STM32通用定时器学习
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)落月风情高工2012-12-23 17:49:43 评分只看楼主 1楼实验内容:利用STM32的一个通用定时器(TIM2)产生4路频率相同(1KHz)占空比不同的PWM。
Ch1占空比75%,Ch2占空比50%,Ch3占空比25%,Ch4占空比10%。
四路输出分别对应PA端口的PA0,PA1,PA2,PA3。
实验目的:掌握通用定时器的基本应用。
(PWM的频率和占空比的计算)STM32的定时器是个强大的模块,定时器使用的频率也是很高的,定时器可以做一些基本的定时,还可以做PWM输出或者输入捕获功能。
补充一个前期时钟源问题:名为TIMx的定时器有8个,其中TIM1和TIM8挂在APB2总线上,而TIM2-TIM7则挂在APB1总线上。
其中TIM1&TIM8称为高级控制定时器. APB2可以工作在72MHz下,而APB1最大是36MHz。
定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器。
(这个问题纳闷了好久才找到的,主要是没有在意时钟树,唉!)下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=3 6MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
STM32通用定时器原理及应用
一、通用定时器原理STM32系列的CPU,有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM 互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。
其它6个为普通定时器,时钟由APB1的输出产生。
下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:实际上STM32的CPU文档给出的图与这个图略有区别。
但是我们还是想研究这个图。
原因是这个图对我们思路的理解比较有帮助。
从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。
下面以通用定时器2的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
可能有同学还是有点不理解,OK,我们举一个例子说明。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
再举个例子:当AHB=72MHz时,APB1的预分频系数必须大于2,因为APB1的最大频率只能为36MHz。
如果APB1的预分频系数=2,则因为这个倍频器,TIM2~7仍然能够得到72MHz 的时钟频率。
能够使用更高的时钟频率,无疑提高了定时器的分辨率,这也正是设计这个倍频器的初衷。
STM32之TIM通用定时器
STM32之TIM通⽤定时器本⽂介绍如何使⽤STM32标准外设库配置并使⽤定时器,定时器就是设置⼀个计时器,待计时时间到之后产⽣⼀个中断,程序接收到中断之后可以执⾏特定的程序,跟现实中的闹钟功能类似。
与延时功能不同,定时器计时过程中程序可以执⾏其他程序。
最简单直观的应⽤为定时翻转指定IO引脚。
本例程使⽤通⽤定时器TIM3,每100ms翻转GPIOB的Pin5输出,如果该引脚外接有LED灯,可以看到LED灯周期性的闪烁。
STM32F103VE系列共有8个定时器,分为基本定时器、通⽤定时器和⾼级定时器,其中通⽤定时器包括TIM2/3/4/5共4个,如果⼀个定时器不够⽤,可以启动其他⼏个定时器。
本⽂适合对单⽚机及C语⾔有⼀定基础的开发⼈员阅读,MCU使⽤STM32F103VE系列。
TIM通⽤定时器分为两部分,初始化和控制。
1. 初始化分两步:通⽤中断、TIM。
1.1. 通⽤中断:优先级分组、中断源、优先级、使能优先级分组:设定合适的优先级分组中断源:选择指定的TIM中断源:TIM3_IRQn优先级:设定合适的优先级使能:调⽤库函数即可1.2. TIM:时钟、预分频器、定时器周期、分频因⼦、计数模式、初始化定时器、开启定时器中断、使能计数器。
结构体:typedef struct{uint16_t TIM_Prescaler;uint16_t TIM_CounterMode;uint16_t TIM_Period;uint16_t TIM_ClockDivision;uint8_t TIM_RepetitionCounter;} TIM_TimeBaseInitTypeDef;时钟:需要使能定时器时钟//开启定时器时钟,即内部时钟CK_INT=72MRCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);预分频器:默认定时器时钟频率为72M,那么预分频器设置为71,那么⼀次计数为1us//时钟预分频数为71,则计数器计数⼀次时间为1usTIM_TimeBaseStructure.TIM_Prescaler = 71;定时器周期:设置为999,那么产⽣⼀次定时器中断的时间为1ms//⾃动重装载寄存器为999,则产⽣⼀次中断时间为1msTIM_TimeBaseStructure.TIM_Period = 1000 - 1;计数模式:⼀般选择向上计数模式// 计数器计数模式,选择向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;时钟分频因⼦:⼀般选择1分频// 时钟分频因⼦,选择1分频TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;重复计数器的值:仅对⾼级定时器有效,⽆需设置初始化定时器:调⽤库函数即可//初始化定时器TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);开启定时器中断//开启计数器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);使能计数器//使能计数器TIM_Cmd(TIM3, ENABLE);2. 处理2.1. 中断服务函数定时器TIM3的中断服务函数名称为TIM3_IRQHandler ()。
