最新人教版八年级数学下册第十八章《特殊的平行四边形》典型例题
八年级数学人教版下册18.2《特殊的平行四边形》测试卷、练习卷(带答案解析)
18.2《特殊的平行四边形》测试卷、练习卷(带答案解析)一、选择题(本大题共10小题,共30.0分)1.如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得四边形是()A. 平行四边形B. 正方形C. 矩形D. 菱形2.矩形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分3.平行四边形两邻边之比为3:4,两条对角线长都是10,则这个平行四边形的周长是().A. 14B. 20C. 28D. 无法确定4.如图,P为矩形ABCD外一点,S△PCD=5,S△PBC=8,则△PAC的面积是().A. 3B. 4C. 1.5D. 2.55.顺次连结矩形各边的中点,所得四边形是().A. 筝形B. 矩形C. 菱形D. 正方形6.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A. (√3,1)B. (2,1)C. (1,√3)D. (2,√3)7.如图,正方形ABCD的边长为4,点A的坐标为(−1,1),AB平行于x轴,则点C的坐标为()A. (3,1)B. (−1,1)C. (3,5)D. (−1,5)8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A. BE=AFB. ∠DAF=∠BECC. ∠AFB+∠BEC=90∘D. AG⊥BE9.如图,在边长为2的菱形ABCD中,∠B=45∘,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD交于点F,则B′F的长度为()A. 1B. √2C. 2−√2D. 2√2−210.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4√2−2时,P点最多有9个③当P点有8个时,x=2√2−2④当△PEF是等边三角形时,P点有4个A. ①③B. ①④C. ②④D. ②③二、填空题(本大题共4小题,共12.0分)11.如图,在菱形ABCD中,∠B=50∘,点E在CD上,若AE=AC,则∠BAE=°.12.如下图,将矩形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠B′MD=50∘,则∠BEF的度数为.13.如下图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,⋯⋯,依次类推,则平行四边形AO2019C2020B的面积为.14.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为°.三、解答题(本大题共7小题,共58.0分)15.已知:四边形ABCD中,AB=CD,∠A+∠D=180°,AC、BD相交于点O,△AOB是等边三角形。
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣2B .2﹣4C .1D 2A解析:A【分析】 根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于2 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =2∴BE =BD ﹣DE =2﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =22BE =22×(2﹣4)=4﹣2. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15C解析:C【分析】 根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A.4 B.5 C.8 D.10C解析:C【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【详解】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.6C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.5.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()A.若AB AD=,则平行四边形ABCD是矩形B.若AB AD=,则平行四边形ABCD是正方形C.若AB BC⊥,则平行四边形ABCD是矩形D.若AC BD⊥,则平行四边形ABCD是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.6.菱形的一个内角是60︒,边长是3cm,则这个菱形的较短的对角线长是()A.3cm2B33cm2C.3cm D.33cm C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.83C.16 D.163A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的OE ,则四边形EFCD的周长为_____.周长为19, 2.5145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.12.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.13.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.14.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.15.如图,B,E,F,D四点在一条直线上,菱形ABCD的面积为2120cm,正方形AECF 的面积为250cm ,则菱形的边长为___cm .13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1 解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm , ∴22AB AO BO +25144+, 故答案为13. 【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答. 16.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:122 【分析】 画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.18.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.19.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解. 【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线, ∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =,∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.解析:(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】 (1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t 秒.∵四边形MNCB 是平行四边形,∴MB=NC ,当N 从D 运动到C 时,∵BC=13cm ,CD=21cm ,∴BM=AB-AM=16-t ,CN=21-2t ,∴16-t=21-2t ,解得t=5,当N 从C 运动到D 时,∵BM=AB-AM=16-t ,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.解析:(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?解析:(1)t =2;(2)t =3或65t =. 【分析】 (1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒),∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】 本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.解析:(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ; (2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.27.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.解析:(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.28.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点图形.(1)在图甲中画出一个三角形,使BP平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP平分该四边形的面积.解析:(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.。
八年级数学下册18.2.4特殊的平行四边形练习新人教版
18.2.4 特殊的平行四边形一、夯实基础1、若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形C.矩形D.正方形2、如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是( )A.AM=AN B.MN⊥ACC.MN是∠AMC的平分线D.∠BAD=120°3、已知平行四边形ABCD的对角线交于点O,则下列命题是假命题的是( )A.若AC⊥BD,则平行四边形ABCD是菱形B.若BO=2AO,则平行四边形ABCD是菱形C.若AB=AD,则平行四边形ABCD是菱形D.若∠ABD=∠CBD,则平行四边形ABCD是菱形4.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是()A.AB=BC B.AC=B DC.∠ABC=90°D.AC与BD互相平分5.数学课上,老师让同学们判断一个四边形是否为菱形,下面是某合作小组4位同学拟定的方案,其中正确的是( )A.测量对角线是否相等B.测量对角线是否垂直C.测量一组对角是否相等D.测量四边是否相等6.E、F、G、H是四边形ABCD四条边的中点,若EFGH为菱形,四边形应具备的条件是()A.一组对边平行而另一组对边不平行B.对角线互相平分C.对角线互相垂直D.对角线相等二、能力提升7.在▱ABCD中,对角线AC、BD相交于点O.若要说明▱ABCD是菱形,还需要添加的条件是(填写出一个你认为适合的条件即可).8、已知O是▱ABCD两对角线A C,BD的交点,AC=12cm,BD=16cm,AD=10cm,则▱ABCD为.9.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连结BF,CE.(1)求证:四边形BFCE是平行四边形;(2)当边AB、AC满足什么条件时,四边形BECF是菱形?并说明理由.三、课外拓展10.已知:如图,平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,交BC于点F,求证:四边形AFCE是菱形.四、中考链接11。
