一个时间序列,使用三次样条插值方法进行均匀内插(题目的相关说明:按题目要求编写一个MATLAB程序函数,并把自己编制程序所得的结果与MATLAB库函数分析结果进行对比。
)理论基础:时间序列的概念:时间序列是一种定量预测方法,又称简单外延法,时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论与方法,时间序列分析可分为以下三种情况(1)把一个时间序列的值变动为N 个组成部分,通常可以分为四种 a、倾向变动,又称长期趋势变动 b、循环变动,又称周期变动 c、季节变动,即每年有规则的反复进行变动 d、不规则变动,即随机变动。
然后把这四个综合到一起得出预测的结果。
虽然分成这四部分,但这四部分之间的相互关系是怎么样的呢,目前一般采用相乘的关系,其实各个部分都是在其他部分作用的基础上进行作用的,所以采用相乘是有一定依据的,此种方法适合于短期预测和库存预测(2)把预测对象、预测目标和对预测的影响因素都看成为具有时序的,为时间的函数,而时间序列法就是研究预测对象自身变化过程及发展趋势,如果未来预测是线性的,其数学模型为YT+L=aT+bTL,YT+L为未来预测值,aT为截距,bT为斜率,L为由T到需要预测的单位时间数(如5年、10年等)(3)根据预测对象与影响因素之间的关系及影响程度来推算未来,与目标的相关因素很多,只能选择那些因果关系较强的为预测影响的因素,此时间序列法用于短期预测比较有效,若要用于长期预测,还需要结合其他方法才行。
三次样条插值的实际应用:在制造船体和汽车外形等工艺中传统的设计方法是,首先由设计人员按外形要求,给出外形曲线的一组离散点值,施工人员准备好有弹性的样条(一般用竹条或有弹性的钢条)和压铁,将压铁放在点的位置上,调整竹条的形状,使其自然光滑,这时竹条表示一条插值曲线,我们称为样条函数。
从数学上看,这一条近似于分段的三次多项式,在节点处具有一阶和二阶连续微商。
MATLAB大作业 给定一个时间序列,使用三次样条插值方法进行均匀内插
![MATLAB大作业 给定一个时间序列,使用三次样条插值方法进行均匀内插](https://img.taocdn.com/s3/m/811770e881c758f5f61f67c1.png)
MATLAB作业给定一个时间序列,使用三次样条插值方法进行均匀内插(题目的相关说明:按题目要求编写一个MATLAB程序函数,并把自己编制程序所得的结果与MATLAB库函数分析结果进行对比。
)理论基础:时间序列的概念:时间序列是一种定量预测方法,又称简单外延法,时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论与方法,时间序列分析可分为以下三种情况(1)把一个时间序列的值变动为N 个组成部分,通常可以分为四种 a、倾向变动,又称长期趋势变动 b、循环变动,又称周期变动 c、季节变动,即每年有规则的反复进行变动 d、不规则变动,即随机变动。
然后把这四个综合到一起得出预测的结果。
虽然分成这四部分,但这四部分之间的相互关系是怎么样的呢,目前一般采用相乘的关系,其实各个部分都是在其他部分作用的基础上进行作用的,所以采用相乘是有一定依据的,此种方法适合于短期预测和库存预测(2)把预测对象、预测目标和对预测的影响因素都看成为具有时序的,为时间的函数,而时间序列法就是研究预测对象自身变化过程及发展趋势,如果未来预测是线性的,其数学模型为YT+L=aT+bTL,YT+L为未来预测值,aT为截距,bT为斜率,L为由T到需要预测的单位时间数(如5年、10年等)(3)根据预测对象与影响因素之间的关系及影响程度来推算未来,与目标的相关因素很多,只能选择那些因果关系较强的为预测影响的因素,此时间序列法用于短期预测比较有效,若要用于长期预测,还需要结合其他方法才行。
三次样条插值的实际应用:在制造船体和汽车外形等工艺中传统的设计方法是,首先由设计人员按外形要求,给出外形曲线的一组离散点值,施工人员准备好有弹性的样条(一般用竹条或有弹性的钢条)和压铁,将压铁放在点的位置上,调整竹条的形状,使其自然光滑,这时竹条表示一条插值曲线,我们称为样条函数。
从数学上看,这一条近似于分段的三次多项式,在节点处具有一阶和二阶连续微商。
三次样条插值MATLAB程序及结果展示
![三次样条插值MATLAB程序及结果展示](https://img.taocdn.com/s3/m/20da564baf1ffc4fff47ac06.png)