第六章 STM32 定时器的使用 《基于ARM的单片机应用及实践--STM32案例式教学》课件
第六章 STM32 定时器的使用
AHB预分频 /1,2,…,512
APB1预分频 /1,2,4,8,16
最大36MHz
PCLK1 至APB1外设
20个外设时钟使能位
TIM2,3,4,5,6,7 如果APB1预分频=1, 则乘1输出,否则乘2输出
6个外设时钟使能位
TIMXCLK 至TIM2~7
APB2预分频 /1,2,4,8,16
第六章 STM32 定时器的使用
PWM模式 脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器 确定频率、由TIMx_CCRx寄存器确定占空比的信号。 在TIMx_CCMRx寄存器中的OCxM位写入‘110’(PWM 模式1)或‘111’(PWM模式2),能够独立地设置每个 OCx输出通道产生一路PWM。必须设置TIMx_CCMRx 寄存器OCxPE位以使能相应的预装载寄存器, 最后要设置TIMx_CR1寄存器的ARPE位,(在向上计数 或中心对称模式中)使能自动重装载的预装载寄存器。
这个倍频器的作用:当APB1的预分频系数为1时,倍 频器不起作用,定时器的时钟频率等于APB1的频率; 当APB1的预分频系数为其它数值(即预分频系数为2、4 、8或16)时,这个倍频器起作用,定时器的时钟频率 等于APB1的频率两倍。
第六章 STM32 定时器的使用 下面举一个例子说明。假定AHB=36MHz,因为APB1 允许的最大频率为36MHz,所以APB1的预分频系数可 以取任意数值;当预分频系数=1时,APB1=36MHz, TIM2~7的时钟频率=36MHz(倍频器不起作用);
第六章 STM32 定时器的使用
3)设置TIM3_DIER允许更新中断 因为我们要使用TIM3的更新中断,所以设置DIER 的UIE位,并使能触发中断。
STM32入门篇之通用定时器彻底研究
STM32入门篇之通用定时器彻底研究STM32的定时器功能很强大,学习起来也很费劲儿,本人在这卡了5天才算看明白。
写下下面的文字送给后来者,希望能带给你点启发。
在此声明,本人也是刚入门,接触STM32不足10天,所以有失误的地方请以手册为准,欢迎大家拍砖。
其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER做个剖析。
实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用……TIMER主要是由三部分组成:1、时基单元。
2、输入捕获。
3、输出比较。
还有两种模式控制功能:从模式控制和主模式控制。
一、框图让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了…为了方便的看图,我对里面出现的名词和符号做个注解:TIMx_ETR:TIMER外部触发引脚 ETR:外部触发输入ETRP:分频后的外部触发输入 ETRF:滤波后的外部触发输入ITRx:内部触发x(由另外的定时器触发)TI1F_ED:TI1的边沿检测器。
TI1FP1/2:滤波后定时器1/2的输入TRGI:触发输入 TRGO:触发输出CK_PSC:应该叫分频器时钟输入CK_CNT:定时器时钟。
(定时周期的计算就靠它)TIMx_CHx:TIMER的输入脚 TIx:应该叫做定时器输入信号xICx:输入比较x ICxPS:分频后的ICxOCx:输出捕获x OCxREF:输出参考信号关于框图还有以下几点要注意:1、影子寄存器。
有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);(详细请参考版主博客/STM32/401461/message.aspx)2、输入滤波机制在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率Fdts来采样N次进行滤波的。
STM32F103ZET6通用定时器
STM32F103ZET6通⽤定时器1、通⽤定时器简介 通⽤定时器是由⼀个可编程预分频器驱动的16位⾃动装载计数器构成。
通⽤定时器可以应⽤于多种场合,如测量输⼊信号的脉冲长度(输⼊捕获)或者产⽣输出波形(输出⽐较和PWM)。
使⽤通⽤定时器的预分频器和RCC时钟控制器的预分频器,脉冲长度和输出波形周期可以在⼏个微秒到⼏个毫秒间调整。
STM32内有多个通⽤定时器,每个通⽤定时器都是完全独⽴的,没有互相共享任何资源。
通⽤定时器的主要功能包括: 16位向上、向下、向上/向下⾃动装载计数器。
16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值。
4个独⽴通道可以实现4路:输⼊捕获、输出⽐较、PWM输出、单脉冲模式输出。
使⽤外部信号控制定时器和定时器互连的同步电路。
⽀持针对定位的增量(正交)编码器和霍尔传感器电路。
