福建省春季高考高职单招数学模拟试题(三)及答案
福建省季高考数学高职单招模拟试题(3)
福建省春季高考高职单招数学模拟试题班级: 姓名: 座号:一、选择题:本题共22小题,1-10题,每小题2分,11-22题,每小题3分,共56分. (1)sin420°=A .23 B .21 C .-23 D .-21(2)将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是(A )13(B )14(C )15(D )16(3)函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞YC .)4,(-∞D . ),4(+∞(4)s in14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23 D .-21(5)函数∈=x x y (cos 2R )是(A )周期为π2的奇函数(B )周期为π2的偶函数(C )周期为π的奇函数 (D )周期为π的偶函数(6)已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为(A )1y x =- (B )1y x =+ (C )1y x =-- (D )1y x =-+(7)已知向量(1,2)a =r ,(2,3)b x =-r,若a r ∥b r ,则x =(A )3(B )34(C )3- (D )34-(8)已知函数)2(21)(≠-=x x x f ,则()f x (A )在(-2,+∞)上是增函数 (B )在(-2,+∞)上是减函数 (C )在(2,+∞)上是增函数(D )在(2,+∞)上是减函数(9)若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为(A )1(B )0(C )1-(D )2-(10)从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为 (A )13 (B )49 (C )59 (D )23(11)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A )8 (B )5 (C )3 (D )2(12)已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )(1,10)(B )(5,6)(C )(10,12)(D )(20,24)(13)已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则I A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}(14)若函数()3=+f x x ,则(6)f 等于( )A .3B .6C .9D .6(15)直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-(16)两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9C .2:3D .22:33(17)已知函数()sin cos =f x x x ,则()f x 是( ) A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数(18)向量(1,2)=-r a ,(2,1)=rb ,则( )A .//r r a bB .⊥r r a bC .r a 与r b 的夹角为60oD .r a 与r b 的夹角为30o(19)已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( ) A .15B .30C .31D .64(20)阅读下面的流程图,若输入的a ,b ,c 分别是5,2,6,则输出的a ,b ,c 分别是( )A .6,5,2B .5,2,6C .2,5,6D .6,2,5(21)已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( ) A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-(22)在ABC ∆中,已知120=oA ,1=b ,2=c ,则a 等于( ) A .3B .523+C .7D .523-二、填空题:本大题共4小题,每小题3分,共12分. (23)把110010(2)化为十进制数的结果是 . (24)给出下列四个命题①平行于同一平面的两条直线平行; ②垂直于同一平面的两条直线平行;③如果一条直线和一个平面平行,那么它和这个平面内的任何直线都平行; ④如果一条直线和一个平面垂直,那么它和这个平面内的任何直线都垂直. 其中正确命题的序号是 (写出所有正确命题的序号). (25)已知直线l :1y x =+和圆C:2212x y +=,则直线l 与圆C 的位置关系为 . (26)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 .三、解答题:本大题共4小题,共32分.解答应写出文字说明、证明过程或演算步骤. (27)(8分)如图是一名篮球运动员在某一赛季10场比赛的得分的原始记录的径叶图, (1)计算该运动员这10场比赛的平均得分;(2)估计该运动员在每场比赛中得分不少于40分的概率。
2022年福建省南平市普通高校高职单招数学摸底卷(含答案)