23、汽车门曲线三次样条插值曲线相关程序以及结果原始数据点:x = 0:10; %取自变量为1,2,3, (10)y = [2.51 3.30 4.04 4.70 5.22 5.54 5.78 5.40 5.57 5.70 5.80];%输入因变量y的值xx = linspace(min(x),max(x),200);%在x的上下界之间取200个插值节点pp = csape(x,y,'comlete',[0.8,0.2]);%分段三次样条插值,边界条件为左右端点的一阶导数为0.8和0.2 yy = ppval(pp,xx);%计算200个插值节点对应的y值plot(x,y,'ko',xx,yy,'k') %画出给定的11个点以及插值函数的图像24、飞鸟外形上部自然边界条件的三次样条插值曲线相关程序以及结果原始数据如下:x =[0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3];y = [1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25];xx = linspace(min(x),max(x),200);pp = csape(x,y,'second'); %分段三次样条插值,边界条件为左右端点的二阶导数为0,也称为自然边界条件yy = ppval(pp,xx);plot(x,y,'ko',xx,yy,'k')。
三次样条插值matlab 第二类边界条件
![三次样条插值matlab 第二类边界条件](https://img.taocdn.com/s3/m/ca8e142d53d380eb6294dd88d0d233d4b04e3f72.png)
三次样条插值matlab 第二类边界条件三次样条插值是一种常用的插值方法,用于对给定数据进行平滑的曲线拟合。
在Matlab中,可以使用spline函数来实现三次样条插值。
本文将介绍三次样条插值的第二类边界条件,并讨论其应用。
三次样条插值是一种使用多项式进行插值的方法,其中每个插值段都是三次多项式。
为了确定这些多项式的系数,需要满足一些边界条件。
第二类边界条件是其中一种常见的边界条件,它要求插值函数的一阶导数在边界点上相等。
在Matlab中,可以通过指定边界点的一阶导数来实现第二类边界条件。
具体而言,可以使用spline函数的第三个输入参数来指定边界点的一阶导数值。
例如,如果有两个边界点a和b,其一阶导数值分别为da和db,则可以使用以下代码进行三次样条插值:```matlabx = [a, x_data, b]; % 插值节点,包括边界点y = [da, y_data, db]; % 插值节点对应的函数值coefs = spline(x, y, [x_data]); % 三次多项式的系数```上述代码中,x_data是要进行插值的数据点,y_data是对应的函数值。
spline函数返回的coefs是一个矩阵,每一行都是一个插值段对应的三次多项式的系数。
三次样条插值的第二类边界条件在实际应用中具有广泛的用途。
例如,在金融领域中,可以使用三次样条插值来对股票价格进行平滑拟合,从而预测未来的价格变化。
在图像处理中,三次样条插值可以用于图像的放大和缩小,以及图像的平滑处理。
在工程领域中,三次样条插值可以用于数据的去噪和补全。
三次样条插值的第二类边界条件相比其他边界条件具有一些优点。
首先,它可以保持插值函数的一阶导数连续,从而避免了插值函数在边界点处出现不连续的情况。
其次,它可以在边界点处提供更准确的拟合结果,因为它使用了边界点的一阶导数信息。
然而,三次样条插值的第二类边界条件也存在一些限制。
首先,它要求边界点的一阶导数值是已知的,这在某些情况下可能并不容易确定。
第一型 三次样条插值matlab程序【完整版】
![第一型 三次样条插值matlab程序【完整版】](https://img.taocdn.com/s3/m/a4c73c817fd5360cbb1adb52.png)
第一型三次样条插值matlab 程序【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)第一型三次样条插值问题求解一:解题过程1. 根据书上关于三次样条的步骤,列出相关的矩阵。
1111212....212n n μλμλ--011n nd d d d -2. 编写追赶法的求解函数,求解矩阵得到011n nM M M M -3. 根据求解结果得到分段函数,画图表示,并求解(i 0.5)S +4. 利用MATLAB 内置三次样条函数求解问题二:结果以及结果比照1. (i 0.5)S +〔因显示问题,把表格中的精度变小了〕自编程序所得的 中间值MATLAB 内置三次样条 中间值2.样条图像自编程序所得的图像MATLAB内置三次样条图像可得,自编程序解得的结果与MATLAB解的结果完全一致。
三:程序通用性分析程序对于输入点的顺序进行优化,自变量X不需要从小到大进行排序,随机输入以后,程序会自动排序。
数据的输入不限点数,自变量之间的间隔也不限。
输入数据相比照拟自由。