通⽤定时器框图如下:2、通⽤定时器的时基单元 通⽤定时器的时基单元主要由⼀个16位计数器和与其相关的⾃动装载寄存器。
这个计数器可以向上计数、向下计数或者向上向下双向计数。
通⽤定时器的计数器的时钟由预分频器分频得到,⾄于预分频器之前的时钟在时钟选择的时候回说到。
通⽤定时器的计数器、⾃动装载寄存器和预分频器寄存器可以由软件读写,在计数器运⾏时仍可以读写。
如下图红⾊框部分就是通⽤定时器的时基部分: 时基单元包含: CNT计数器(TIMx_CNT)。
PSC预分频器(TIMx_PSC)。
⾃动重装载寄存器(TIMx_ARR)。
CNT 计数器和⾃动重装载寄存器: TIMx_ARR寄存器是预先装载的,写或读TIMX_ARR寄存器将访问预装载寄存器。
通⽤定时器根据TIMx_CR1寄存器中的ARPE 位,来决定写⼊TIMx_ARR寄存器的值是⽴即⽣效还是要等到更新事件(溢出)后才⽣效。
在计数器运⾏的过程中,ARPE位的作⽤如下: 当ARPE = 0时,写⼊TIMx_ARR寄存器的值⽴即⽣效,即TIMx_CNT计数器的计数范围⽴马更新。
STM32定时器(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时器+。。。
STM32定时器(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时器+。
2.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采⽤内部时钟。
TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。
这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。
{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。
⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。
如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}//系统时钟初始化配置void RCC_Configuration(void){//定义错误状态变量ErrorStatus HSEStartUpStatus;//将RCC寄存器重新设置为默认值RCC_DeInit();//打开外部⾼速时钟晶振RCC_HSEConfig(RCC_HSE_ON);//等待外部⾼速时钟晶振⼯作HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS){//设置AHB时钟(HCLK)为系统时钟RCC_HCLKConfig(RCC_SYSCLK_Div1);//设置⾼速AHB时钟(APB2)为HCLK时钟RCC_PCLK2Config(RCC_HCLK_Div1);//设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)RCC_PCLK1Config(RCC_HCLK_Div2);//设置FLASH代码延时FLASH_SetLatency(FLASH_Latency_2);//使能预取指缓存FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHzRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);//使能PLLRCC_PLLCmd(ENABLE);//等待PLL准备就绪while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);//设置PLL为系统时钟源RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//判断PLL是否是系统时钟while(RCC_GetSYSCLKSource() != 0x08);}//允许TIM2的时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//允许GPIO的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);}三、定时器代码实例中断优先级就不贴出来了,⾃⼰可以配置下Tout= ((arr+1)*(psc+1))/Tclk;arr:计数重装值,psc分频数,Tclk系统时钟频率,Tout⼀个周期的时间。
STM32F051R8T6的通用定时器配置
STM32F051R8T6的通用定时器配置将系统时钟24 分频,计数频率为48MHz/24 = 2MHz,则计一个数的时间为0.5us。
计满1000 个数的时间为0.5ms。
这就是TIM3 的定时周期。
