各种天线功率、符号详细说明

合集下载

天线参数的度量单位

天线参数的度量单位

天线参数的度量单位天线参数是描述天线性能的指标,包括增益、方向性、频率响应等。

这些参数通常以特定的单位进行度量,以便对天线进行准确的评估和比较。

下面将介绍几个常用的天线参数及其度量单位。

一、增益(Gain)增益是衡量天线辐射电磁波能力的重要参数,它表示天线相对于理想点源天线的辐射能力。

增益是以分贝(dB)为单位进行度量,通常用dBi表示。

例如,一个天线的增益为3dBi,意味着它相对于一个理想点源天线具有3dB的辐射能力。

二、方向性(Directivity)方向性是指天线在特定方向上辐射或接收信号的能力,它描述了天线辐射或接收模式的空间分布。

方向性通常用无量纲的方向图来表示,其中最大增益处对应的方向被定义为主瓣方向。

方向性也可以用分贝(dB)来度量,称为定向性因子。

例如,一个天线的定向性因子为10dB,表示它在主瓣方向上的增益是无方向性天线的10倍。

三、频率响应(Frequency Response)频率响应是指天线在不同频率下的辐射或接收能力。

它通常用功率或电压的响应值来表示,单位可以是瓦特(W)或伏特(V)。

例如,一个天线的频率响应为100W,表示它在特定频率下的辐射功率为100瓦特。

四、驻波比(VSWR)驻波比是评估天线匹配性能的重要指标,它表示天线输入端的驻波功率与匹配负载时的最小功率之比。

驻波比是无量纲的,通常用比值表示。

例如,一个天线的驻波比为1.5:1,表示驻波功率是匹配负载时最小功率的1.5倍。

五、极化(Polarization)极化是指电磁波的电场矢量相对于地面的方向。

常见的极化方式有水平极化、垂直极化等。

极化通常用线性极化度量,单位可以是分贝(dB)或无量纲的极化度。

例如,一个天线的极化度为20dB,表示它的极化效果比无极化天线好20dB。

天线参数的度量单位包括分贝(dB)、瓦特(W)、伏特(V)等。

这些参数和单位的准确描述和度量,有助于科学家、工程师和无线通信领域的专业人士对天线性能进行准确的评估和优化。

LTE之RS、PA、PB详解

LTE之RS、PA、PB详解

1 前言目前很多资料上都有RS、RA、RB的介绍以及小区功率的算法。

但是大多数资料都是将公式堆在上面,让阅读的人很难理解。

即使会计算了也不知道为什么要这样算。

本文主要将RS、RA、RB详细解释,并将计算方法剖析给大家。

2 参考图图1.1:本图是协议36211里面经典图中扣出来的2天线端口的部分,原图在协议中叫“Figure6.10.1.2-1. Mapping of downlink reference signals (normal cyclic prefix).”本图形象的指出什么是A/B符号。

3 参数解释这些都是计算需要用到的一些参数,大家一定要看清楚每个参数的单位。

EA:A符号中PDSCH所在RE的功率,单位mWEB:B符号中PDSCH所在RE的功率,单位mWERS:RS所在RE的功率,单位mWρ、Bρ指示了一个下行slot中不同OFDM符号的EPRE。

这个不太好理解,大家可以将Aρ看成EA Aρ=10logEA-10logERS=10log(EA/ERS),Bρ也是一相对ERS的偏移量。

功率等式应该是10logA样。

如下计算公式就是这样得来的。

ρ = EA/ERS;AB ρ = EB/ERS;RS = 10logERS 表示小区参考信号的功率值,单位是0.1dBm 。

PA=10log (EA/ERS )单位是dB ,表示A 符号中的RE 的功率相对RS 的大小。

注意,PA 并不是A 符号中的RE 的功率相对RS 的比值,PA 是有功率单位的。

协议里面关于A ρ和PA 的换算关系如下:▪A ρ is equal to )2(log 1010offset -power ++A P δ [dB] when the UE receives a PDSCH data transmission using precoding for transmit diversity with 4 cell-specific antenna ports according to Section 6.3.4.3 of [3];▪A ρ is equal to A P +offset -power δ [dB] otherwise由于A ρ不是一个功率单位,所以不能理解成A ρ = A P +offset -power δ(很多资料上都是这样写的,结果只能让阅读的人更崩溃)。

各种天线功率、符号详细说明资料

各种天线功率、符号详细说明资料

什么是dBi、dBd、dB、dBm、dBc-技术文章真正意义上的全向天线的方向图应该是球星但是现在使用中所说的全向天线其实都只是在水平面上是圆,在垂直面上是一个长条立体上理解就是个面包圈定向天线是个大鸭梨从能量守恒上解释就是把球星的能量压缩在面包圈里当然就会出现增益,天线是无源器件本身没有放大作用,就是因为天线内部的振子的排列使本来全方位的发射集中在一定区域内才会有叠加的作用,使得天线产生增益所以压缩的越厉害的天线增益也就越高.天线增益G我们也可用增益来表示天线集中辐射的程度。

天线在某一方向的增益定义为:在相同的输入功率下,天线在某一方向某一位置产生的电场强度的平方(E2)与无耗理想点源天线在同一方向同一位置产生的电场强度的平方(E02)的比值,通常以G表示。