人教版八年级数学下册 特殊平行四边形 解答题训练(word版含解析)
人教版八年级数学下册《18-2特殊平行四边形》解答题优生辅导训练(附答案)1.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,菱形BNDM的面积为120,求菱形BNDM的周长.2.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.(1)求证:四边形AECD是菱形;(2)过点E作EF⊥CD于点F,若AB=3,BC=5,求EF的长.3.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AD=10,EC=4,求AC的长度.4.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NED≌△MEA.(2)当AM的值为何值时,四边形AMDN是矩形?并说明理由.5.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G为EF 中点,连接BD、DG.(1)试判断△ECF的形状,并说明理由;(2)求∠BDG的度数.6.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.7.如图,在正方形ABCD中,E,F分别在边AB,BC上,△DEF是等边三角形,连接BD交EF于点G.(1)求证:BE=BF;(2)若DE=2,求BD的长.8.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF,过点D作DG⊥CF于点G.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?(3)在(2)的条件下,若AB=6,BC=10,求DG的长.9.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.10.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合),连接AF并延长交直线BC于点E,交BD于点H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH;②猜想线段CG与EF的关系并说明理由;(2)取DF中点M,连结MG,若MG=4,正方形边长为6,求BE的长.11.在△ABC中,过A作BC的平行线,交∠ACB的平分线于点D,点E是BC上一点,连接DE,交AB于点F,∠CAD+∠BED=180°.(1)如图1,求证:四边形ACED是菱形;(2)如图2,若∠ACB=90°,BC=2AC,点G、H分别是AD、AC边中点,连接CG、EG、EH,不添加字母和辅助线,直接写出图中与△CEH所有的全等的三角形.12.如图,四边形ABCD为正方形,E为AD上一点,连接BE,∠AEB=60°,M为BE的中点,过点M的直线交AB、CD于P、Q.(1)如图1,当PQ⊥BE时,求证:BP=2AP;(2)如图2,若∠APQ为锐角,且PQ=BE,延长BE、CD交于点N,请你猜想QM与QN的数量关系,并说明理由.13.如图,点G在正方形ABCD的边CD上,且四边形CEFG也是正方形,连接BG,DE,AF,取AF的中点M,连接CM.求证:(1)BG=DE;(2)CM=AF.14.如图,在正方形ABCD中,点E是BC上一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.(1)求证:AE=AF;(2)已知∠AEB=75°,若点P是EF的中点,连接CP,DP,求∠CPD的度数.15.如图,点O为矩形ABCD对角线的交点,过点D作DE⊥AC于点E,过点B作BF∥AC,交DE的延长线于F,在BF的延长线上取FG=OD,连接AG,OF.(1)求证:四边形AOFG为菱形;(2)若AD=5,DF=8,求BG的长.16.已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.17.如图,▱ABCD,BE⊥AD于E,交AC于M,DF⊥BC于F,交AC于N,连接DM、BN.(1)求证:△ABM≌△CDN;(2)当▱ABCD是菱形时,判断四边形MBND的形状,并说明理由.18.如图,矩形ABCD中,对角线AC、BD相交于点O,BD的垂直平分线分别交边AD、BC于点E、F,连接BE、DF.(1)求证:四边形BEDF是菱形;(2)若∠BOC=120°,AB=6,求FC的长.19.如图,在△ABC中,∠ABC=90°,点O是斜边AC的中点,过点O作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD、DE.(1)求证:四边形ABCD是矩形;(2)若BC=3,∠BAC=30°,求DE的长.20.如图,四边形ABCD为正方形,E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC 于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度.参考答案1.(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵菱形BNDM的面积为120=×BD×MN,∴MN=10,∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.2.证明:(1)∵∠BAC=90°,E是BC的中点,∴AE=BC=CE,又∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形.∴四边形AECD是菱形.(2)过点A作AG⊥BC于点G,∵AB=3,BC=5,∴AC=,∵,∴,∴AG=,又∵S菱形AECD=CD•EF=CE•AG,∵CD=CE,∴EF=AG=.3.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=,在Rt△AEC中,AC=.4.(1)证明:∵四边形ABCD为菱形,∴CD∥AB,∴∠DNE=∠AME,∵E为AD的中点,∴DE=AE,在△NED和△MEA中,∴△NDE≌△MAE(AAS);(2)当AM=2时,四边形AMDN是矩形.理由如下:由(1)知△NED≌△MEA,∴NE=ME,又∵DE=AE,∴四边形AMDN是平行四边形,∵菱形ABCD,AB=4,E为AD中点,∴AE=2=AM,又∵∠DAB=60°,∴△MEA为等边三角形,∴AE=ME,∴AD=MN,∴平行四边形AMDN为矩形.5.(1)解:△ECF是等腰直角三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠DAB=∠ABC=∠BCD=90°,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE=45°,∴∠BEA=∠BAE=45°,∴∠CEF=45°,AB=BE,∴∠F=90°﹣45°=45°,∴EC=FC,又∵∠ECF=90°,∴△ECF是等腰直角三角形;(2)∵四边形ABCD是矩形,∴AB=CD,∵AB=BE,∴BE=CD,∵EC=FC,∠ECF=90°,∴CG=EF=EG,∠ECG=∠ECF=45°,∴∠DCG=90°+45°=135°,∵∠BEG=180°﹣45°=135°,∴∠DCG=∠BEG,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS),∴DG=BG,∠DGC=∠BGE,∴∠BGD=∠EGC=90°,又∵DG=BG,∴∠BDG=45°.6.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=8,∴OA=OC,BD⊥AC,OB=OD=BD=4,∴∠AOB=90°,∴OA===2,∴AC=2OA=4,∴菱形ABCD的面积=AC×BD=×4×8=16,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=6CE=16,∴CE=.7.(1)证明:∵四边形ABCD为正方形,∴AD=CD=AB=BC,∠A=∠C=90°,∵△DEF为等边三角形,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL),∴AE=CF.又∵AB=BC,∴AB﹣AE=BC﹣CF,∴BE=BF;(2)解:由(1)可知BE=BF,∴△BEF为等腰直角三角形,∵四边形ABCD为正方形,∴BD平分∠ABC,∴点G为EF的中点,BD⊥EF,∵△DEF为等边三角形,DE=2,∴EF=DE=2,BG=EG=1,在Rt△EDG中,由勾股定理得,DG===,∴BD=BG+DG=1+.8.证明:(1)∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形;(3)∵△ABC是直角三角形,AB=6,BC=10,BD=DC,∴AD=DC=5,AC=,∵四边形ADCF是菱形,∴AC⊥DF,∴DE=,∴,即,解得:DG=.9.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD=DC,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DC=DE,DA=DE,∴∠DEC=∠DCE=×(180°﹣20°)=80°,∠DAE=∠DEA=×(180°﹣70°)=55°,∴∠AEC=∠AED+∠DEC=80°+55°=135°,故答案为:135°;(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).10.