voidTIM3_Configuration(void) //每0.5ms 发生一次更新事件(进入中断服务程序). {TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);TIM_DeInit(TIM3); //重新将Timer 设置为缺省值TIM_InternalClockConfig(TIM3); //采用内部时钟给TIM3 提供时钟源TIM_ARRPreloadConfig(TIM3, DISABLE); //禁止ARR 预装载缓冲器预装载寄存器的内容被立即传送到影子寄存器TIM_TimeBaseStructure.TIM_Prescaler = 24-1; //预分频系数为24-1,这样计数器计数频率为48MHz/24 = 2MHzTIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //设置计数器模式为向上计数模式TIM_TimeBaseStructure.TIM_Period = 1000; //设置计数溢出大小,每计1000 个数就产生一个更新事件TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure); //将配置应用到TIM3 中TIM_ClearFlag(TIM3, TIM_FLAG_Update); //清除溢出中断标志TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE); //使能TIM3 的更新中断TIM_Cmd(TIM3, ENABLE); //开启定时器3//Enable the TIM3 InterruptNVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPriority = 2;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);}stm32f0xx_it.c 文件中//---------------------------------0.5ms 中断一次-----------------。
STM32F2技术培训_通用定时器_TIM
23
各种时钟源的寄存器配置
配置相应寄存器为定时器选择所需时钟源
时钟源 内部时钟 CK_INT 外部时钟模式1 TIx 外部时钟模式2 ETR 内部触发输入 ITRx SMS 000 CEN 1 计数器在选定引脚 的指定边沿计数 计数器在ETR的指 定边沿计数 主计数器的输出作 为从计数器的输入 ECE 描述 备注 APB1上定时器最高 60MHz; APB2上定时 器最高120MHz Max fEXT=fTIMxCLK/2 TS=111(ETRF) 1 ETRP频率最高不能超 过CK_INT的1/4,可通 过ETPS分频
14个定时器分成三类
2个高级定时器:TIM1 & TIM8
用于马达控制 各自拥有4个通道,带互补输出以及霍尔接口
10个通用定时器
各自拥有4个通道:TIM2 & TIM3 & TIM4 & TIM5 各自拥有2个通道: TIM9 & TIM12 各自拥有1个通道: TIM10 & TIM11 & TIM13 & TIM14
6
单通道通用定时器功能框图
定时器精度 1通道通用定时器 TIM10,11 and TIM13,14 定时器类型 分频因子 DMA 比较/捕获通道 互补输出 逻辑引脚 CH1
16 bit
up
1..65536
NO
1
0
时钟源
时间基
1个通道 捕获比较矩阵
7
2通道通用定时器功能框图
定时器精度 2通道通用定时器 TIM9 and TIM12 16 bit 定时器类型 up 分频因子 1..65536 DMA NO 比较/捕获通道 2 互补输出 0 逻辑引脚 CH1;CH2
STM32学习笔记之三_定时器中断
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG | RCC_APB2Periph_AFIO, ENABLE); } 使用 HSE 时钟,程序设置时钟参数流程: 1、将 RCC 寄存器重新设置为默认值 RCC_DeInit 2、打开外部高速时钟晶振 HSE RCC_HSEConfig(RCC_HSE_ON); 3、 等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp(); 4、设置 AHB 时钟 RCC_HCLKConfig; 5、设置高速 AHB 时钟 RCC_PCLK2Config; 6、设置低速速 AHB 时钟 RCC_PCLK1Config 7、设置 PLL RCC_PLLConfig 8、打开 PLL RCC_PLLCmd(ENABLE); 9、 等待 PLL 工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) 10、设置系统时钟 RCC_SYSCLKConfig 11、判断是否 PLL 是系统时钟 while(RCC_GetSYSCLKSource() != 0x08) 12、 打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd () 下面是 TM32 软件固件库的程序中对 RCC 的配置函数(使用外部 8MHz 晶振) /************************************************************************** * Function Name : RCC_Configuration * Description : RCC 配置(使用外部 8MHz 晶振) * Input : 无 * Output : 无 * Return : 无 **************************************************************************/
STM32定时器定时时间配置总结
STM32定时器定时时间配置总结STM32系列微控制器内置了多个定时器模块,它们可以用于各种定时功能,如延时、周期性触发、脉冲计数等。
在使用STM32定时器之前,我们需要进行定时时间配置,本文将总结一下STM32定时器定时时间配置的相关知识,包括定时器工作模式、定时器时钟源选择、定时器时钟分频、定时器计数器重载值以及定时器中断配置等内容。