G=E2/E02(同一输入功率)同样,增益也可以这样来确定:在某一方向向某一位置产生相同电场强度的条件下,无耗理想点源天线的输入功率(Pino)与天线的输入功率(Pin)的比值,即称为该天线在该点方向的增益。

G=Pino/Pin(同一电场强度)通常是以天线在最大辐射方向的增益作为这一天线的增益。

增益通常用分贝表示。

即:G=101gPino/Pin天线增益的计算:G=η4πS/λ2=η(π/λ)2D2式中,S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线效率。

答:1、增益是用来表示天线集中辐射的程度。

其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。

增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。

增益的单位用“dBi”或“dBd”表示。

2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。

功率、增益及手机天线的介绍

功率、增益及手机天线的介绍

功率及增益‎定义1、功率单位m‎W和dBm‎的换算无线电发射‎机输出的射‎频信号,通过馈线(电缆)输送到天线‎,由天线以电‎磁波形式辐‎射出去。

电磁波到达‎接收地点后‎,由天线接收‎下来(仅仅接收很‎小很小一部‎分功率),并通过馈线‎送到无线电‎接收机。

因此在无线‎网络的工程‎中,计算发射装‎置的发射功‎率与天线的‎辐射能力非‎常重要。

Tx是发射‎( Trans‎m its )的简称。

无线电波的‎发射功率是‎指在给定频‎段范围内的‎能量,通常有两种‎衡量或测量‎标准:1、功率( W ): 相对 1 瓦( Watts‎)的线性水准‎。

例如,WiFi 无线网卡的‎发射功率通‎常为 0.036W ,或者说36‎m W 。

2、增益( dBm ):相对 1 毫瓦( milli‎w att )的比例水准‎。

例如 WiFi 无线网卡的‎发射增益为 15.56dBm‎。

两种表达方‎式可以互相‎转换:1、dBm = 10 x log[ 功率 mW]2、mW = 10[ 增益 dBm / 10 dBm]在无线系统‎中,天线被用来‎把电流波转‎换成电磁波‎,在转换过程‎中还可以对‎发射和接收‎的信号进行‎“放大”,这种能量放‎大的度量成‎为“增益(Gain)”。

天线增益的‎度量单位为‎“dBi ”。

由于无线系‎统中的电磁‎波能量是由‎发射设备的‎发射能量和‎天线的放大‎叠加作用产‎生,因此度量发‎射能量最好‎同一度量-增益( dB ),例如,发射设备的‎功率为 100mW‎,或20dB‎m;天线的增益‎为 10dBi‎,则:发射总能量‎=发射功率( dBm )+天线增益( dBi )= 20dBm‎+ 10dBi‎= 30dBm‎或者: = 1000m‎W= 1W在“小功率”系统中(例如无线局‎域网络设备‎)每个 dB 都非常重要‎,特别要记住‎“3 dB 法则”。

每增加或降‎低 3 dB ,意味着增加‎一倍或降低‎一半的功率‎:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如, 100mW‎的无线发射‎功率为 20dBm‎,而 50mW 的无线发射‎功率为 17dBm‎,而200m‎W的发射功率‎为 23dBm‎。

天线的主要技术指标

天线的主要技术指标

天线的主要技术指标天线是用于发送和接收电磁波的装置,它在无线通信、雷达、无线电电视和卫星通信等领域中起着关键作用。

天线的性能取决于一系列的技术指标,下面是一些主要的技术指标及其解释:1. 增益(Gain)天线的增益是指天线沿一些特定方向的辐射强度相对于理想的点源天线的辐射强度的增加量。

增益通常以分贝(dB)为单位表示。

增益越大,天线在特定方向上的辐射和接收效果越好。

2. 方向性(Directivity)方向性是天线在特定方向上辐射或接收电磁波的能力。

具有高方向性的天线能够更好地定向发送或接收信号,减少信号的散失。

3. 前后比(Front-to-Back Ratio)前后比是指天线在前方与后方的辐射强度之比。

高的前后比表示天线在前方的辐射强度较高,而在后方的辐射强度较低。

4. 驻波比(Standing Wave Ratio, SWR)驻波比是指天线输入端与输出端之间的匹配程度。

SWR值越小,表示天线负载和信号发生器之间的匹配越好,信号的传输效率越高。

5. 带宽(Bandwidth)带宽是指天线能够有效工作的频率范围。

带宽越宽,天线能够工作的频率范围就越广,能够发送或接收不同频率的信号。

6. 前向波束宽度(Forward Beamwidth)前向波束宽度是指天线在辐射方向上的角度范围。

辐射范围越窄,波束越集中,增强了天线的方向性。

7. 侧向波束宽度(Sidelobe Level)侧向波束宽度是指天线在辐射方向之外的角度范围内的辐射强度。

低的侧向波束宽度表示天线的辐射主要集中在主波束上,减少了对其他方向的干扰。

8. 阻抗(Impedance)阻抗是指天线输入端对于信号源的阻力。

天线的输入阻抗需要和信号源的输出阻抗匹配,以达到最大效率的信号传输。

9. 析波效率(Radiation Efficiency)析波效率是指天线将输入功率转化为辐射功率的能力。

较高的析波效率意味着更多的输入功率被转换为辐射,减少了能量的损失。

图解天线模式与性能及参数知识

图解天线模式与性能及参数知识

图解天线模式与性能及参数知识前言:天线是一个相当庞大的话题,很难用一篇文章来描述天线的每个方面,但我会尝试给出一些天线的各个方面的大图片,主要用于蜂窝应用。

天线是什么?如何表现天线的性能?辐射模型天线增益总辐射功率TRPTotal Isotropic Sensitivity (TIS)Effective Isotropic Radiated Power/Equivalent Isotropic Radiated Power (EIRP)S11什么是天线?众所周知,天线是一种将电能(电信号)转换成电磁波并传送到太空的装置。