证明:(1)①∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,AD=DC,在△ADH和△CDH中,,∴△ADH≌△CDH(SAS),∴∠DAH=∠DCH;②结论:EF=2CG,理由如下:∵△DAH≌△DCH,∴∠DAF=∠DCH,∵CG⊥HC,∴∠FCG+∠DCH=90°,∴∠FCG+∠DAF=90°,∵∠DF A+∠DAF=90°,∠DF A=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∵∠GCE+∠GCF=90°,∠CFG+∠E=90°,∴∠GCE=∠GCF,∴CG=GE,∴EF=2CG;(2)①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=8,在Rt△DCE中,CE===2,∴BE=BC+CE=6+2;②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE=2,∴BE=BC﹣CE=6﹣2综上所述,BE的长为6+2或6﹣2.11.(1)证明:∵AD∥BC,∴∠ADC=∠BCD,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠ADE=∠DEB,∵∠DEB+∠DEC=180°,∠DEB+∠CAD=180°,∴∠DEC=∠DAC,∴∠ADE+∠DAC=180°,∴DE∥AC,∴四边形ACED是菱形;(2)解:∵∠ACB=90°,∴菱形ACED是正方形,∴∠D=∠CAG=∠DEC=90°,AC=AD=CE,∵G是AD的中点,H是AC边中点,∴AG=DG=CE,∴△EDG≌△CAG≌△ECH(SAS),∵BC=2AC,∴BE=CE=AD,∵AD∥BE,∴∠B=∠DAF,∵∠AFE=∠BFE,∴△BFE≌△AFD(AAS),∵AD=CE=BE,∴△BEF≌△ECH,∴图中与△CEH全等的三角形有△ADF,△EDG,△CAG,△EBF.12.(1)证明:连接PE,如图1,∵点M是BE的中点,PQ⊥BE,∴PQ垂直平分BE,∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°﹣∠APE=90°﹣60°=30°,∵∠A=90°,∴BP=EP=2AP;(2)解:NQ=2MQ或NQ=MQ.理由如下:分两种情况:如图3所示,过点Q作QF⊥AB于点F,交BN于点G,则FQ=CB,∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,,∴Rt△ABE≌Rt△FQP(HL),∴∠FQP=∠ABE=30°,又∵∠MGQ=∠BGF=∠AEB=60°,∴∠GMQ=90°,∵CD∥AB.∴∠N=∠ABE=30°,∴NQ=2MQ;如图2所示,过点Q作QF⊥AB于点F,则QF=CB,同理可证:△ABE≌△FQP,此时∠FPQ=∠AEB=60°,又∵∠FPQ=∠ABE+∠PMB=60°,∠N=∠ABE=30°,∴∠EMQ=∠PMB=30°,∴∠N=∠EMQ,∴NQ=MQ.13.(1)证明∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CG=CE,在Rt△BGC和Rt△DEC中,∴Rt△BGC≌Rt△DEC(HL),∴BG=DE,(2)连接AC,FC,∴∠ACD=∠FCD=45°,∠ACF=90°,∴△ACF为直角三角形,又∵M是AF的中点,∴CM=AF.14.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,∴△ABE≌△ADF(SAS);∴AE=AF,(2)连接AP,∵△ABE≌△ADF,∴∠BAE=∠DAF,∠F AE=90°,在Rt△EAF和Rt△ECF中,P是EF中点,∴P A=PC=PE=PF=EF,又∵AE=AF,∠AEB=75°,∴∠AEP=45°,∠CEP=∠ECP=60°,∴∠DCP=30°,在△APD和△CPD中,∴△APD≌△CPD(SSS),∴∠CDP=45°,∴∠CPD=180°﹣30°﹣45°=105°.15.证明:(1)∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵DE⊥AC,BF∥AC,∴OF=OD=OA,∵FG=OD,∴FG=OA,∵FG∥OA,∴四边形AOFG为菱形;(2)∵AD=5,DF=8,∴DE=EF=4,AE=3,在Rt△DEO中,设OE=x,由勾股定理得:(x+3)2﹣42=x2,解得:x=,∴OD=,OE=,∴BF=2OE=,FG=OD=,∴BG=GF+BF=.16.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);(2)解:当AB=AC时,四边形ADCF是正方形,理由:由(1)知,△AEF≌△DEB,∴AF=DB,∵D是BC的中点,∴DB=DC,∴AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形,∵AB=AC,D是BC的中点,∴AD⊥BC,∴四边形ADCF是正方形.17.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠DAB=∠DCB,∴∠BAC=∠DCA,∵BE⊥AD,DF⊥BC,∴∠DAB+∠ABM=90°,∠DCB+∠CDN=90°,又∵∠DAB=∠DCB,∴∠ABM=∠CDN,在△ABM和△CDN中,,∴△ABM≌△CDN(ASA);(2)解:四边形MBND是菱形,理由如下:∵BE⊥AD,DF⊥BC,AD∥BC,∴BE∥DF,由(1)知△ABM≌△CDN,∴BM=DN,∴四边形MBND是平行四边形,连接BD,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,即MN⊥BD,∴平行四边形MBND是菱形.18.(1)证明:∵EF垂直平分BD,∴EB=ED,FB=FD,BO=DO,∵四边形ABCD是矩形,∴∠OBF=∠ODE,∵∠DOE=∠BOF,∴△EOD≌△FOB(AAS),∴DE=BF,∴EB=ED=FB=FD,∴四边形BEDF是菱形;(2)解:∵四边形ABCD是矩形,∴OB=OC,CD=AB=6,∴∠OBC=∠OCB,∵∠BOC=120°,∴∠OBC=∠OCB=30°,∵四边形EBFD为菱形,∴FB=FD,∴∠FBD=∠FDB=30°,∴∠DFC=60°,∴∠FDC=30°,设CF=x,则FD=2x,根据勾股定理得:(2x)2﹣x2=62,解得:x=2,∴FC的长为2.19.(1)证明:∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(AAS),∴AD=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∵∠ABC=90°,∠BAC=30°,∴AC=2BC=6,∴OA=3,∵OE⊥AC,∴∠AOE=90°,∵∠BAC=30°,∴OE=OA=,∴AE=2OE=2,∴DE===.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在△EQF和△EPD中,,∴△EQF≌△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=2,∵CE=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴四边形DECG是正方形,∴CG=CE=.。
人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)
第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。
人教版八年级数学下第十八章 平行四边形 专题4 特殊平行四边形中的折叠问题
人教版八年级下第十八章平行四边形专题4 特殊平行四边形中的折叠问题姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,直线BC与⊙A相切于点C,过B作CB的垂线交⊙O于D,E 两点,已知AC=,CB=a,则以BE,BD的长为两根的一元二次方程是()A.x2+bx+a2=0B.x2﹣bx+a2=0C.x2+bx﹣a2=0D.x2﹣bx﹣a2=02 . 如图,在四边形ABCD中,AD∥BC,∠C=90°,△BCD与△BC′D关于直线BD轴对称,BC=6,CD=3,点C 与点C′对应,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.3 . 现有边长AB=10,BC=5的矩形纸片ABCD,对角线BD.在AB上取一点G,以DG为折痕,使DA落在DB上,则AG的长是:()A.B.C.D.二、填空题4 . 一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_____________cm.三、解答题5 . 如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm,将AC沿AE折叠,使得点C与AB上的点D重合.(1)证明:△ABC是直角三角形;(2)求△AEB的面积.6 . 四边形ABDF中,点C、E分别在AF、DF上,且AB=AC,BD=DE,∠BDF=2∠ABC,M为CE的中点.(1)画出△ACM关于点M成中心对称的图形;(2)求证:AM⊥DM;(3)若AM=DM,求∠ABC的度数.7 . 综合与实践:问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点A.特例探究实验小组的同学发现:(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;(2)当AB=BC=4时,求CG的长;延伸拓展:(3)实知小组的同学在实验小组的启发下,进一步探究了当AB∶BC=∶2时,线段AG,BC,CG之间的数量关系,请你直接写出实知小组的结论:___________.参考答案一、单选题1、2、3、二、填空题1、三、解答题1、2、3、。
人教版八年级数学第18章特殊的平行四边形——正方形的性质和判定(第9、10课时)
⑶若∠BCD=900,则四边形ABCD是( 矩形 )
⑷若OA=OB,则四边形ABCD是( 矩形 )
⑸若AB=BC,且AC=BD,则四边形ABCD是
( 正方形 )
八年级数学第18章平行四边形
5.如图,在正方形ABCD中,点E在对角线AC 上,那么,BE和DE相等吗?为什么?
D C
解:BE=DE. 因为 对角线AC所在的直 线是正方形ABCD的对称 轴,而点E在对称轴上, 点B为点D关于AC的对称 点, 所以 BE=DE
八年级数学第18章平行四边形
平行四边形,矩形,菱形,正方形的关系
平行四边形 正 方 形
矩形
菱形
正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形
八年级数学第18章平行四边形
八年级数学第18章平行四边形
回顾平行四边形,矩形,菱形的性质,完成表格前三列
性质 分类 图形
平行四 边形
对边平行 且相等 对角相等 对角线互 相平分
八年级数学第18章平行四边形
想一想:正方形是怎样的菱形?