2022年福建省南平市普通高校高职单招数学摸底卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.下列函数是奇函数的是A.y=x+3B.C.D.2.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是403.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1/xB.y=e xC.y=-x2+1D.y=lgx4.A.B.C.5.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<106.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)7.(1 -x)4的展开式中,x2的系数是( )A.6B.-6C.4D.-48.已知等差数列中{a n}中,a3=4,a11=16,则a7=( )A.18B.8C.10D.129.“没有公共点”是“两条直线异面”的( )A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件10.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/511.A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)12.拋掷两枚骰子,两次点数之和等于5的概率是()A.B.C.D.13.直线以互相平行的一个充分条件为()A.以都平行于同一个平面B.与同一平面所成角相等C.平行于所在平面D.都垂直于同一平面14.为A.23B.24C.25D.2615.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数16.A.B.C.D.17.cos240°=()A.1/2B.-1/2C./2D.-/218.下列各组数中,表示同一函数的是()A.B.C.D.19.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.60020.下列句子不是命题的是A.5+1-3=4B.正数都大于0C.x>5D.二、填空题(20题)21.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.22.己知0<a<b<1,则0.2a 0.2b。
福建省福州市高职单招数学模拟试卷(三) (2)
福建省福州市高职单招数学模拟试卷(三)班级___________ 座号_______ 姓名__________ 成绩_______一、单项选择题(将正确答案的序号填入括号内。
本大题12小题,每小题4分,共48分)1、 设全集I={小于6的自然数},A={1,2,3},B={2,3,5},则()I C A B ⋂=( ).A {0,1,4}B {1,4,5}C {0,1,4,5}D {1,5}2、下列各组函数中,哪一组的两个函数为同一函数( ).A cos()cos y x y x =-=与B 221,y n y n n Z ==+∈与C y y x ==D 2111x y x y x -=+=-与 3、过点A (2,3)且平行于直线250x y +-=的直线方程为( ).A 250x y ++=B 270x y +-=C 230x y ++=D 220x y ++=4、在等比数列{}n a 中4810a a =,则369a a a =( ).A 15B -15C ±5、在空间,下列命题正确的是( )A 若直线a M ⊥平面 ,直线b M ⊥平面,则a bB 若直线a M 平面 ,直线l M ⊆,则a lC 若M N ⊥平面平面 , l M ⊆,则l ND 若直线a M 平面,若直线a 平面N ,则M N6、某厂第一年产值是a ,从第二年开始进行改革,改革后每年可增产20%,那么这个工厂第五年的产值为 ( ). A 565a ⎛⎫ ⎪⎝⎭ B 465a ⎛⎫ ⎪⎝⎭C 56515a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D 46515a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 7、不等式1023x x -≥-的解集是( ). A 31,2⎛⎫ ⎪⎝⎭ B (]3,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭ C 31,2⎡⎫⎪⎢⎣⎭D ()3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭ 8、将一颗骰子连掷3次,其中恰有2次出现奇数点的概率( ).A 18B 14C 12D 389、函数sin cos y x x =•的最小正周期( ). A 3π B π C 2π D 6π 10、如果向量a = (-2,3),b =(5,y),且a b ⊥,那么y 的值是( ). A 152- B 103 C 152 D 103- 11、6个人站成一排照相,其中甲、乙两人一定要相邻,共有多少种不同的排法( ). A 120 B 480,C 240D 60 12、已知12F F 和为双曲线2214x y -=的两个焦点,p在双曲线上,满足122,3F PF π∠=则12F PF 的面积( ).A 1B 23C 43D 3 二、填空题(把答案写在横线上,本大题8小题,每小题5分,共40分)1、函数)5(log 3-=x y 的定义域是 .2、已知5sin ,13αα=-是第四象限角,那么()6Cos πα+= .3、两曲线2216x y +=与1xy =的交点的个数是 .4、求921x x ⎛⎫- ⎪⎝⎭展开式中含3x 项的系数 . 5、已知A(3,-2),B (5,1),把AB 的起点移到(-1,3)后,那么B 点的新坐标是 .6、腰长为2的等腰直角三角形ABC 中,0B 90AC ∠=,PC ABC ⊥平面,且PC =则点p到AB 边的距离是 .7、若双曲线22215x y a -=与椭圆2212516x y +=有共同的焦点,且0a ,则a = . 8、过点A(4,-2)作圆2220x y +=的切线,则此切线方程是 .三、解答题(本大题7小题,共62分。
春季高考高职单招数学模拟试题七套含答案