首先,我们需要选择定时器的工作模式。
STM32定时器支持多种工作模式,包括基本定时器模式、高级定时器模式、输入捕获模式和输出比较模式等。
基本定时器模式适用于简单的定时和延时操作,输入捕获模式适用于捕获外部事件的时间参数,输出比较模式适用于产生精确的PWM波形。
根据具体的应用需求,选择合适的工作模式。
其次,我们需要选择定时器的时钟源。
STM32定时器的时钟源可以选择内部时钟源(如系统时钟、HCLK等)或外部时钟源(如外部晶体)。
内部时钟源的稳定性较差,适用于简单的定时操作,而外部时钟源的稳定性较好,适用于要求较高的定时操作。
然后,我们需要选择定时器的时钟分频系数。
定时器的时钟分频系数决定了定时器的时钟频率,从而影响了定时器的计数速度。
我们可以通过改变时钟分频系数来调整定时器的计数速度,从而实现不同的定时时间。
时钟分频系数的选择需要考虑定时器的最大计数周期和所需的定时精度。
接着,我们需要配置定时器的计数器重载值。
定时器的计数器从0开始计数,当计数器达到重载值时,定时器将重新开始计数。
通过改变计数器重载值,可以实现不同的定时时间。
计数器重载值的选择需要考虑定时器的时钟频率和所需的定时时间。
最后,我们需要配置定时器的中断。
定时器中断可以在定时器计数达到重载值时触发,用于通知CPU定时器已经计数完成。
在定时器中断中,我们可以执行相应的中断服务程序,比如改变一些IO口的状态,实现定时操作。
通过配置定时器的中断使能和中断优先级,可以实现不同的中断操作。
需要注意的是,不同型号的STM32微控制器的定时器模块可能略有不同,具体的配置方法和寄存器设置也可能不同,请参考相应的数据手册和参考手册进行具体操作。
STM32F4通用定时器详细讲解
15 TIM3捕获/比较寄存器3 (TIM3_CCR3)
16 TIM3捕获/比较寄存器4 (TIM3_CCR4)
1 Timer3用来做定时中断
与之相关的时基单元寄存器有
10 TIM3计数器(TIM3_CNT)
11 TIM3预分频器(TIM3_PSC)
1TIM3控制寄存器1 (TIM3_CR1)
ቤተ መጻሕፍቲ ባይዱ作用:1使能自动重载TIM3_ARR
2定时器的计数器递增或递减计数。
3事件更新。
4计数器使能
2TIM3控制寄存器2 (TIM3_CR2)
3TIM3从模式控制寄存器(TIM3_SMCR)
4TIM3DMA/中断使能寄存器(TIM3_DIER)
作用:1:使能事件更新中断
定时器时钟上文已经讲了,由于Timer3挂在APB1总线上
故Timer3进入中断的周期为(CK_PSC+1)*(TIM3_ARR+1)/84000000秒
频率为84000000/[(CK_PSC+1)*(TIM3_ARR+1)] Hz
利用官方库函数实现每500ms进入中断,改变LED灯的电平,程序如下
3:外部时钟模式2:外部触发输入TIMx_ETR,仅适用于TIM2、TIM3、TIM4,TIM3,对应着PD2引脚
4:内部触发输入:一个定时器触发另一个定时器。
时钟源可以通过TIMx_SMCR相关位进行设置。这里我们使用内部时钟。
定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK,故当APBx_Prescaler不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK,定时器时钟等于HCLK。
第八章 STM32定时器
GPIO_ResetBits(GPIOC,GPIO_Pin_0); GPIO_ResetBits(GPIOC,GPIO_Pin_1); GPIO_ResetBits(GPIOC,GPIO_Pin_2); GPIO_ResetBits(GPIOC,GPIO_Pin_3); }
TIM_Perscaler:用户设定的预分频系数, 其值范围从0~65535,为1999
8.7 TIM2应用实例概述
void Timer_Configuration(void) { /*定义TIM结构体变量*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_DeInit(TIM2); TIM_TimeBaseStructure.TIM_Period=35999; TIM_TimeBaseStructure.TIM_Prescaler=1999; TIM_TimeBaseStructure.TIM_ClockDivision =TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode =TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure); TIM_ClearFlag(TIM2,TIM_FLAG_Update); TIM_Cmd(TIM2,ENABLE);
8.7 TIM2应用实例概述
4.定时器的初始化
定时时间T的计算公式: T=(TIM_Period+1)*(TIM_Prescaler+1)/TIMxCLK =(35999+1)*(1999+1)/72MHz=1s
第六章STM32 定时器的使用
}
}
步骤五:配置main函数,实现定时器控制跑马灯。
volatile u32 time;
int i=0;
int main(void) { SystemInit(); //配置系统时钟为72控制跑马灯(P190)
1.理解STM32通用定时器的结构和基本工作原理; 2.掌握STM32通用定时器初始化和操作方法; 3.理解中断概念; 4.掌握STM3中断服务程序的写法。