正方形 菱形
一个角是直角的菱形
八年级数学第18章平行四边形
矩形 两组 对边
四边形
分别 平行
平行四 边形 菱 形
八年级数学第18章平行四边形
菱形
平行四边形
正方形
矩形
一组邻边相等 平行四边形 一内角是直角
正方形
定义:一组邻边相等,且有一个角是直角的平行四边形叫做 正方形
八年级数学第18章平行四边形
正方形的判定方法:
(可从平行四边形、矩形、菱形为基础)
1、
一组邻边相等 平行四边形 一内角是直角
正方形
定义法
一内角是直角
人教版八年级下第十八章 平行四边形 专题5 特殊平行四边形中的动点问题(word无答案)
人教版八年级下第十八章平行四边形专题5 特殊平行四边形中的动点问题(word无答案)一、单选题(★) 1 . 如图,在矩形中,点是的中点,点是上的一动点.若,,则的值可能是()A.3.2B.3.5C.3.6D.3.8二、解答题(★★) 2 . 如图所示,在矩形中,,点沿边从点开始向点以的速度移动,点沿边从点开始向点以的速度移动,如果点同时出发,用表示移动的时间().(1)当为何值时,为等腰三角形?(2)求四边形的面积,并探索一个与计算结果有关的结论.(★★) 3 . 已知点分别在菱形的边上滑动(点不与重合),且.(1)如图1,若,求证:;(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;(3)如图3,若,请直接写出四边形的面积.(★★) 4 . 如图所示,四边形是正方形,是延长线上一点,直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一条直角边与的平分线相交于点.(1)如图1所示,当点在边的中点时:①通过测量的长度,猜想与满足的数量关系是________________;②连接点与边的中点,猜想与满足的数量关系是________________;③请证明上述你的两个猜想.(2)如图2所示,当点在边上的任意位置时,请你在边上找到一点,使得,进而猜想此时与的数量关系.(★) 5 . 如图,四个小球分别从正方形的四个顶点处出发(小球的大小忽略不计),以同样的速度分别沿方向滚动,其终点分别是点,顺次连接四个小球所在的位置,得到四边形.(1)不论小球滚动多长时间,求证;四边形总是正方形;(2)这个四边形在什么时候面积最大?(3)在什么时侯四边形的面积为正方形面积的一半?请说明理由.。
初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题
章节测试题1.【题文】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.【答案】见解析【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=DM,DN=CN,由等腰三角形的性质得到∠MAD=∠MDA,∠NCD=∠NDC,等量代换得到∠ADM=∠CDN,即可得到结论.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.2.【题文】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG且EG⊥CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?【答案】(1)证明见解析;(2)成立,证明见解析;(3)成立,即EG=CG且EG⊥CG.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;【解答】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△D AG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
人教版数学八年级下册第十八章平行四边形专题2:特殊四边形中的动点问题
平行四边形专题:特殊四边形中的动点问题、平行四边形与动点1.如图,在等边三角形ABC中,BC=6cm,射线AG// BC,点E从A出发沿射线AG以1cm/s的速度运动,点F从B 出发,沿射线BC以2cm/s的速度运动。
如果点E, F同时出发,设运动时间为t (s),问运动多少秒时,以A,C,E,F 为顶点的四边形是平行四边形?2.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE, DF。
(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm, BC=5cm, / B=60° ,当AE=时,四边形CEDF是菱形。
(直接写出答案)、矩形与动点3.如图,在^ ABC中,/ C=90° , AC=8, BC=6,点P为斜边AB上一动点,过点P作PEI AC于点E, PF±BC于点F,连接EF,则线段EF的最小值为。
4.如图,在矩形ABCD中,AB=24cm, BC=12cm。
点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从D开始向点A以1cm/s的速度移动。
如果PQ同时出发,用t (s)表示移动的时间(0wtw⑵。
(1)当t为何值时,△ QAP为等腰直角三角形?(2)求四边形QAPC的面积。
5.如图,在矩形ABCD中,AB=3cm, BC=6cm,点P从点D出发向A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,到点C即停止,连接PQ, AQ, CP。
设点P, Q的速度都是1cm/s,设点P, Q运动时间为t (s)。
(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形。
三、菱形与动点6.如图,在直角三角形ABC中,/ C=90° , AC=BC=8cm点P从点A出发,沿AB方向以每秒12 cm的速度向终点B运动;同时点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将^ PQC沿BC翻折,点P的对应点为点Go设Q点运动的时间为t秒,求当t为何值时,四边形QPCG为菱形?7. △ ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B,C重合),△ ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB, AC于点F,G连接BE。
人教版初中数学八年级下册《第18章 平行四边形:18.2 特殊的平行四边形》同步练习卷2020.2
人教新版八年级下学期《18.2 特殊的平行四边形》2020年同步练习卷一.选择题(共33小题)1.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°2.在Rt△ABC中,若斜边AC=,则AC边上的中线BD的长为()A.1B.2C.D.3.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3B.C.D.4.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D 点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.125.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 6.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等7.如图,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于()A.3.5B.4C.7D.148.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD9.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤10.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8B.10C.10.4D.1211.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC 的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF =CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个12.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.1514.如图,在边长为1的菱形ABCD中,∠A=60°,点E,F分别为AD、CD上的动点,连接BE、BF、EF.若∠EBF=60°,则(1)BE=BF;(2)△BEF是等边三角形;(3)四边形EBFD面积是菱形面积的一半;(4)△DEF面积的最大值是.以上结论成立的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.416.如图,已知Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,M为边BC上的一个动点,ME⊥AB,MF⊥AC,则EF的最小值为()A.6B.6C.3D.317.下列说法错误的是()A.矩形的对角线互相平分B.有一个角是直角的四边形是矩形C.有一个角是直角的平行四边形叫做矩形D.矩形的对角线相等18.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.519.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG 的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A.四边形CEDF是平行四边形B.当CE⊥AD时,四边形CEDF是矩形C.当∠AEC=120°时,四边形CEDF是菱形D.当AE=ED时,四边形CEDF是菱形20.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB于点E,则AD的长为()A.4B.3C.5D.521.在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的平分线EF与DC 交于点F,若AB=7,3DF=4FC,则BC的长为()A.7﹣1B.4+2C.2+5D.4+322.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE=3,则矩形ABCD的面积为()A.B.C.12D.3223.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分24.如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2 25.如图,在边长为2的正方形ABCD中,以BC为边作等边△BCM,连接AM并延长交CD于N,则CN的长为()A.B.C.D.26.如图,将一个正方形剪去一个角后,∠1+∠2等于()A.120°B.170°C.220°D.270°27.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°28.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直平分的四边形是正方形29.