春季高考高职单招数学模拟试题一1.sin420°=( )A .23 B .21 C .-23D .-212.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是( )A .13B .14C .15D .163.函数)4(log 3-=x y 的定义域为 ( )A .RB .),4()4,(+∞-∞C .)4,(-∞D . ),4(+∞ 4.sin14ºcos16º+cos14ºsin16º的值是( )A .23 B .21 C .-23D .-215.函数∈=x x y (cos 2R )是( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数 6.已知直线l 过点(0,1)-,且与直线2y x =-+垂直,则直线l 的方程为( )A .1y x =-B .1y x =+C .1y x =--D .1y x =-+7.已知向量(1,2)a = ,(2,3)b x =-,若a ∥b ,则x =( )A .3B .34C .3-D .34-8.已知函数)2(21)(≠-=x x x f ,则()f x ( ) A .在(-2,+∞)上是增函数 B .在(-2,+∞)上是减函数 C .在(2,+∞)上是增函数D .在(2,+∞)上是减函数9.从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为( )A .13 B .49 C .59 D .2310.若实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为( )A .1B .0C .1-D .2-11.执行右面的程序框图,如果输入的n 是4,则输出的P 是( )A .8B .5C .3D .212.已知函数|lg |,010()16,102x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)13.已知集合{1,2,3,4,5}=A ,{2,5,7,9}=B ,则 A B 等于( )A .{1,2,3,4,5}B .{2,5,7,9}C .{2,5}D .{1,2,3,4,5,7,9}14.若函数()=f x (6)f 等于( )A .3B .6C .9D15.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-16.两个球的体积之比为8:27,那么这两个球的表面积之比为( )A .2:3B .4:9CD.17.已知函数()sin cos =f x x x ,则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数18.向量(1,2)=- a ,(2,1)=b ,则( )A .// a bB .⊥ a bC . a 与 b 的夹角为60D . a 与 b 的夹角为3019.已知等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( )A .15B .30C .31D .6420.阅读下面的流程图,若输入的a ,b ,c 分别是5,2,6,则输出的a ,b ,c 分别是( ) A .6,5,2 B .5,2,6 C .2,5,6 D .6,2,521.已知函数2()2=-+f x x x b 在区间(2,4)内有唯一零点,则b 的取值范围是( )A .RB .(,0)-∞C .(8,)-+∞D .(8,0)-22.在ABC ∆中,已知120=A ,1=b ,2=c ,则a 等于( )ABCD春季高考高职单招数学模拟试题二1.下列各函数中,与x y =表示同一函数的是( )A .x x y 2= B .2x y = C .2)(x y = D .33x y =2.抛物线241x y -=的焦点坐标是( )A .()1,0-B .()1,0C .()0,1D .()0,1-3.设函数216x y -=的定义域为A ,关于x 的不等式a x<+12log 2的解集为B ,且A B A = ,则a 的取值范围是( )A .()3,∞-B .(]3,0C .()+∞,5D .[)+∞,54.已知x x ,1312sin =是第二象限角,则=x tan ( )A .125B .125-C .512 D .512-5.等比数列{}n a 中,30321=++a a a ,120654=++a a a ,则=++987a a a ( ) A .240 B .240± C .480 D .480± 6.tan 330︒= ( )ABC. D. 7.设b >a >0,且a +b =1,则此四个数21,2ab ,a 2+b 2,b 中最大的是( )A .bB .a 2+b 2C .2abD .218.数列1,n +++++++ 3211,,3211,211的前100项和是:( ) A .201200 B .201100 C .101200 D .1011009.过椭圆1253622=+y x 的焦点1F 作直线交椭圆于B A 、两点,2F 是椭圆的另一焦点,则2ABF ∆的周长是( )A .12B .24C .22D .1010.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是( )A .(,0)12π-B .(,0)6π-C .(,0)6πD .(,0)3π11.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是 ( )12.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 ( )A .()()f x f x =-B .()1f x f x⎛⎫= ⎪⎝⎭C .()f x x >D .()2f x >13.如图,D 是△ABC 的边AB 的三等分点,则向量A .23CA AB + B .13CA AB +C .23CB AB +D .13CB AB +14.如果执行右面的程序框图,那么输出的S 等于( A .45 B .55 C .90 D .110A B C D春季高考高职单招数学模拟试题三1.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则M N 等于( )A .{}2B .{}3,2C .{}3,1D .{}5,4,3,2,12.复数1ii+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知命题2:,210,p x R x ∀∈+>则 ( ) A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤C .2:,210p x R x ⌝∃∈+<D .2:,210p x R x ⌝∀∈+<4.一个空间几何体的三视图如右图所示,这个几何体的体积是( )A .2B .4C .6D .85.