外面有各种类型的天线,下面是一些例子。

这些只是一些例子,还有很多其他类型。

看看有多少你熟悉的。

现在在大多数移动通信设备中,天线都被嵌入到一个很小的空间里。

在一个相对久远的移动电话,你可能已经看到了天线显示在左侧的图片(鞭天线)。

在大多数的移动设备,你看到这些天,天线是嵌入的情况下,或正确的印刷电路板如下所示。

随着移动设备(例如智能手机)在一个设备中获得越来越多的技术(例如,带有各种频段/ 无线接入技术的蜂窝技术,蓝牙,无线网络等) ,设计多个天线并将其放入一个小空间变得越来越困难。

如何表现天线的性能?有两个主要的标准来评估天线的性能,如下(a)我应该把电能转换成电磁能,尽可能减少损失;(b)希望辐射在我需要的方向上。

有几个指标可以代表天线的性能如下辐射模型;总辐射功率;总的各向同性灵敏度。

辐射模型了解/ 评估天线性能的第一步是检查天线的辐射模型。

在大多数情况下,电能都是通过预先设定好的路径流动的,这种路径通常建立在铜线或印刷电路板上的铜痕迹上,但是一旦电能转化为电磁波,它几乎就会向四面八方传播。

根据我们设计天线的思路,电磁波在空气中传播的方向是不同的。

天线在某些方向上传输很强的能量,在某些方向上传输少量的能量,在某些方向上传输中等范围的能量等,这种能量传输方式被称为“辐射方向图”。

各类天线定义以及相关指标

各类天线定义以及相关指标

各类天线定义以及相关指标各类天线定义以及相关指标2009年07月11日星期六 15:25天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。

这些参数是衡量天线质量好坏的重要指标。

【天线的方向性】是指天线向一定方向辐射电磁波的能力。

它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。

所以方向性是衡量天线优劣的重要因素之一。

天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的保密性和抗干扰性。

【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。

实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。

在这个立体图中,由于所取的截面不同而有不同的方向性图。

最常用的是水平面内的方向性图(即和大地平行的平面内的方向性图)和垂直面内的方向性图(即垂直于大地的平面内的方向性图)。

有的专业书籍上也称赤道面方向性图或子午面方向性图。

【波瓣宽度】有时也称波束宽度。

系指方向性图的主瓣宽度。

一般是指半功率波瓣宽度。

当L/λ数值不同时,其波瓣宽度也不同。

L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。

因此,波瓣宽度越小,其方向性越强,保密性也强,干扰邻台的可能性小。

所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。

为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。

任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。

按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。

天线的主要性能指标和相关知识

天线的主要性能指标和相关知识

天线的主要性能指标1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。

以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。

一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。

平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。

描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。

一般地,GSM定向基站水平面半功率波瓣宽度为65°,在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。

2、方向性参数不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。

理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。

我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。

3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。

增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。

由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。

一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。

另外,表征天线增益的参数有dBd和dBi。

DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。

相同的条件下,增益越高,电波传播的距离越远。

4、入阻输入阻抗输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。

关于PA、PB解读

关于PA、PB解读

一、PA 、PB 介绍ρA表征没有导频的OFDM symbol(A类符号)的数据子载波功率和导频子载波功率的比值。

ρB表征有导频的OFDM symbol (B类符号)的数据子载波功率和导频子载波功率的比值。

PA :PA=ρA /RS ,无导频的OFDM 符号上的PDSCH RE 功率相对于RS RE 功率的比值PB :PB=ρB /ρA ,有导频的OFDM符号上的PDSCH RE 功率相对于RS RE功率的比值 具体可以看下图:二、PA、PB具体配置通过下表可以看出PA\PB 有四种组合方式,RRU 的功率利用率是最大的,达到100%,我们平时在配置PA\PB 的值时按照下面这四种组合方式进行配置。

关于PA 、PB 解读2018年6月5日9:41参照下图,如果使用双天线配置,RS(蓝色)具体分布位置如下所示,B类符号是黄色色,A 类符号是橘色,灰色表示不传输资源(因为被另一个天线口的RS占用),下面四张图表示不同的PA、PB配置:其中,每个OFDM符号的总体功率应该是相同的,即所有B类符号子载波的功率+所有RS符号子载波的功率=所有A类符号子载波的功率,同一种符号的功率应该相同,从而最大化地分担基站的功率,使得基站的功率利用率最大。

在下图中所反映的就是:符号0和符号1对应的整体功率是相等的。

图一:PA=0,PB=0(此0表示索引号,而不是真正的比值),即ρA/RS=1,A类符号的功率=RS符号的功率,则12*A类符号RE的功率=2*RS符号RE的功率+8*B类符号RE的功率,从而得出10*A类符号RE的功率=8*B类符号RE的功率,从而得出PB=5/4,PB=0索引号下,真正的PB值为5/4。