四:程序使用演示、通用性演示运行文件 yzy.m,即可得到中间值以及三次样条图像〔里面内置了需要输入的数据〕1.按书上数据输入0123456789102.513.34.04 4.75.22 5.54 5.78 5.4 5.57 5.7 5.8得到图像2.颠倒书上数据输入1012345678905.8 3.3 4.04 4.7 5.22 5.54 5.78 5.4 5.57 5.7 2.51得到同样的图像1.在原有数据上多输入三组数据1012345678901113155.83.3 4.04 4.7 5.225.54 5.78 5.4 5.576 2.516810.3根据上面三张图,可以发现,数据量不同、数据顺序不同、数据自变量X间隔不同,都可以得出结果,可以说明程序具有很好的通用性。
附录yzy.m1.A=[10,1,2,3,4,5,6,7,8,9,0,11,13,15;5.8,3.3,4.04,4.7,5.22,5.54,5.78,5.4,5.57,5.7,2.51,6,8,10.3];2.A=A'; %转置排序3.A=sortrows(A);4.nn=size(A,1);5.A=A';6.f1=0.8;f2=0.2;7.n=size(A,2);8.M=eye(n);9.M=M*2;10.N=zeros(n,1);11.for i=2:n-112. M(i,i-1)=(A(1,i)-A(1,i-1))/(A(1,i+1)-A(1,i-1));13. M(i,i+1)=1-M(i,i-1);14.N(i)=6*(((A(2,i+1)-A(2,i))/(A(1,i+1)-A(1,i))-((A(2,i)-A(2,i-1)))/( A(1,i)-A(1,i-1)))/(A(1,i+1)-A(1,i-1)));15.end16.M(1,2)=1;17.M(n,n-1)=1; %M为三次样条的矩阵18.N(1)=6*(((A(2,2)-A(2,1))/(A(1,2)-A(1,1))-f1));19.N(n)=6*(f2-((A(2,n)-A(2,n-1))/(A(1,n)-A(1,n-1))));20.NE=zeros(n,n+1); %追赶法21.NE(1,1)=M(1,1);22.NE(1,n+1)=N(1);23.for i=2:n24. l=M(i,i-1)/NE(i-1,i-1);25. NE(i,i)=M(i,i)-l*M(i-1,i);26. NE(i,n+1)=N(i)-l*NE(i-1,n+1);27.end28.AN=zeros(n,1);29.AN(n)=NE(n,n+1)/NE(n,n);30.for i=1:n-131. j=n-i;32. AN(j)=(NE(j,n+1)-M(j,j+1)*AN(j+1))/NE(j,j);33.end34.M=AN; %追赶法结束35.S=zeros(n-1,5);36.for i=1:n-1;37. S(i,1)=A(2,i);38.S(i,2)=(A(2,i+1)-A(2,i))/(A(1,i+1)-A(1,i))-(1/3*M(i)+1/6*M(i+1))*( A(1,i+1)-A(1,i));39. S(i,3)=1/2*M(i);40. S(i,4)=(M(i+1)-M(i))/(6*(A(1,i+1)-A(1,i)));41.S(i,5)=S(i,1)+S(i,2)*((A(1,i+1)-A(1,i))/2)+S(i,3)*((A(1,i+1)-A(1,i ))/2).^2+S(i,4)*((A(1,i+1)-A(1,i))/2).^3; % 三次样条函数系数42.end43.n=size(S,1);44.title('三次样条图像');45.hold on;46.for i=1:n47. x=A(1,i):(A(1,i+1)-A(1,i))/100:A(1,i+1);48.y=S(i,1)+S(i,2)*(x-A(1,i))+S(i,3)*(x-A(1,i)).^2+S(i,4)*(x-A(1,i)).^3;49. plot(x,y);50. plot(A(1,i),A(2,i),'o');51.end52. plot(A(1,n+1),A(2,n+1),'o');53. hold off;54.disp('ÖмäÖµ');55.z=zeros(2,n);56.for i=1:n57. z(1,i)=(A(1,i)+A(1,i+1))/2;58. z(2,i)=S(i,5);59.end60.disp(z);61.X=zeros(1,n);Y=zeros(1,n); % 下面是内置三次样条函数调用62.X(1,1:nn)=A(1,1:nn);63.Y(1,1:nn)=A(2,1:nn);64.pp=csape(X,Y,'c',[f1,f2]);65.pp.coefs;66.XI=0.5:1:9.5;67.YI=ppval(pp,XI);68.disp('MATLAB内置三次样条中间值 ');69.Z=zeros(2,10);70.Z(1,1:10)=XI(1,1:10);71.Z(2,1:10)=YI(1,1:10);72.disp(Z);73.xi=0:0.1:10;yi=ppval(pp,xi);74.plot(x,y,'-',xi,yi);。