硬件设计 硬件连接图如下,实验板上stm32f103x处理器
通过配置GPIO实现如下功能:D3~D6轮流点亮,点亮时 间持续1秒。
软件设计 步骤一:添加库函数,以及操作函数。 添加相应库函数:
操作函数有:USER/main.c ;stm32f10x_it.c ;led.h; led.c ;timer.h;timer.c;TIM2_IRQHandler()。 步骤二:在timer.h函数中设置宏定义和函数声明:
void TIM2_NVIC_Config(void); void TIM2_Config(void);
TIN_TimBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Period = (10000 - 1); //自动重装的计数值
TIM_TimeBaseStructure.TIM_Prescaler =7200-1 ; // 预分频系数
立即加载计数器(ARPE=0)
更新事件时加载计数器(ARPE=0)
6.2.2 计数器模式 1. 向上计数模式:计数器从0计数到设定的数值,然 后重新从0开始计数并且产生一个计数器溢出事件。
计数器时序图(内部时钟分频因子为1)
STM32F1通用定时器示例详解--TimeBase
STM32F1通用定时器示例详解--TimeBase前言基于学习的目的,详细讲解关于标准外设库中的定时器的17个示例项目函数文件。
本次介绍TimeBase的示例。
一、示例详解基于硬件平台:STM32F100B-EVAL,MCU的型号是STM32F103VET6。
软件则是其标准外设库。
1、Time Base的寄存器配置软件配置,运行程序可以发现,系统时钟设置为24MHz,定时器使用到的是TIM2 ;根据时钟树的图谱及其程序,该示例选择的是内部时钟源作为定时器的时钟源;AHB 时钟 (HCLK)在RCC_CFGR寄存器中的分频系数HPRE的值为0,即SYSCLK not divided,所以HCLK就是24MHz;APB1的prescaler的系数是PPRE1:0x05,即分频4,APB1CLK为24/4 = 6M ;由于APB1的prescaler系数不为1,所以经过倍频器后就是x2,即为TIMxCLK = 6*2=12Mhz,对于上述框图的倍频器,当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7可以工作在更高频率。
二、示例演练该示例在达到计数值时,中断内翻转任意通用GPIO口,通过示波器观测其翻转的周期频率。
这儿有一个小插曲,软件是直接拷贝的库函数,理论上选择合适的单片机型号后,下载即可出波形结果;但是发现程序执行,示波器上出现不了波形,而且,在IAR中,寄存器调试观测窗口,发现TIM2寄存器的值初始化不了,TIM3(程序未涉及)反而出现了几个寄存器的初始化,但是TIM3的初始化值和自己程序中的还是不一样的,另外全局变量的值,尤其SystemClock还有PrescalerValue的值在检测窗口显示的时Error,是否因为TIM2的地址定义是否错了?查看头文件的定义以及Flash的Memory map,是对的。
STM32学习笔记(5):通用定时器PWM输出
STM32学习笔记(5):通用定时器PWM输出1.TIMER输出PWM基本概念脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
简单一点,就是对脉冲宽度的控制。
一般用来控制步进电机的速度等等。
STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM 输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。
1.1PWM输出模式STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。
模式1和模式2的区别如下:110:PWM模式1-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。
111:PWM模式2-在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为有效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电平。
由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。
而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。
1.2PWM输出管脚PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7定时器复用功能重映射”一节。
在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。
stm32寄存器版学习笔记定时计数器中断