假设A类符号RE的功率为4,则B类符号的RE功率为5,RS符号的RE功率为4,从而可以得出RS在一个OFDM上占用的功率的份额为=4*2 / (4*2+5*10) = 8/48图二、三、四依次类推计算三、A\B类符号以及RS的计算公式RS power =10*lg[天线端口最大发射功率/(RB个数*12)*1000]-PA例如RRUS61 B39,天线端口最大发射功率为40W,使用20M带宽,PA=-3,则RS power=10*lg[40/(100* 12)*1000]-(-3)=18.2dBm同理如果知道了RS功率,PA、PB设置,也可以计算出A类符号和B类符号的最大发射功率,具体如下所示:A类符号功率计算公式如下:B类符号功率计算如下所示:参考信号的功率计算公式:四、爱立信的PA、PB对应的参数PA=-crsgainPB=pdschTypeBGain。

天线的基本参数

天线的基本参数

1.1天线得基本参数Uutguing and reflected 由宕"的 a^Tennai I t SipolH 1 I I finterftB 从左侧得传输线得角度瞧,天线就是一个阻抗(i m pedanee)为Z 得2终端电路 单元(2 -t e r mina l c ireuit e 1 ement),其中 Z 包含得电阻部分(res isti v e p o n e nt )被称为辐射电阻(radi a tio n r es i st a n ce,R r );从右侧得自由空 间角度来瞧,天线得特征可以用辐射方向图(radiati o n pa t te r n)或者包含场量得 方向图。

R r 不等于天线材料自己得电阻,而就是天线、天线所处得环境(比如温度) 与天线终端得综合结果。

影响辐射电阻R r 得还包括天线温度(ant e nn a tem pe ratu re ,T)。

对于 无损天线来说,天线温度T A 与天线材料本身得温度一点都没有关系,而就是与自 由空间得温度有关。

确切地说,天线温度与其说就是天线得固有属性,还不如说就 是一个取决于天线“瞧到”得区域得参数。

从这个角度瞧 ,一个接收天线可以被 视作能遥感测温设备。

辐射电阻R r 与天线温度T A 都就是标量。

另一方面,辐射方向图包括场变量或 者功率变量(功率变量与场变量得平方成正比),这两个变量都就是球体坐标B 与 ①得函数。

1.2天线得方向性(D,D i re ct ivi t y)与增益(G,G a in )D=4n/Q A ,其中Q A 就是总波束范围(或者波束立体角)、Q A 由主瓣范围(立 体角)Q M +副瓣范围(立体角)Q m 。

如果就是各向同性得(isotropic)天线则Q A = 4n ,因此D =1。

各向同性天线具 有最低得方向性,所有实际得天线得方向性都大于1。

如果一个天线只对上半空间辐射 ,则其波束范围Q A = 2 n ,因此D =4n /2 n =2=3 .O ld B i 、简单短偶极子具有波束范围Q A =2.6 7n sr 与定向性D=1、5 (1、76dBi)。

LTE中的Pa与Pb

LTE中的Pa与Pb

1/ρA表征没有导频的OFDM symbol(A类符号)的数据子载波功率和导频子载波功率的比值。

ρB表征有导频的OFDM symbol (B类符号)的数据子载波功率和导频子载波功率的比值。

以20M带宽,2*10W为例,推荐配置是Prs=12.2,PA=-3,PB=1,则单根天线上的发射功率计算如下:符号A的功率= 10*LOG(1200*(10^((12.2-3)/10))) = 39.992dBm其中,1200是20M带宽时符号A的子载波总数(12*100);符号B的功率= 10*LOG(200*10^(12.2/10)+800*10^((12.2-3)/10)) = 39.988dBm其中,200是符号B上的RS子载波总数(2*100),800是符号B上的数据子载波总数(8*100),由于PB=1,即ρB/ρA =1,表示符号B上的数据子载波和符号A上的数据子载波功率相同。

2/对于2天线来说,子帧中存在RS和DTX。

Pa=-3,PB=1的配置下,就是将DTX上没有使用的功率借给RS使用,RS功率提高一倍(即power boost 3db),但同时对PDSCH没有影响。

其他一些配置下,可能需要借用PDSCH功率,在提高RS解调性能的同时,降低了PDSCH功率,所以对网络整体性能可能会有影响。

3/PB 含义:该参数表示PDSCH上EPRE(Energy Per Resource Element)的功率因子比率指示,它和天线端口共同决定了功率因子比率的值。

细节参见3GPP TS 36.213。

界面取值范围:0~3单位:无实际取值范围:0~3MML缺省值:无建议值:单天线:0; 双天线:1;参数关系:无修改是否中断业务:否(且不影响空闲模式UE)对无线网络性能的影响:Pb取值越大,ReferenceSignalPwr在原来的基础上抬升得越高,能获得更好的信道估计性能,增强PDSCH的解调性能,同时减少了PDSCH(Type B)的发射功率,可以改善边缘用户速率。