要得到函数2sin()6y x π=+的图象,只要将函数2sin y x =的图象( )A .向左平移6π个单位B .向右平移6π个单位C .向左平移3π个单位D .向右平移3π个单位6.已知一个算法,其流程图如右图所示,则输出的结果是( )A .3B .9C .27D .81 7.在空间中,下列命题正确的是( )A .平行于同一平面的两条直线平行B .垂直于同一平面的两条直线平行C .平行于同一直线的两个平面平行D .垂直于同一平面的两个平面平行8.若AD 为ABC ∆的中线,现有质地均匀的粒子散落在ABC ∆内,则粒子在ABD ∆内的概率等于( )A .54B .43C .21D .329.计算sin 240︒的值为( )A .23-B .21-C .21D .2310."tan 1"α=是""4πα=的 ( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件 D .既不充分也不必要条件11.下列函数中,在),0(+∞上是减函数的是( )A .xy 1=B .12+=x yC .x y 2=D .x y 3log = 12.已知直线的点斜式方程是21)y x -=-,那么此直线的倾斜角为( )A .6π B .3π C .32π D .65π13.已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩≥≥0≥4,则z x y =+的最小值等于( )A .0B .C .4D .514.设椭圆的两焦点为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( ) A .22 B .212- C .22- D .12-春季高考高职单招数学模拟试题四1.下列说法正确的是( )A .*N φ∈B .Z ∈-2C .Φ∈0D .Q ⊆2 2.三个数0.73a =,30.7b =,3log 0.7c =的大小顺序为( ) A .b c a << B .b a c <<C .c a b <<D .c b a <<3.2sin cos 1212ππ⋅的值为( )A .12 BCD .14.函数4sin 2(R)y x x =∈是 ( )A .周期为π2的奇函数B .周期为π2的偶函数C .周期为π的奇函数D .周期为π的偶函数5.已知(1,2)=, (),1x =,当2+与-2共线时,x 值为( )A .1B .2C .13D .126.某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )A .5,10,15B .5,9,16C .3,9,18D .3,10,17正(主)视侧(左)俯视图7.在下列函数中:①12()f x x =, ②23()f x x =,③()cos f x x =,④()f x x =, 其中偶函数的个数是 ( )A .0B .1C .2D .38.某样本数据的频率分布直方图的部分图形如下图所示,则数据在[50,70)的频率约为( )A .0.25B .0.05C .0.5D .0.0259.把函数)34cos(π+=x y 的图象向右平移θ(θ>0)个单位,所得的图象关于y 轴对称,则θ的最小值为( )A .6πB .3π C .32π D .34π10.如图,大正方形的面积是13直角三角形的较短边长为2.向大正方形内投一飞镖,则飞镖落在小正 方形内的概率为( )A .113B .213C .313D .41311. 已知x 、y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-.3,0,05x y x y x 则y x 42+的最小值为( )A .6B .12C .6-D .12- 12.条件语句⑵的算法过程中,当输入43x π=时,输出的结果是( )A .2-B .12-C .12D .213.下列各对向量中互相垂直的是( )A .)5,3(),2,4(-==B .)4,3(-=,)3,4(=C .)5,2(),2,5(--==b aD .)2,3(),3,2(-=-=b a14.对于常数"0",,>mn n m 是方程122=+ny mx 的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件高考高职单招数学模拟试题五1.设全集U ,集合A 和B ,如图所示的阴影部分所表示的集合为( ) A .()u A C B ⋃ B .()u C A B ⋂ C .()u C A B ⋂ D .()u A C B ⋂ 2.已知命题p : 2,10,x R x x p ∃∈+-<⌝则为( )A .2,10x R x x ∃∈+->B .2,10x R x x ∀∈+-≥C .2,10x R x x ∃∉+-≥D .2,10x R x x ∀∈+-> 3. 统计某产品的广告费用x 与销售额y 的一组数据如下表: 广告费用 2 3 5 6 销售额y 7 9 12若根据上表提供的数据用最小二乘法可求得y 对x 的回归直线方程是,则数据中的的值应该是( )A .7.9B .8C .8.1D .94.一个几何体的三视图都是边长为2的正方形,则该几何体的表面积是( ) A .4 B .8 C .16 D .245.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,且2220a b c +-<,则ABC ∆是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6. 已知函数)(x f 的图象是一条连续不断的,)(,x f x 的对应值如下表:则在下列区间内,函数)(x f 一定有零点的是( )A .)1,2(--B .)1,1(-C .(1,2)D .(2,3)7.在直角坐标系中,直线l 的倾斜角30β= ,且过(0,1),则直线l 的方程是( )A .13y x =- B .13y x =+ C .1y =- D .1y =+ 8.已知定义在R )9. 双曲线22145x y -=的渐近线方程为( )A.4y x =± B .2y x =± C .5y x =± D .5y x =±10. 已知(,)2a ππ∈,4sin 5α=,则cos()πα+=( )A . 