stm32寄存器版学习笔记定时计数器中断STM32共有8个定时计数器,⾼级定时器: TIME1 TIME8是通⽤定时器:TIME2~TIME5基本定时器: TIME6和TIME7以TIME3通⽤定时器为例总结定时计数器的基本⽤法⼀:TIM3时钟使能APB1外设时钟使能寄存器(RCC_APB1ENR)Eg:RCC->APB1ENR|=1<<1; //使能TIM3时钟⼆:设置TIM3_ARR和TIM3_PSC的值通过这两个寄存器来设置⾃动重装的值以及分频系数⾃动重装载寄存器(TIMx_ARR)预分频器(TIMx_PSC)三:设置TIM3_DIER允许更新中断中断使能寄存器(TIMx_DIER)Eg: TIM3->DIER|=1<<0; //允许更新中断四:允许TIM3⼯作控制寄存器1(TIMx_CR1)CEN:使能计数器位0 0:禁⽌计数器; 1:使能计数器Eg: TIM3->CR1|=0x01; //使能定时器3 或 TIM3->CR1|=1<<0;五:TIM3中断分组设置直接调⽤MY_NVIC_Init()函数Eg:MY_NVIC_Init(1,3,TIM3_IRQChannel,2);//抢占1,⼦优先级3,组2六:编写中断服务函数状态寄存器(TIMx_SR)Eg: if(TIM3->SR&0X0001)//溢出中断Eg: //定时器3中断服务程序 void TIM3_IRQHandler(void) //TIM3_Int_Init(5000,7199); //10Khz的计数频率,计数到5000为500ms//500ms中断⼀次 { if(TIM3->SR&0X0001) //溢出中断 { //add your code } TIM3->SR&=~(1<<0); //清除中断标志位 }六:关于溢出事件的计算因为Stm32_Clock_Init函数⾥⾯已经初始化APB1的时钟为2分频,所以APB1的时钟是32MHz(系统时钟72MHz)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32通用定时器STM32的定时器功能很强大,学习起来也很费劲儿.其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER做个剖析。
实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用……TIMER主要是由三部分组成:1、时基单元。
2、输入捕获。
3、输出比较。
还有两种模式控制功能:从模式控制和主模式控制。
一、框图让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了…为了方便的看图,我对里面出现的名词和符号做个注解:TIMx_ETR:TIMER外部触发引脚 ETR:外部触发输入ETRP:分频后的外部触发输入 ETRF:滤波后的外部触发输入ITRx:内部触发x(由另外的定时器触发)TI1F_ED:TI1的边沿检测器。
TI1FP1/2:滤波后定时器1/2的输入TRGI:触发输入 TRGO:触发输出CK_PSC:应该叫分频器时钟输入CK_CNT:定时器时钟。
(定时周期的计算就靠它)TIMx_CHx:TIMER的输入脚 TIx:应该叫做定时器输入信号xICx:输入比较x ICxPS:分频后的ICxOCx:输出捕获x OCxREF:输出参考信号关于框图还有以下几点要注意:1、影子寄存器。
有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);(详细请参考版主博客/STM32/401461/message.aspx)2、输入滤波机制在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率Fdts来采样N次进行滤波的。
(具体也请参考版主博客/STM32/263170/message.aspx)3、输入引脚和输出引脚是相同的。
二、时基单元时基单元有三个部分:CNT、PSC、ARR。
CNT的计数方式分三种:向上、向下、中央对齐。
通俗的说就是0—ARR、ARR—0、0—(ARR-1)—ARR—1.三、时钟源的选择这个是难点之一。
从手册上我们看到共有三种时钟源:1、内部时钟。
也就是选择CK_INT做时钟,这个简单,但是有一点要注意,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
例如AHP 72M,APB12分频36M,那么TIMER就是APB1的2倍频,即72M。
怎么选择时钟模式1呢?只要将SMCR中SMS[2:0]弄成000就好了SMCR2、外部时钟模式1这个比较麻烦,时钟源选择的其实就是TRGI(触发输入),但触发输入选择挺多的,共8个……。
看框图,他们是:ITRx、TI1F_ED、TI1FP1、TI2FP2、ETRFITRx的东西跟定时器的级联有关,暂时不管他。
要进入这种时钟模式首先置SMS为111,当然这还没完,不像内部时钟那样,什么都配好了,这里你还得配置一下别的参数,比如选择TI1FP1,自然要对输入通道1的参数配置好,这样时钟才能按你需要的方式进来。
就是配框图这块相关寄存器CCMR1(输入)CCERSMCR(CCIP)然后在SMCR中选择触发源(TS[2:0])为TI1这样输入通道就配好了!最后选择SMS为111,开启时钟(CR1中的CEN)。
现在时钟就是从TI1上的输入了,可以接个时钟源进行计数之类的。
同理,如果要用ETR就把它相关通道配好就可以了。
3、外部时钟模式2选择外部输入作为时钟,看框图:从图上可以看出ETR可以直接作为时钟输入也可以通过触发输入(TRGI)来作为时钟输入即在时钟模式1中触发源选择为ETR,两个效果上是一样的,看起来好像这个外部时钟模式2没什么用处,实际上不是的,他可以跟一些从模式(复位、触发、门控)进行组合。
比如当从模式选为触发时,我们不可能再通过触发源选择ETR了,因为从模式控制器被占了,好在有外部时钟模式2,我们选择这种模式后就可以把两者组合在一起完成一些功能了。