常用天线和无源器件技术参数

常用天线和无源器件技术参数

常用天线和无源器件技术参数天线是将电磁能转换为电信号或将电信号转换为电磁能的一种设备。

无源器件是指不含有源(电源)的电子元件,如电阻、电容、电感等。

在通信领域中,常用的天线和无源器件具有一系列的技术参数,下面将对其进行详细介绍。

1.天线技术参数(1) 增益(Gain):天线的增益是指天线辐射功率与理想点源辐射功率之比,单位为dBi。

增益越大,天线辐射的信号强度越大,接收到的信号质量也越好。

(2) 频率范围(Frequency Range):天线的频率范围是指天线能够工作的频带范围。

通常以最小和最大工作频率来表示。

(3)驻波比(VSWR):驻波比是指由于天线阻抗与信号源或负载阻抗不匹配而产生的反射信号的大小。

驻波比越小,表示天线与信号源或负载的匹配度越好,信号损耗越小。

(4) 角度范围(Vertical and Horizontal Beamwidth):天线的角度范围是指天线在水平和垂直方向上能够辐射或接收信号的范围。

角度范围越大,表示天线的辐射范围越广。

(5) 前后比(Front-to-Back Ratio):前后比是指天线在主导方向上的辐射功率与在反向方向上的辐射功率之比。

前后比越大,表示天线在主导方向上的信号强度越大,抗干扰能力越强。

(1) 电阻值(Resistance):电阻值是指无源器件电阻的数值。

通常用欧姆(Ω)来表示。

(2) 电容值(Capacitance):电容值是指无源器件电容的数值。

通常用法拉德(F)来表示。

(3) 电感值(Inductance):电感值是指无源器件电感的数值。

通常用亨利(H)来表示。

(4) 响应频率范围(Frequency Response):响应频率范围是指无源器件在频率范围内的响应情况。

通常以最小和最大工作频率来表示。

(5) 损耗(Loss):无源器件的损耗是指无源器件在信号传输过程中产生的能量损失。

损耗越小,信号传输效率越高。

以上是常用天线和无源器件的一些常见技术参数。

无线功率mW和dBm换算及常见符号释义要点

无线功率mW和dBm换算及常见符号释义要点

◇ 无线功率mW和dBm换算及常见符号释义1、功率单位mW和dBm的换算无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。

Tx是发射( Transmits )的简称。

无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准:1、功率( W ): 相对 1 瓦( Watts )的线性水准。

例如,WiFi 无线网卡的发射功率通常为 0.036W ,或者说36mW 。

2、增益( dBm ):相对 1 毫瓦( milliwatt )的比例水准。

例如 WiFi 无线网卡的发射增益为 15.56dBm 。

两种表达方式可以互相转换:1、dBm = 10 x log[ 功率 mW]2、mW = 10[ 增益 dBm / 10 dBm]在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。

天线增益的度量单位为“ dBi ”。

由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益( dB ),例如,发射设备的功率为 100mW ,或20dBm;天线的增益为 10dBi ,则:发射总能量=发射功率( dBm )+天线增益( dBi )= 20dBm + 10dBi = 30dBm或者: = 1000mW = 1W在“小功率”系统中(例如无线局域网络设备)每个 dB 都非常重要,特别要记住“ 3 dB 法则”。

每增加或降低 3 dB ,意味着增加一倍或降低一半的功率:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如, 100mW 的无线发射功率为 20dBm ,而 50mW 的无线发射功率为 17dBm ,而200mW 的发射功率为 23dBm 。

天线功率详细说明

天线功率详细说明

什么是dBi、dBd、dB、dBm、dBc-技术文章-成都无线龙通讯科技页码,1/2真正意义上的全向天线的方向图应该是球星但是现在使用中所说的全向天线其实都只是在水平面上是圆,在垂直面上是一个长条立体上理解就是个面包圈定向天线是个大鸭梨从能量守恒上解释就是把球星的能量压缩在面包圈里当然就会出现增益,天线是无源器件本身没有放大作用,就是因为天线内部的振子的排列使本来全方位的发射集中在一定区域内才会有叠加的作用,使得天线产生增益所以压缩的越厉害的天线增益也就越高.天线增益G我们也可用增益来表示天线集中辐射的程度。

天线在某一方向的增益定义为:在相同的输入功率下,天线在某一方向某一位置产生的电场强度的平方(E2)与无耗理想点源天线在同一方向同一位置产生的电场强度的平方(E02)的比值,通常以G表示。

G=E2/E02(同一输入功率)同样,增益也可以这样来确定:在某一方向向某一位置产生相同电场强度的条件下,无耗理想点源天线的输入功率(Pino)与天线的输入功率(Pin)的比值,即称为该天线在该点方向的增益。

G=Pino/Pin(同一电场强度)通常是以天线在最大辐射方向的增益作为这一天线的增益。

增益通常用分贝表示。

即:G=101gPino/Pin天线增益的计算:G=η4πS/λ2=η(π/λ)2D2式中,S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线效率。