32B . 32-C . 23D . 23-11.已知圆221:1O x y +=,圆222:(1)(2)16O x y -+-=,则圆1O 和圆2O 的位置关系是( ) A . 内含 B . 内切 C . 相交 D . 外离12. 等于已知向量(1,2),(3,2),a b =-= 且,n xa yb =+ 则x=1,y=1是m //n的( )A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件13.函数2,(1)(),(1)x x f x x x ≤⎧=⎨>⎩且1()2f x =,则x =( )A . 12B .2 C .2- D .2或2-14. 某公司生产一种产品,每生产1千件需投入成本81万元,每千件的销售收入R (x )(单位:万元)与年产量x(单位:千件)满足关系:2()324(010)R x x x =-+<≤该公司为了在生产中获得最大利润(年利润=年销售收入—年总成本),则年产量应为( )A . 5千件B .C .9千件D . 10千件高考高职单招数学模拟试题六1.复数2i i +等于( )A .1i +B .1i -C .1i -+D .1i --2.已知函数()22xf x =+,则(1)f 的值为( )A .2B .3C .4D .6 3.函数y =) A .[)1,0- B .()0,+∞ C .[)()1,00,-+∞ D .()(),00,-∞+∞4.执行如图所示的程序框图,若输入的x 的值为3,则输出的y 的值为( ) A .4 B .5 C .8 D .10 5.若x R ∈,则“x =1”是“x =1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D . 既不充分又不必要条件 6.下列函数中,在其定义域内既是奇函数,又是减函数的是( )A .3y x =-B .sin y x =C .tan y x =D .1()2xy = 7. 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )8. 已知cos α=45,(,0)2απ∈-,则sin α+cos α等于( )A .-15B . 15C .-75D .759. 函数()23-+=x x f x的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若变量,x y 满足约束条件2,2,2,x y x y ≤⎧⎪≤⎨⎪+≥⎩则y x z +=2的最大值是( )A .2B .4C .5D .611.若双曲线方程为221916x y -=,则其离心率等于( ) A .53 B .54 C .45 D . 35 12.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )13.过原点的直线与圆03422=+++x y x 相切,若切点在第三象限,则该直线的方程是( )A .x y 3=B .x y 3-= C.y x = D .y x = 14. 已知()f x 是奇函数,且当0x ≥时,2()f x x x =-+,则不等式()0xf x <的解集为( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞高考高职单招数学模拟试题七1.若集合A ={}0,1,2,4,B ={}1,2,3,则B A =( )A .{}0,1,2,3,4B .{}0,4C .{}1,2D .{}3 2.不等式032<-x x 的解集是( )A .)0,(-∞B .)3,0(C .(,0)(3,)-∞+∞D .),3(+∞3.函数11)(-=x x f 的定义域为( ) A .}1|{<x x B . }1|{>x x C .}0|{≠∈x R x D .}1|{≠∈x R x 4.已知等差数列{}n a 的前n 项和n S ,若1854=+a a ,则8S =( ) A .72 B . 68C . 54D . 905.圆22(1)3x y -+=的圆心坐标和半径分别是( )A .(1,0),3-B .(1,0),3 C.(1- D.(16.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是( ).A .,sin 1x R x ∃∈≥B .,sin 1x R x ∀∈≥C .,sin 1x R x ∃∈>D .,sin 1x R x ∀∈> 7.若a R ∈,则0a =是()10a a -=的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件8.下列函数)(x f 中,在()+∞,0上为增函数的是( )A .xx f 1)(=B .2)1()(-=x x fC .x x f ln )(=D . xx f ⎪⎭⎫⎝⎛=21)(9.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f = ( ) A .3- B . 1- C .1 D .3 10.过点A (2,3)且垂直于直线052=-+y x 的直线方程为( )A .042=+-y xB .072=-+y xC .032=+-y xD .052=+-y x 11.0167cos 43sin 77cos 43cos +的值为( ) A .1 B .1-D .21- 12.函数2log ,(0,16]y x x =∈的值域是( )A .(]4,-∞-B .(]4,∞-C [)+∞-,4.D .[)+∞,4 13.已知函数()123+++=x x x x f ,则()x f 在(0,1)处的切线方程为( )A .01=--y xB .01=++y xC .01=+-y xD .01=-+y x14.如图,21F F 、是双曲线1C :1322=-y x 与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若A F F F 121=,则2C 的离心率是( )A .31 B .32 C . 32或52 D .52春季高考高职单招数学模拟试题(一)ADDBB ADDBA CCCAB BABAA DC 春季高考高职单招数学模拟试题(二)春季高考高职单招数学模拟试题(三)CDACA DBCAA ACBD春季高考高职单招数学模拟试题(四)BDACD CCBBA CBBB春季高考高职单招数学模拟试题(五)春季高考高职单招数学模拟试题(六)CCCCA AABCD DBDD春季高考高职单招数学模拟试题(七)CBBAD CACAA DBCB。