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.则四边形AODE一定是()A.正方形B.菱形C.矩形D.不能确定30.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD=BC,∠BAD=∠BCDC.AO=CO,BO=DO,AB=BC D.AO=BO=CO=DO,AC⊥BD31.已知四边形ABCD是平行四边形,下列结论中错误的是()A.当∠ABC=90°时,它是矩形B.当AB=BC时,它是菱形C.当AC⊥BD时,它是菱形D.当AC=BD时,它是正方形32.下列说法中,正确的有()个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形.A.1B.2C.3D.433.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD 面积为16,则DE的长为()A.3B.2C.4D.8二.填空题(共9小题)34.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.35.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,BD.若∠EBD=32°,则∠BCD的度数为度.36.如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为.37.如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为.38.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为.39.如图,正方形ABCD的边长为2,点E在对角线BD上,且∠BAE=22.5°,则BE的长为.40.已知正方形ABCD的对角线长为8cm,则正方形ABCD的面积为cm2.41.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.42.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.三.解答题(共8小题)43.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=2,BD=4,求OE的长.44.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.45.如图1,在Rt△ABC中,∠ACB=90°,D是AB边上任意一点,E是BC边上的中点,过点C作CF∥AB交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)如图2,若D为AB中点,求证:四边形CDBF是菱形;(3)若∠FDB=30°,∠ABC=45°,BE=4,求的△BDE面积.46.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.47.如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=2时,求AF的长度.48.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?49.如图,在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF ⊥AC于点F.求证:四边形CFDE是正方形.50.在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF ∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=°时,四边形ADCF为正方形;②连接DF,当∠ACB=°时,四边形ABDF为菱形.人教新版八年级下学期《18.2 特殊的平行四边形》2020年同步练习卷参考答案与试题解析一.选择题(共33小题)1.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF=EF,再根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故选:C.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.2.在Rt△ABC中,若斜边AC=,则AC边上的中线BD的长为()A.1B.2C.D.【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【解答】解:在Rt△ABC中,∵斜边AC=,∴AC边上的中线BD的长=AC=,故选:D.【点评】本题考查直角三角形斜边上的中线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3B.C.D.【分析】作AH⊥y轴于H,CE⊥AH于E.则四边形CEHO是矩形,OH=CE=6,由△AHB∽△CEA,得出比例式,推出AE=2BH,设BH=x,则AE=2x,推出B(0,6﹣x),C(3+2x,0),由BM=CM,推出M(,),得出PN=ON﹣OP=x,在Rt△PMN中,由勾股定理得出PM2=PN2+MN2=x2+()2=x2﹣3x+9=(x﹣)2+,根据二次函数的性质得出PM2最小值为,即可得出结果.【解答】解:如图,作AH⊥y轴于H,CE⊥AH于E,作MN⊥OC于N.则四边形CEHO是矩形,OH=CE=6,∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA,∴=,∴=,∴AE=2BH,设BH=x,则AE=2x,∴OC=HE=3+2x,OB=6﹣x,∴B(0,6﹣x),C(3+2x,0)∵BM=CM,∴M(,),∵P(,0),∴PN=ON﹣OP=﹣=x,∴PM2=PN2+MN2=x2+()2=x2﹣3x+9=(x﹣)2+,∴x=时,PM2有最小值,最小值为,∴PM的最小值为=.故选:D.【点评】本题考查相似三角形的判定和性质、两点间距离公式、二次函数的应用等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会构建二次函数,利用二次函数的性质解决最值问题,属于中考常考题型.4.如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中B点坐标是(8,2),D 点坐标是(0,2),点A在x轴上,则菱形ABCD的周长是()A.2B.8C.8D.12【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B的坐标和点D的坐标得出OD=2,求出DE=4,AD=2,即可得出答案.【解答】解:连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AD==2,∴菱形的周长=4AD=8;故选:C.【点评】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.5.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 【分析】证出四边形ABCD是菱形,由菱形的性质即可得出结论.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.【点评】本题考查了菱形的判定与性质;熟练掌握菱形的判定与性质是解题的关键.6.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等【分析】根据菱形的对角线性质,即可得出答案.【解答】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,∴菱形的对角线不一定具有的性质是相等;故选:D.【点评】此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.7.如图,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于()A.3.5B.4C.7D.14【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=3.5.故选:A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD【分析】由条件OA=OC,OB=OD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵AC=BD,∴四边形ABCD是矩形,故选项A不符合题意;B、∵AB⊥BC,∴四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=60°,不能得出四边形ABCD是菱形;选项C不符合题意;D、∵AC⊥BD,∴四边形ABCD是菱形,故选项D符合题意;故选:D.【点评】此题主要考查了菱形的判定、矩形的判定;关键是掌握对角线互相垂直的平行四边形是菱形.9.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤【分析】根据平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.【解答】解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确;∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误;∵BG=EF,AB∥CD∥EF,∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确;∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误,故选:B.【点评】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.10.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8B.10C.10.4D.12【分析】由矩形和菱形的性质可得AE=EC,∠B=90°,由勾股定理可求AE的长,即可求四边形AECF的周长.【解答】解:如图所示,此时菱形的周长最大,∵四边形AECF是菱形∴AE=CF=EC=AF,在Rt△ABE中,AE2=AB2+BE2,∴AE2=1+(5﹣AE)2,∴AE=2.6∴菱形AECF的周长=2.6×4=10.4故选:C.【点评】本题考查了旋转的性质,菱形的性质,矩形的性质,勾股定理,熟练运用勾股定理求线段的长度是本题的关键.11.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC 的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF =CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质得到AD∥BC,AD=BC,由线段中点的定义得到AF=AD,BG=BC,于是得到四边形ABGF是平行四边形,根据平行线的性质得到CE⊥FG;故①正确;根据AD=2AB,AD=2AF,得到AB=AF,于是得到四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,根据全等三角形的性质得到FE=MF,∠AEF=∠M,推出∠AEC=∠ECD=90°,根据直角三角形的性质得到FC=EF=FM,故③正确;得到∠FCD=∠M,推出∠DCF=∠DFC,于是得到∠EFC=∠M+∠FCD=2∠CFD;故④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.