答:1、增益是用来表示天线集中辐射的程度。

其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。

增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。

增益的单位用“dBi”或“dBd”表示。

2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。

常用天线和无源器件技术参数汇总

常用天线和无源器件技术参数汇总

常用天线和无源器件技术参数汇总天线是无线通信系统中重要的组成部分,它通过发射和接收电磁波来实现无线信号的传输。

无源器件则是在电路中不需外加电源的元器件,如电阻、电容、电感等。

下面将对常用天线和无源器件的技术参数进行详细介绍。

1.天线参数:(1) 增益(Gain):指天线相对于理论上的理想点源天线的增益。

增益越高,天线辐射能力越强。

单位为dBi(相对于理论点源天线的增益)或dBd(相对于半波子天线的增益)。

(2) 方向性(Directivity):指天线辐射或接收信号的能力在各个方向上的分布。

一般用功率密度图或辐射图来表示。

(3) 频率(Frequency):指天线设计的工作频段。

在选择天线时,要确保其频率范围覆盖所需的工作频段。

(4) 阻抗(Impedance):天线的阻抗要与系统中其他组件的阻抗匹配,以达到最高效率。

(5) 极化方式(Polarization):天线的电磁波辐射方向与地面平面之间的夹角。

常见的极化方式有水平极化、垂直极化和圆极化。

2.无源器件参数:(1) 电阻(Resistance):电阻是物质对电流流动的阻碍程度的量度。

单位为欧姆(Ω)。

(2) 电感(Inductance):电感是导线或线圈储存磁能的能力。

单位为亨利(H)。

(3) 电容(Capacitance):电容是电荷存储的容量。

单位为法拉(F)。

(4) 系统带宽(System bandwidth):在无源器件应用中,系统带宽指的是可以通过无源器件的频率范围。

(5) 衰减(Dissipation):衰减是指电能从无源器件中转化为其他形式的能量,如热能。

它的单位为瓦特(W)。

(6) 第一峰返波损耗(Insertion loss):第一峰返波损耗是指无源器件引起的信号损耗。

单位一般为分贝(dB)。

(7) 耐压(Voltage rating):无源器件的耐压表示可以承受的最高电压。

单位为伏特(V)。

(8) 温度系数(Temperature coefficient):无源器件参数随温度变化的程度。

无线功率mW和dBm换算及常见符号释义要点

无线功率mW和dBm换算及常见符号释义要点

◇ 无线功率mW和dBm换算及常见符号释义1、功率单位mW和dBm的换算无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。

Tx是发射( Transmits )的简称。

无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准:1、功率( W ): 相对 1 瓦( Watts )的线性水准。

例如,WiFi 无线网卡的发射功率通常为 0.036W ,或者说36mW 。

2、增益( dBm ):相对 1 毫瓦( milliwatt )的比例水准。

例如 WiFi 无线网卡的发射增益为 15.56dBm 。

两种表达方式可以互相转换:1、dBm = 10 x log[ 功率 mW]2、mW = 10[ 增益 dBm / 10 dBm]在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。

天线增益的度量单位为“ dBi ”。

由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益( dB ),例如,发射设备的功率为 100mW ,或20dBm;天线的增益为 10dBi ,则:发射总能量=发射功率( dBm )+天线增益( dBi )= 20dBm + 10dBi = 30dBm或者: = 1000mW = 1W在“小功率”系统中(例如无线局域网络设备)每个 dB 都非常重要,特别要记住“ 3 dB 法则”。

每增加或降低 3 dB ,意味着增加一倍或降低一半的功率:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如, 100mW 的无线发射功率为 20dBm ,而 50mW 的无线发射功率为 17dBm ,而200mW 的发射功率为 23dBm 。

关于PA、PB及RS功率的计算——值得收藏

关于PA、PB及RS功率的计算——值得收藏

关于PA、PB及RS功率的计算——值得收藏内容提要一、PA、PB二、RS功率三、参数设置四、计算例子一、PA、PBLTE下行信道或符号的功率控制基于两种方式:静态方式和动态方式。

所谓静态方式即为信道配置一个固定值,例如RS、PBCH、PCFICH、PSS+SSS信道采用静态值方式设置功率,并且PBCH、PCFICH、PSS+SSS 信道功率值是相对于RS功率进行设置的一个偏置值。

而动态方式即所谓的功率分配,就是把基站总功率在某个时刻按照一定规则分配到各个信道上,例如PHICH、PDCCH, PDSCH信道。

(注:PHICH、PDCCH, PDSCH信道既可以采用静态值方式也可以采用动态功率分配方式,采用哪种方式取决于PDCCH或PDSCH信道传输的内容。

那么什么是功率分配呢?首先,要明确一个概念,EPRE(即每RE上的能量): Energy Per Resource Element,功率分配是基于EPRE 的。

在时域上,由于OFDM符号是时分复用的,每个OFDM符号时刻(时域上=66.7us)都以基站的最大功率发射。

但在系统带宽内,每个OFDM符号时刻包含多个OFDM符号(例如20MHz带宽,每个OFDM时刻包含1200个OFDM符号),那么每个OFDM符号可获取的发射功率为多少呢?于是就有了所谓的功率分配。

根据OFDM符号中是否存在RS信号,把PDSCH OFDM符号分为两类,即A类(TYPE A)和B类(TYPE B)。

A类符号:不存在RS的PDSCH OFDM符号B类符号:存在RS的PDSCH OFDM符号TYPEAρA:将A类符号的PDSCH RE功率(单位mw)与RS功率(单位mW)比值记作ρA=TYPE A/RSρB:将B类符号的PDSCH RE功率(单位mw)与RS功率(单位mw)比值记作ρB=TYPE B/RSLTE设备中,为了控制分配给UE的PDSCH RE功率,引入了PA 参数,PB参数。