总结一下,STM32的时钟选择比较特别,在SFR中关于时钟选择配置位不再一块,不是说两个位在一起00、01、11就选择了而是由SMCR中SMS和ECE 来控制,这样感觉可以吧内部时钟与外部模式2同时打开(SMS:000,ECE:1),也可以吧外部模式1和外部模式2同时打开(SMS:111,ECE:1),实际上上述两种方式用的都是外部时钟2. 四、捕获比较通道这就是我说的定时器三个组成部分中的两个部分了。
核心是那个捕获比较寄存器。
看框图异或那块先不管他,好像跟编码器有关,输入有个特色就是可以把TI的输入搞到CC1上去,也可以把T2的输入搞到CC1上去,其实也可以把T1搞到CC1上去同时把T1搞到CC2上去,这样就有了后来的PWM输入。
输出上的特色是不直接输出,而是有个OC1REF,这样可以定义高有效还是低有效,输出自己需要的有效电平。
五、做实验讲了这么多你一定烦了吧,那么让我们搞点实际的吧,通过做实验来熟悉定时器,用到新知识时再在其中加以介绍。
实验一:TIMER-1:定时器上溢,中断中取反LED.现象:LED 周期2秒闪烁。
主要代码如下:TIM_DeInit(TIM2);TIM_TimeBaseStructure.TIM_Period=2000; //ARR的值TIM_TimeBaseStructure.TIM_Prescaler=0;TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; //采样分频TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);TIM_PrescalerConfig(TIM2,0x8C9F,TIM_PSCReloadMode_Immediate);//时钟分频系数36000,所以定时器时钟为2KTIM_ARRPreloadConfig(TIM2, DISABLE);//禁止ARR预装载缓冲器TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);TIM_Cmd(TIM2, ENABLE); //开启时钟解释一下,首先得配好ARR,这是必须地。
然后配置预分频,为什么我先配为0再用TIM_PrescalerConfig(TIM2,0x8C9F,TIM_PSCReloadMode_Immediate)配呢,原来PSC也有个预装载功能,却不像ARR和CRR那样有相关的位控制立即装载或更新事件装载。
也就是说只能更新事件来装载。
在上面函数中手工产生了一个更新事件,使PSC立刻生效。
CK_DIV暂时没用到。
计数模式配置为向上计数。
然后在中断中做下LED取反就可以了。
溢出周期怎么算?在这个实验里AHB为72M,APB1为36M,所以CK_INT为72M,36000分频变为2K.ARR=2000,所以1秒溢出1次。
相关寄存器:CR1ARRPSC接下来的4个实验跟输出通道有关系实验2TIMER-2:强置输出现象:LED 常亮例子比较简单关键是配好输出通道CCER15 14131211 10 9 8 7 6 5 432 10将通道1配为输出,输出使能,输出极性选择好,输出模式选择好就可以了。
在V100实验板上PC6-9接了LED,刚好对应着TIMER3重映射后的输出,注意程序里的AFIO函数。
实验3TIMER-3:输出比较现象:LED 2秒的周期闪烁。
跟上个实验配置大致相同,只是把输出模式改为翻转功能,并且CRR要配好,当CRR=CNT时翻转输出。
实验4TIMER-4:PWM输出现象:输出4种不同占空比的PWM波,4个LED亮度不同。
实验5TIMER-7:单脉冲方式现象:LED 只闪烁一次。
将上个实验加一句话TIM_SelectOnePulseMode(TIM3, TIM_OPMode_Single); //设置单脉冲模式就是这个实验。
其实手册上关于此实验的本意是由一个外部触发使能计数器,然后产生一个脉冲的,这里还没涉及从模式所以简化处理。
涉及寄存器CR1接下来再做两个输入的实验实验6TIMER-5:输入捕获模式。
现象:通过V100 的JOYSTICK键的SELECT键进入捕获,硬件仿真看CRR的值。
首先是基本的配置:ARR的值、时钟PSC、采样CKD、计数方式。
然后配置输入通道。
选择输入捕获模式、输入极性、把T1配到CC1上、选好输入的滤波跟分频,就可以了。
讲下输入滤波功能,在此实验中Fdts=CK_INT/2,Fsample=Fdts/4,所以定时器时钟为2K,所以采样周期为4ms。
才8次的话周期小于32ms的干扰会滤除。
相关寄存器CR1ARRCCMR1(输入)CCER实验7TIMER-6:PWM输入现象:由TIMER3输出通道1产生一路周期2秒占空比50%的PWM波,飞线到TIMER4的输入通道1,有TIMER4来测量该PWM得周期和占空比。
在做实验之前引入三种从模式控制:复位、触发、门控。
通过SMCR选择后可以进入这三种从模式SMCRSMS: 100 101 110复位门控触发所谓从模式简单理解就是受控于别人了,包括何时启动、何时停止、何时复位。
相关作用请看手册。
提示一点就是进入这三种模式后时钟是谁的问题?肯定不是外部时钟1了,可以是内部时钟和外部时钟2.接着看实验,PWM方式的原理是这样的,如前文提到过输入时可以把T1映射到CC1上去同时映射到CC2上,将CC1和CC2的捕获边沿搞成相反的,比如CC1捕获T1上升沿,CC2捕获T1下降沿,还要再设置T1为复位从模式,上升沿有效,这样T1上升沿后计数器开始计数。
下降沿CC2捕获发生,此为PWM占空比,在来一个上升沿,CC1捕获发生此为PWM周期。
注意CC1捕获的第一次无效。
这是从模式跟输入捕获的一种组合使用,从模式还可以跟输出比较组合使用。
比如手册上的单脉冲实验。
接着做4个实验跟定时器的级联和定时器同步有关系,在实验前先得说说主模式的问题。