【点评】本题考查了平行四边形的性质,菱形的判定,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.12.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形【分析】根据三角形的中位线定理和菱形的性质进行解答即可.【解答】解:∵菱形ABCD,∴BO=OD,BD⊥AC,∵E、F分别是边AB、AD的中点,∴2EF=BD=BO+OD,EF∥BD,∴EF=DO,EF⊥AO,∵E是AB的中点,O是BD的中点,∴2EO=AD,同理可得:2FO=AB,∵AB=AD,∴AE=OE=OF=AF,∴四边形EOF A是菱形,∵AB≠BD,∴四边形EBOF是平行四边形,不是菱形,故选:D.【点评】本题考查了三角形的中位线定理和菱形的性质,理解中位线定理和菱形的性质是关键.13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.15【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.【点评】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.14.如图,在边长为1的菱形ABCD中,∠A=60°,点E,F分别为AD、CD上的动点,连接BE、BF、EF.若∠EBF=60°,则(1)BE=BF;(2)△BEF是等边三角形;(3)四边形EBFD面积是菱形面积的一半;(4)△DEF面积的最大值是.以上结论成立的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)【分析】证明△ABE≌△DBF,可得出BE=BF,又∠EBF=60°,可证出△BEF是等边三角形;由全等得出四边形EBFD面积=S△BED+S△DBF=S△ABE+S△BED=S△ABD=,则知(1)(2)(3)成立,设AE=DF=x,DE=1﹣x,过点F作FH⊥AD 于点H,可求出FH,由面积公式表示出△DEF面积,利用二次函数的性质可求出面积的最大值为.【解答】解:(1)如图1,连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(AAS),∴BE=BF,故(1)成立;(2)∵BE=BF,∠EBF=60°,∴△BEF是等边三角形;故(2)成立;(3)∵△ABE≌△DBF,∴S△ABE=S△DBF,∴四边形EBFD面积=S△BED+S△DBF=S△ABE+S△BED=S△ABD,∵,∴四边形EBFD面积是菱形面积的一半,故(3)成立;(4)设AE=DF=x,∴DE=1﹣x,如图2,过点F作FH⊥AD于点H,∵∠ADF=120°,∴∠FDH=60°,∴∴=,=﹣,∴当x=时,S有最大值为.故(4)成立;故选:D.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定,二次函数的性质等知识,熟练掌握菱形的性质是解题关键.15.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.4【分析】根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.【点评】本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.16.如图,已知Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,M为边BC上的一个动点,ME⊥AB,MF⊥AC,则EF的最小值为()A.6B.6C.3D.3【分析】根据已知得出四边形AEMF是矩形,得出EF=AM,要使EF最小,只要AM最小即可,根据垂线段最短得出即可.【解答】解:∵∠BAC=90°,ME⊥AB,MF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AEMF是矩形,∴EF=AM,要使EF最小,只要AM最小即可,过A作AM⊥BC于M,此时AM最小,在Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,∴AM=AB=3,即EF=3故选:C.【点评】本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.17.下列说法错误的是()A.矩形的对角线互相平分B.有一个角是直角的四边形是矩形C.有一个角是直角的平行四边形叫做矩形D.矩形的对角线相等【分析】根据矩形的性质和判定对各个选项进行判断即可.【解答】解:A、矩形的对角线互相平分;正确;B、有一个角是直角的四边形是矩形;错误;C、有一个角是直角的平行四边形叫做矩形;正确;D、矩形的对角线相等;正确;故选:B.【点评】本题考查了矩形的判定与性质;熟练掌握矩形的判定与性质是解题的关键.18.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM 的值最小,根据面积关系建立等式求出其解即可.【解答】解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=2.4,∴AM=1.2;故选:C.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.19.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG 的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A.四边形CEDF是平行四边形B.当CE⊥AD时,四边形CEDF是矩形C.当∠AEC=120°时,四边形CEDF是菱形D.当AE=ED时,四边形CEDF是菱形【分析】根据平行四边形的性质和菱形、矩形的判定判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形,正确;B、∵四边形CEDF是平行四边形,∵CE⊥AD,∴四边形CEDF是矩形,正确;C、∵四边形CEDF是平行四边形,∵∠AEC=120°,∴∠CED=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,正确;D、当AE=ED时,不能得出四边形CEDF是菱形,错误;故选:D.【点评】本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.20.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB于点E,则AD的长为()A.4B.3C.5D.5【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故选:B.【点评】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.21.在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的平分线EF与DC 交于点F,若AB=7,3DF=4FC,则BC的长为()A.7﹣1B.4+2C.2+5D.4+3【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G,∵3DF=4FC,∴=,∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE==7,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=7,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴=,设CG=3x,DE=4x,则AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=﹣1,∴BC=7+4x=7+4﹣4=3+4,故选:D.【点评】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.22.如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE=3,则矩形ABCD的面积为()A.B.C.12D.32【分析】由矩形的性质得出OA=OC,由线段垂直平分线的性质得出AE=CE=3,求出BE=1,由勾股定理求出AB,即可得出答案.【解答】解:连接AE,如图所示:∵四边形ABCD是矩形,∴OA=OC,∠ABC=90°,BC=AD=4,∵OE⊥AC,∴AE=CE=3,∴BE=BC﹣CE=1,∴AB===2,∴矩形ABCD的面积=AB×BC=2×4=8;故选:B.【点评】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握矩形的性质,由勾股定理求出AB是解题的关键.23.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分【分析】由矩形的判定定理和平行四边形的判定定理即可得出答案.【解答】解:A、测量其中三个角是否都为直角,能判定矩形;B、测量对角线是否相等,不能判定平行四边形;C、测量两组对边是否分别相等,能判定平行四边形;D、对角线是否相互平分,能判定平行四边形;故选:A.【点评】本题考查的是矩形的判定、平行四边形的判定;熟练掌握矩形的判定定理和平行四边形的判定定理是解题的关键.24.如图,在▱ABCD中,对角线AC与BD相交于点O,添加下列条件中能判定▱ABCD为矩形的是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【分析】根据矩形的判定方法即可一一判断.【解答】解:A、∵AB=BC,∴▱ABCD为菱形,错误;B、∵AC⊥BD,∴▱ABCD为菱形,错误;C、∵∠ABC=90°,∴▱ABCD是矩形,正确;D、∵∠1=∠2,∴▱ABCD为菱形,错误;故选:C.【点评】本题考查了矩形的判定定理,解题的关键是熟练掌握矩形的判定方法.25.如图,在边长为2的正方形ABCD中,以BC为边作等边△BCM,连接AM并延长交CD于N,则CN的长为()A.B.C.D.【分析】作MG⊥BC于G,MH⊥CD于H,根据直角三角形的性质和勾股定理分别求出CN.【解答】解:作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,∵△MBC是等边三角形,∴MC=BC=2,由题意得,∠MCD=30°,∴MH=MC=1,CH=,DH=CD﹣CH=2﹣,HN=DH=2﹣CN=CH﹣HN=﹣(2﹣)=2﹣2故选:A.【点评】本题考查了正方形的性质、等边三角形的性质、熟记正方形的各种性质以及平行线的性质是解题的关键.26.如图,将一个正方形剪去一个角后,∠1+∠2等于()A.120°B.170°C.220°D.270°【分析】根据三角形外角的性质可得∠1+∠2的度数=三角形三个内角的和+∠A的度数,再根据三角形内角和定理和正方形的性质即可求解.【解答】解:∵∠1=∠A+∠3,∠2=∠A+∠4,∴∠1+∠2=∠A+∠3+∠4+∠A=180°+90°=270°.故选:D.【点评】本题考查了正方形的性质和三角形外角的性质和三角形内角和定理,解题的关键是得到∠1+∠2=(∠A+∠3+∠4)+∠A.27.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°【分析】由等边三角形的性质可得∠DAE=60°,进而可得∠BAE=150°,又因为AB =AE,结合等腰三角形的性质,易得∠AEB的大小,进而可求出∠BED的度数.【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠AEB的度数,难度适中.28.下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】根据矩形、菱形、正方形的判定定理进行判断.【解答】解:A、对角线相等的平行四边形是矩形,故本选项不符合题意.B、对角线互相垂直的四边形不一定是菱形,比如筝形,故本选项不符合题意.C、对角线互相垂直平分的四边形是菱形,故本选项符合题意.D、对角线互相垂直平分且相等的四边形是正方形,故本选项符合题意.。