通信达公式参数汇总

通信达公式参数汇总

通信达公式参数汇总1.频率(f):频率是指无线电波的周期性变化的次数。

它是通信系统中的一个重要参数,通常以赫兹(Hz)为单位表示。

2.发射功率(Pt):发射功率是指从发射设备发出的无线电信号的功率水平。

它通常以瓦特(W)为单位表示。

3.接收功率(Pr):接收功率是指接收设备接收到的无线电信号的功率水平。

它通常以瓦特(W)为单位表示。

4.距离(d):距离是指无线电信号从发射点到接收点之间的直线距离。

它通常以米(m)为单位表示。

5.天线增益(Gt和Gr):天线增益是指天线辐射和接收无线电信号的能力。

它通常以分贝(dB)为单位表示。

发射天线增益(Gt)是指发射设备的天线在特定方向上相对于理想同向点源的增益。

接收天线增益(Gr)是指接收设备的天线在特定方向上相对于理想同向点源的增益。

6.路径损耗(L):路径损耗是指无线电信号在传播过程中因信号衰减和散射而损失的信号功率。

它通常以分贝(dB)为单位表示。

7.传输介质特性(α):传输介质特性是指无线电信号在传播过程中由于传输介质的特性而引起的信号损耗。

它通常以分贝/米(dB/m)为单位表示。

8.系统带宽(B):系统带宽是指通信系统所能处理的频率范围。

它通常以赫兹(Hz)为单位表示。

通过以上参数,可以将通信达公式表示为:Pr=Pt*Gt*Gr*(λ/(4πd))^(2)*α*L*B其中,λ是无线电波的波长,由频率(f)决定。

1.预测信号覆盖范围:通过计算路径损耗和传输介质特性,可以预测无线电信号在不同距离上的信号强度,从而确定信号的覆盖范围。

2.优化天线设计:通过计算天线增益和路径损耗,可以评估不同天线设计的性能差异,并选择合适的天线类型和方向性。

3.评估通信系统性能:通过计算接收功率和发射功率,可以评估通信系统的性能,并进行系统参数调整和优化。

4.无线电频率规划:通过计算路径损耗,可以确定不同无线电设备之间的最大传输距离,有助于规划和优化无线电频率的使用。

总结:了解和掌握通信达公式中的参数对于通信工程师和研究人员来说至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是dBi、dBd、dB、dBm、dBc-技术文章真正意义上的全向天线的方向图应该是球星但是现在使用中所说的全向天线其实都只是在水平面上是圆,在垂直面上是一个长条立体上理解就是个面包圈定向天线是个大鸭梨从能量守恒上解释就是把球星的能量压缩在面包圈里当然就会出现增益,天线是无源器件本身没有放大作用,就是因为天线内部的振子的排列使本来全方位的发射集中在一定区域内才会有叠加的作用,使得天线产生增益所以压缩的越厉害的天线增益也就越高.天线增益G我们也可用增益来表示天线集中辐射的程度。

天线在某一方向的增益定义为:在相同的输入功率下,天线在某一方向某一位置产生的电场强度的平方(E2)与无耗理想点源天线在同一方向同一位置产生的电场强度的平方(E02)的比值,通常以G表示。

G=E2/E02(同一输入功率)同样,增益也可以这样来确定:在某一方向向某一位置产生相同电场强度的条件下,无耗理想点源天线的输入功率(Pino)与天线的输入功率(Pin)的比值,即称为该天线在该点方向的增益。

G=Pino/Pin(同一电场强度)通常是以天线在最大辐射方向的增益作为这一天线的增益。

增益通常用分贝表示。

即:G=101gPino/Pin天线增益的计算:G=η4πS/λ2=η(π/λ)2D2式中,S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线效率。

答:1、增益是用来表示天线集中辐射的程度。

其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。

增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。

增益的单位用“dBi”或“dBd”表示。

2、天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。

天线增益对移动通信系统运行极为重要,因为它决定蜂窝边缘的信号电平。

增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。

可以这样来理解增益的物理含义------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。

换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

半波对称振子的增益为G=2.15dBi。

4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源)。

如果以半波对称振子作比较对象,其增益的单位是dBd 。

半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为1 ,取对数得零值。

)垂直四元阵,其增益约为G=8.15–2.15=6dBd 。

对于水平极化方式的天线来讲,通常以一个半波水平放置的偶极子天线为标准天线,其增益为0dB(实际指dBd)。

调频二偶极子反射板天线的增益通过计算和实验数据,其结果基本一致。

相对于半波偶极子天线的增益最高只能做到7.5dB。

当天线在进行组阵时,天线系统增益为7.5dB。

计算推论如下:总功率在一层四面分配时,天线功率将损失6dB,此时天线增益为7.5-6.5=1.5dB;再根据天线层数增加一倍时天线系统增益将增加3dB的原理,因此两层天线增益就为1.5+3=4.5dB;当天线层数为四层时,天线系统增益就为1.5+3+3=7.5dB,故四层四面调频二偶极子板天线系统增益也只能做到7.5dB。