2022年福建省福州市普通高校高职单招数学测试题(含答案)
2022年福建省福州市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.若集合M={3,1,a-1},N = {-2,a2},N为M的真子集,则a的值是( )A.-1B.1C.0D.2.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/53.函数A.1B.2C.3D.44.下列句子不是命题的是A.B.C.D.5.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12B.12C.6D.66.A.11B.99C.120D.1217.A.B.{-1}C.{0}D.{1}8.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)B.y=2sin(2x+π/3)C.3;=2sin(2x-π/4)D.3;=2sin(2x-π/3)9.A.(5, 10)B.(-5, -10)C.(10, 5)D.(-10, -5)10.若x2-ax+b<0的解集为(1,2),则a+b=( )A.5B.-5C.1D.-111.函数y=log2x的图象大致是()A.B.C.D.12.A.B.C.D.13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.215.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.B.C.D.16.若102x=25,则10-x等于()A.B.C.D.17.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定18.A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定19.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)B.(4,0)(-4,0)C.(3,0)(-3,0)D.(7,0)(-7,0)20.贿圆x2/7+y2/3=1的焦距为()A.4B.2C.2D.2二、填空题(20题)21.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.22.23.24.25.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.26.已知_____.27.数列{a n}满足a n+1=1/1-a n,a2=2,则a1=_____.28.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.29.不等式(x-4)(x + 5)>0的解集是。
2021年福建省福州市普通高校高职单招数学一模测试卷(含答案)
2021年福建省福州市普通高校高职单招数学一模测试卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.设为双曲线的两个焦点,点P在双曲线上,且满足,则的面积是()A.1B.C.2D.2.已知A={x|x+1>0},B{-2,-1,0,1},则(C R A)∩B=( )A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}3.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-14.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切5.若a<b<0,则下列结论正确的是( )A.a2<b2B.a3<b<b3</bC.|a|<|b|D.a/b<16.执行如图的程序框图,那么输出S的值是( )A.-1B.1/2C.2D.17.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB8.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)B.(y+3)2=4(x+2)C.(y-3)2=-8(x+2)D.(y+3)2=-8(x+2)9.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.110.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n11.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<112.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.113.设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数14.展开式中的常数项是()A.-20B.-15C.20D.1515.函数y=1/2x2-lnx的单调递减区间为().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)16.设a>b>0,c<0,则下列不等式中成立的是A.ac>bcB.C.D.17.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.60018.设A-B={x|x∈A且x B},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}19.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)20.已知等差数列中{an }中,a3=4,a11=16,则a7=( )A.18B.8C.10D.12二、填空题(20题)21.设A(2,-4), B(0,4),则线段AB的中点坐标为。