自编的三次样条插值matlab程序(含多种边界条件)
![自编的三次样条插值matlab程序(含多种边界条件)](https://img.taocdn.com/s3/m/981e75aad1f34693daef3ef4.png)
d2 0.67221 0.43138 0.28102 0.22141 0.24664 0.2551 0.43028
0.9802
则旋转后的三次样条的系数及图像为:
xx2=[x2(1):0.001:x2(end)]'; [yy2 b2 c2 d2]=spline3(x2,y2,xx2,1,v1,vn); fprintf('\t\t\tb2\t\t\tc2\t\t\td2\n'); disp([b2 c2(1:end-1,1) d2]); plot(x2,y2,'*b',xx2,yy2,'-.k'); grid on; b2 c2 -0.97849 -0.74704 -0.35362 -0.067629 0.0061747 0.3081 0.6992
" 又 设 cn Sn 1 xn 2 , 记 i xi 1 xi , i yi 1 yi , i 1, 2, , n 1 , 则由 (1.3)可 得 :
ci 1 ci , i 1, 2, , n 1. 3 i 从(1.2)解得: bi i ci i di i2 i i 2ci ci 1 , i 1, 2, , n 1. i i 3 将(1.4)与(1.5)代入(1.3)得: di
ai yi , i 1, 2, n 1. 2 3 y2 y1 b1 x2 x1 c1 x2 x1 d1 x2 x1 , 2 3 y y b x x n 1 n 1 n n 1 cn 1 xn xn 1 d n 1 xn xn 1 n 由节点处的一阶与二阶光滑性可知: Si'1 xi Si' xi , Si"1 xi Si" xi , i 1, 2, , n.
三次样条插值的MATLAB实现
![三次样条插值的MATLAB实现](https://img.taocdn.com/s3/m/358961275627a5e9856a561252d380eb6294238c.png)
MATLAB 程序设计期中考查在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。
其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法:对插值区间[]b a ,进行划分:b x x x a n ≤<⋯⋯<<≤10,函数()x f y =在节点i x 上的值()()n i x f y i i ⋯⋯==,2,1,0,并且如果函数()x S 在每个小区间[]1,+i i x x 上是三次多项式,于[]b a ,上有二阶连续导数,则称()x S 是[]b a ,上的三次样条函数,如果()x S 在节点i x 上还满足条件()()n i y x S i i ⋯⋯==,1,0则称()x S 为三次样条插值函数。
三次样条插值问题提法:对[]b a ,上给定的数表如下.求一个分段三次多项式函数()x S 满足插值条件()()n i y x S i i ⋯⋯==,1,0 式,并在插值区间[]b a ,上有二阶连续导数。
这就需要推导三次样条插值公式:记()x f '在节点i x 处的值为()i i m x f ='(n i ⋯⋯=,1,0)(这不是给定插值问题数表中的已知值)。
在每个小区间[]1,+i i x x 利用三次Hermite 插值公式,得三次插值公式:()()()()1111+++++++=i i i i i i i i i m m x y x y x x S ββαα,[]1,+∈i i x x x 。
为了得到这个公式需要n 4个条件:(1).非端点处的界点有n 2个;(2).一阶导数连续有1-n 个条件;(3).二阶导数连续有1-n 个条件,其中边界条件:○1()()n n m x S m x S ='=' 00 ○2()()αα=''=''n x S x S 00 ○3()()()()16500403βααβαα=''+'=''+'n n x S x S x S x S○4n y y =0 ()()()()000000-''=+''-'=+'n nx S x S x S x S 其中:()⎩⎨⎧=≠=j i j i x j i,1,0α ()0='j i x α ()0=j i x β 且(1,0,=j i )。