若天线为全波长二偶极子板天线时,其单片天线增益可以做到8-8.5dB,四层四面分配组阵时,其单片天线增益为8-8.5dB。

目前使用的天线增益,一般在0dBi到20dBi之间室内:一般采用0 - 8 dBi增益的天线室外:一般采用9 - 18 dBi增益的天线高速公路:一般采用20dBi增益的天线天线增益的若干计算公式1)天线主瓣宽度越窄,增益越高。

对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。

2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10Lg{4.5×(D/λ0)2}式中,D 为抛物面直径;λ0为中心工作波长;4.5 是统计出来的经验数据。

3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0}式中,L 为天线长度;λ0 为中心工作波长。

什么是dBi、dBd、dB、d作者:w我们在看到相关的技术资料时候,经常遇到dB和个以十为底的对数概念。

注意,分贝只用来评价一比例关系,它本身并没有物理量纲。

两个量之间以表示为10个分贝。

比如说:A="100",B="10",C="5",D="1"则A/D=20dB;B/D="10dB";C/D="7dB";B/C=3d 也就是说,两个量差10分贝就是差10倍,差20分还需要记住差3分贝就是两个量之间差2倍。

dBm是分贝毫瓦的意思。

就是说,固定1毫瓦功率。

比如我们常见的读卡器的数据功率大多是2 瓦;30dBm就是1000毫瓦(1瓦)。

别看只差3dB 什么是dBi、dBd、dB、dBm、dBc问:请问dBi、dBd、dB、dBm、dBc之间的区别。

答:它们都是功率增益的单位,不同之处如下:dBi和dBd是功率增益的单位,两者都是相对值,准为全方向性天线;dBd的参考基准为偶极子。

一益,用dBi表示的值比用dBd表示的要大2.15 dBi 。

线,其增益折算成单位为dBi时,则为18.15dBi,dB也是功率增益的单位,表示一个相对值。

当计dB时,可按公式10 lg A/B计算。

例如:A 功率比B lg 2 = 3dB 。

也就是说,A的功率比B的功率大3dB 率为40dBm,则可以说,A比B 大6dB;如果A天线说A比B小2dB。

dBm是一个表示功率绝对值的单位,计算公式为:射功率为1mW ,按dBm单位进行折算后的值应为40W的功率,则10 lg(40W/1mW)=46dBm 。

dBc也是一个表示功率相对值的单位,与dB的计算对于载波(Carrier)功率而言。

在许多情况下,用来干扰(同频干扰、互调干扰、交调干扰、带外干扰值。

在采用dBc的地方,原则上也可以使用dB替代实用资料——关于天线增益及其考量在无线通讯的实际应用中,为有效提高通讯效果成各种带有辐射方向性的结构以集中辐射功率,念。

简单说,天线增益就是指一个天线把输入的射天线的增益与其方向图的关系很大,主瓣越窄、副不同结构的天线,其方向图的差别是很大的。

在通讯技术领域,与其它考量功率、电平等参数对比较并取对数的简化法来表示,具体计算方法为同辐射场强的时,对无损耗理想基准天线的输入功值取对数后乘以10 (G=10lg(基准Pin/考量Pin))益。

常用衡量天线增益的单位是dBi和dBd。

对于即一个真正意义上的“点”来作天线增益的对比基的,其方向图是个理想的球,同一球面上所有点dBd,其基准则为理想的偶极子天线。

因偶极子天固定的恒差2.15 即0dBd="2".15dBi。

需要说明的是,通常所说的“全向天线”不是严立体空间的全向,但工程界也往往把某个平面内方线,如鞭状天线,它在径向的主瓣是圆,但仍有轴常见天线的增益:鞭状天线6-9dBi,GSM基站向天线则很容易做到24dBi。

增益是什么意思?增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

dB,dBm,dBi,dBd,dBc含义2009-09-17 10:47dBm是一个表示功率绝对值的单位,计算公式为:10lg功率值/1mW。

例如:如果发射功率为1mW,按dBm单位进行折算后的值应为:10 lg 1mW/1mW = 0dBm;对于40W的功率,则10lg(40W/1mW)=46dBm。

1、dBmdBm是一个考征功率绝对值的值,计算公式为:10lg(功率值/1mw)。

[例1] 如果发射功率P为1mw,折算为dBm后为0dBm。

[例2] 对于40W的功率,按dBm单位进行折算后的值应为:10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。

2、dBi 和dBddBi和dBd是考征增益的值(功率增益),两者都是一个相对值,但参考基准不一样。

dBi的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。

一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2. 15。

[例3] 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi (一般忽略小数位,为18dBi)。

[例4] 0dBd=2.15dBi。

[例5] GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为15dBd(17dBi)。

3、dBdB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率)[例6] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。

也就是说,甲的功率比乙的功率大3 dB。

[例7] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。

[例8] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。

[例9] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。

4、dBc有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一样。

一般来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。

在采用dBc的地方,原则上也可以使用dB替代。

搞无线和通信经常要碰到的dBm, dBi, dBd, dB, dBc经验算法:有个简便公式:0dBm=0.001W 左边加10=右边乘10所以0+10dBM=0.001*10W 即10DBM=0.01W故得20DBM=0.1W 30DBM=1W 40dBM=10W还有左边加3=右边乘2,如40+3dBM=10*2W,即43dBm=20W,这些是经验公式,蛮好用的。

相关文档
最新文档