完整版人教版八年级下册数学第十八章 平行四边形含答案
人教版八年级下册数学第十八章 平行四边形含答案一、单选题(共15题,共计45分)1、如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于AD 的一半长为半径在AD 两侧作弧,交于两点M 、N ;第二步,连接MN 分别交AB 、AC 于点E 、F ;第三步,连接DE 、DF ,则可以得到四边形AEDF 的形状( )A.仅仅只是平行四边形B.是矩形C.是菱形D.无法判断 2、已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;其中假命题有 ( )A.1个B.2个C.3个D.4个 3、下列命题中错误的是( )A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形 4、如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A.2:5B.2:3C.3:5D.3:25、如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,∠AOD=60°,则AB的长为()A.4B.2C.8D.86、如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形 D.轴对称图形是正方形7、下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直8、如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于( )A.105°B.110°C.115°D.120°9、下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形 C.对角线互相垂直的四边形是菱形 D.两组对角分别相等的四边形是平行四边形10、如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14B.16C.18D.2011、如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.212、如图,在菱形ABCD中,对角线AC、BD相交于点O,延长CB至E使BE=CB,连续AE.下列结论①AE=2OE;② ;③四边形ADBE为平行四边形;④ 中,正确的个数有()A.1个B.2个C.3个D.4个13、如图,在边长为3的菱形ABCD中,点P从A点出发,沿A→B→C→D运动,速度为每秒3个单位;点Q同时从A点出发,沿A→D运动,速度为每秒1个单位,则的面积S关于时间的函数图象大致为()A. B. C. D.14、如图,在▱ABCD中,∠D=120°,则∠A的度数等于()A.120°B.60°C.40°D.30°15、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE =5,F为DE的中点.若△CEF的周长为18,则OF的长为()A.3B.4C.D.二、填空题(共10题,共计30分)16、如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.17、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG//CF;⑤S△FGC=3.6.其中正确结论是________.18、如图所示,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S4=S2+S3;②S2+S4=S1+S2;③若S3=2S1,则S4=2S2;④若S1=S2,则S3=S4,其中正确结论的序号是________.19、如图,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=________.20、如图,小志同学将边长为3的正方形塑料模板与一块足够大的直角三角板叠放在一起,其中直角三角板的直角顶点落在点处,两条直角边分别与交于点,与延长线交于点,则四边形的面积是________.21、如图,平行四边形ABCD的对角线AC,BD交于点O,点E是AD的中点,△的周长为6,则△ 的周长为________.22、已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB= ________ ,sin∠ABE=________ .23、如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是________.24、在矩形ABCD中,AB=6,AD=4,点E是DC的中点,点F在AD上,连接BF,EF,若FE恰好平分∠BFD,则FD=________.25、如图,在正方形ABCD中,AB=4,E、F是对角线AC上的两个动点,且EF =2,P是正方形四边上的任意一点.若△PEF是等边三角形,则符合条件的P 点共有________个,此时AE的长为________.三、解答题(共5题,共计25分)26、如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.27、已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.28、教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.29、如图,矩形ABCD中,BC=2AB=4,AE平分∠BAD交边BC于点E,∠AEC的分线交AD于点F,以点D为圆心,DF为半径画圆弧交边CD于点G,求弧FG的长30、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,∠BAN=90°,求证:四边形ADCN是矩形.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、B5、A6、A7、C8、B9、D10、C11、A12、D13、D14、B15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
人教版八年级下册第十八章平行四边形18.2特殊的平行四边形-菱形(包含答案)
特别的平行四边形- 菱形同步练习一、选择题1、菱形拥有而矩形不必定拥有的性质是()A.中心对称图形 B .对角相等C.对边平行 D .对角线相互垂直2、如图,在菱形ABCD中,两对角线AC, BD交于点 O,,当是以PD为底的等腰三角形时,CP的长为()、 2、、、A B C D3、已知一个菱形的周长是20cm,两条对角线的比是4: 3,则这个菱形的面积是()A. 12cm2 B . 24cm2 C . 48cm2 D . 96cm24、如图,在菱形ABCD中,对角线AC与 BD订交于点O,若 AB= 2,∠ ABC= 60 °,则 BD的长为 ()A. 2 B . 3 C.D. 25、如图,在△ABC中,点 D、 E、 F 分别是边 AB、AC、 BC的中点,要判断四边形DBFE是菱形,以下所增添条件不正确的是()A. AB=AC B . AB=BC C. BE均分∠ ABC D . EF=CF6、如图,将△ABC沿 BC方向平移获得△DCE,连结 AD,以下条件中可以判断四边形ACED为菱形的条件是()A.AB= BCB.AC = BCC. ∠ B= 60°D. ∠ ACB= 60°7、求证:菱形的两条对角线相互垂直.已知:如图,四边形ABCD是菱形,对角线AC, BD交于点O.求证: AC⊥ BD.以下是排乱的证明过程:①又 BO=DO;②∴ AO⊥ BD,即 AC⊥ BD;③∵四边形ABCD是菱形;④∴ AB=AD.证明步骤正确的次序是()A.③→②→①→④ B .③→④→①→② C .①→②→④→③D.①→④→③→②8、如图,将菱形纸片ABCD折叠,使点 A 恰巧落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则 EF 的长为()A. 2 B .2 C . D . 49、如图,在菱形ABCD中,点 E 是 BC边的中点,动点M在 CD边上运动,以EM为折痕将△ CEM折叠获得△PEM,联接PA,若 AB=4,∠ BAD=60°,则 PA的最小值是()A.B. 2 C . 2﹣2 D . 410、已知,如图,△ ABC是等边三角形,四边形 BDEF是菱形,此中线段 DF的长与 DB 相等,将菱形 BDEF绕点 B 按顺时针方向旋转,甲、乙两位同学发此刻此旋转过程中,有以下结论.甲:线段AF与线段CD的长度总相等;乙:直线AF和直线CD所夹的锐角的度数不变;那么,你以为()A.甲、乙都对B.乙对甲不对 C .甲对乙不对D.甲、乙都不对11、如图,在给定的一张平行四边形纸片上做一个菱形,甲、乙两人的作法以下:甲:连结AC,做 AC的垂直均分线MN分别交 AD,AC, BC于 M, O, N,连结 AN, CM,则四边形ANCM是菱形 .乙:分别作∠A,∠ B 的均分线AE, BF,分别交 BC, AD 于 E, F,连结 EF,则四边形 ABEF是菱形 .依据两人的作法可判断()A. 甲正确,乙错误B. 乙正确,甲错误C. 甲、乙均正确D. 甲、乙均错误12、如图,菱形ABCD的对角线订交于点O,过点 D作 DE∥ AC,且 DE=AC,连结 CE、OE,连结 AE,交 OD于点 F.若AB=2,∠ ABC=60°,则 AE的长为()A.B. C .D.二、填空题13、菱形的两条对角线长为6cm, 8cm,则这个菱形的高为.14、□中,AC、BD交于点O,给出以下条件:①AC⊥ BD;② AC=BD;③ AC均分∠ BAD;④ AB=AD;⑤ AB⊥ AD.能推出□是菱形的条件是(只需写出一个即可).15、如图,菱形ABCD的边长为2,∠ ABC= 45°,则点D的坐标为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典题精讲
例1 一个矩形的对角线长6 cm,对角线与一边的夹角是45°,求矩形的长与宽.
思路分析:如图19-2-2所示,由矩形的性质定理,得到△OAB 是等腰三角形,又因为对角线与一边的夹角是45°,所以△OAB 是等腰直角三角形,从而可求得矩形的长与宽.
图19-2-2
解:因为四边形ABCD 是矩形,所以OA=OB=3 cm.
又因为∠OAB=45°,
所以∠AOB=90°.在Rt △OAB 中,由勾股定理,得AB=2322=+OB OA cm. 同理,BC=23 cm.
绿色通道:本题的另一种解法:因为四边形ABCD 是矩形,所以∠ABC=90°.
又因为∠BAC=45°,所以∠ACB=45°.所以AB=BC.
所以△ABC 是等腰直角三角形.设AB=BC=x cm,由勾股定理,得x 2+x 2=36,解得x=23,即矩形的长与宽都是23 cm.
变式训练 (2006上海松江中考)如图19-2-3,长方形纸片ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,点C 至点C′,折痕为EF.求△BEF 的面积.
图19-2-3
思路分析:由折叠的对称性可知BE=DE,∠BEF=∠DEF=∠EFB,从而得到BF=BE=DE.然后根据勾股定理设未知量来求解.
解:由题意,得BE=DE,∠BEF=∠DEF.
∵AD ∥BC,∴∠BFE=∠DEF.∴∠BEF=∠BFE.
∴BF=BE=DE.
设BF=x,则AE=AD-DE=9-x.
在Rt △ABE 中,∠BAE=90°.
∴BE 2=AB 2+AE 2,即x 2=32+(9-x)2.
解之,得x=5,即BF=5.
∴S △BEF =21BF·AB=21×5×3=2
15. 例 2 如图19-2-4所示,平行四边形ABCD 的两条对角线AC 、BD 相交于点O,AB=5,AO=2,OB=1.
图19-2-4
(1)AC 、BD 互相垂直吗?为什么?
(2)四边形ABCD 是菱形吗?为什么?
思路分析:(1)已知三角形的三边,用勾股定理的逆定理判断它是否为直角三角形;
(2)利用(1)中的结论直接根据菱形的判定定理加以判断.
解:(1)在△AOB 中,因为AO 2+OB 2=5=(5)2=AB 2,
所以△AOB 是直角三角形,∠AOB=90°,即AC ⊥BD.
(2)因为四边形ABCD 是平行四边形,又AC ⊥BD,所以四边形ABCD 是菱形.
绿色通道:结论的转化有利于问题的解决.如证明AC 、BD 互相垂直转化为证明△AOB 是直角三角形.
变式训练 如图19-2-5所示, ABCD 的对角线AC 与BD 相交于O,且AC=4,BD=32,AB= 7.
图19-2-5
(1)AC 与BD 有怎样的位置关系?
(2)四边形ABCD 是菱形吗?说说你的理由.
思路分析:(1)由勾股定理可得AC ⊥BD;(2)由(1)中得到的结论直接利用菱形的判定定理可得答案.
解:(1)AC ⊥BD,因为在 ABCD 中对角线AC 与BD 互相平分,所以OA=21AC=2,OB=2
1BD=3. 而22+(3)2=7=(7)2,即在△AOB 中,AB 2=OA 2+OB 2,
所以∠AOB=90°.所以AC ⊥BD.
(2)四边形ABCD 是菱形,因为四边形ABCD 是平行四边形,又由(1)知AC ⊥BD,所以AD=AB=7.所以四边形ABCD 是菱形.
例3 (2005湖北黄石中考)已知菱形的周长为40 cm,两条对角线之比为3∶4,求菱形的面积.
图19-2-6
思路分析:如图19-2-6所示,由菱形的性质定理可得△OAB 是直角三角形,它的两条直角边之比等于菱形的两条对角线之比,再由勾股定理列方程求解.
解:因为菱形ABCD 的周长为40 cm,所以AB=10 cm.
因为OA=21AC,OB=2
1BD,AC ∶BD=4∶3,所以OA ∶OB=4∶3. 设OA=4x,OB=3x,由勾股定理,得(4x)2+(3x)2=102,解得x=2. 那么OA=8,OB=6.∴AC=16,BD=12,S 菱形ABCD =
21AC·BD=21×16×12=96 cm 2. 绿色通道:由四边形的两条对角线和一边组成的三角形(如图中△OAB)是我们经常考查的对象.特殊的四边形对应特殊的三角形.矩形、菱形、正方形对应的三角形分别是等腰三角形、直角三角形、等腰直角三角形.掌握这一点,对于解决四边形的问题是大有益处的.
变式训练1 (2006上海黄埔中考)已知菱形的两条对角线的长分别为32、2,则此菱形的边长是_____________.
思路解析:根据菱形的两条对角线互相垂直,利用勾股定理即可求得.
答案:2
变式训练2 菱形的两条对角线分别是24 cm 和10 cm,则菱形的周长是_______________ cm. 思路解析:根据菱形的两条对角线互相垂直,利用勾股定理可得到菱形一条边的长,然后根据菱形的四条边都相等的定理,求出结果.
答案:42
问题探究
问题1 如图19-2-7所示,对于任意一个△ABC,借助作图工具可以作出其中位线EF,沿着中位线一刀剪切后,用得到的△AEF 和四边形EBCF 可以拼成平行四边形EBCP.那么我们可不可以增加或改变相应的条件,使得到的四边形是矩形或菱形呢?你有哪些不同方法?
图19-2-7
根据菱形及矩形的判定定理即可得到正确答案.
探究:(1)要使四边形是矩形,则要求有一个角是直角.这个直角可以是原三角形中的,也可以是通过剪切得到的,而这条剪切线一般是中线、中位线或高线,所以我们可以考虑在直角三角形或等腰三角形中进行.具体方法如下:
方法一:△ABC 中,∠B=90°,AB 边中点为E,AC 边中点为F,沿EF 进行剪切,再按图19-2-8中所示的方法进行拼接,就形成一个矩形;
方法二:△ABC 中,AB=AC,AD 为底边BC 上的高,沿AD 进行剪切,再按图19-2-9中进行拼接,也是一个矩形.
图19-2-8 图19-2-9
(2)要使得到的四边形是菱形,则要让一边是另一边的两倍,又由于有一个角是30°的直角三角形中,边长也有这样的倍数关系,所以可以由下面的两种方法得到菱形.
方法一:△ABC中,AB=2BC,AB边中点为E,AC边中点为F,沿EF进行剪切,再按图19-2-10进行拼接,就形成一个菱形;
方法二:△ABC中,∠C=90°,∠A=30°,AB边中点为E,AC边中点为F,沿EF进行剪切,再按图19-2-11进行拼接,就形成一个菱形.
图19-2-10 图19-2-11
问题2 要在一块形如图19-2-12所示的正方形的花坛上修建两条直的小路,使得两条直的小路将花坛平均分成面积相等的四部分(不考虑道路的宽度).可否利用四边形的一些性质来解决这个问题,你能有几种方法?
图19-2-12
可从三角形全等的角度考虑,从最简单的情形入手,寻找规律.
探究:要使得四部分的面积相等,最简单的方法就是按如图19-2-13①所示,连接两条对角线,或者按图19-2-13②所示,分别连接两对边中点,这对我们来说很容易理解.从这两种方案中,我们发现它们有一个共性,就是它们都过正方形中心,所以我们还可以按照如图19-2-13③所示的方式,使两条道路都经过正方形的中心(两条对角线的交点)且互相垂直.
图19-2-13
为什么呢?我们来证明一下.
如图19-2-14所示,
图19-2-14
因为四边形ABCD是正方形,所以OA=OC.
又因为∠AOE=∠COF,∠AEO=∠CFO,
所以△AOE≌△COF.
同理,△AOG≌△COH.
所以S四边形OEAG=S四边形OFCH.仿此可证四个四边形的面积相等.。