2022年福建省厦门市普通高校高职单招数学测试题(含答案)
2022年福建省厦门市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.过点A(2,1),B(3,2)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=02.A.B.C.3.若f(x)=log a x(a>0且a≠1)的图像与g(x)=log b x(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=14.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.85.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+B.(x-)2+C.(x+1)2+2D.(x+1)2+16.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定7.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/38.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为( )A.1B.2C.D.9.下列命题错误的是()A.对于两个向量a,b(a≠0),如果有一个实数,使b=a,则a与b共线B.若|a|=|b|,则a=bC.若a,b为两个单位向量,则a·a=b·bD.若a⊥b,则a·b=010.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥11.下列函数为偶函数的是A.B.C.D.12.已知点A(-1,2),B(3,4),若,则向量a=()A.(-2,-1)B.(1,3)C.(4,2)D.(2,1)13.已知甲、乙、丙3类产品共1200件,且甲、乙、丙3类产品的数量之比为3:4:5,现采用分层抽样的方法从中抽取60件,则乙类产品抽取的件数是()A.20B.21C.25D.4014.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}15.tan150°的值为()A.B.C.D.16.若logn=-1,则m+3n的最小值是()mA.B.C.2D.5/217.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)18.已知点A(1,-3)B(-1,3),则直线AB的斜率是()A.B.-3C.D.319.A.B.C.D.20.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1二、填空题(20题)21.设等差数列{an }的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.22.23.执行如图所示的流程图,则输出的k的值为_______.24.双曲线3x2-y2=3的渐近线方程是。
2022年福建省福州市普通高校高职单招数学一模测试卷(含答案)
2022年福建省福州市普通高校高职单招数学一模测试卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.直线x+y+1=0的倾斜角为()A.B.C.D.-12.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法3.已知a=(1,2),则|a|=()A.1B.2C.3D.4.5.函数的定义域为()A.(0,1]B.(0,+∞)C.[1,+∞)D.(—∞,1]6.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2B.f(x)=x2+1C.f(x)=x3D.f(x)-2-x7.设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数8.A.B.C.9.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°10.下列函数中,在区间(0,)上是减函数的是( )A.y=sinxB.y=cosxC.y=xD.y=lgx11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.712.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+713.在等差数列{a n}中,a5=9,则S9等于( )A.95B.81C.64D.4514.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件15.设i是虚数单位,则复数(1-i)(1+2i)=( )A.3+3iB.-1+3iC.3+iD.-1+i16.函数的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)17.设复数z=1+i(i为虚数单位),则2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i18.下列函数中,是增函数,又是奇函数的是(〕A.y=B.y=1/xC.y=x2D.y=x1/319.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2B.2C.D.20.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3B.l1丄l2,l2//l3,l1丄l3C.l1//l2//l3,l1,l2,l3共面D.l1,l2,l3共点l1,l2,l3共面二、填空题(20题)21.22.若事件A与事件互为对立事件,则_____.23.24.25.方程扩4x-3×2x-4=0的根为______.26.若向量a=(2, -3)与向量b= (-2, m)共线,则m = 。
福建省福州市高职单招数学模拟试卷(三)
福建省福州市高职单招数学模拟试卷(三)(考试时间:120分钟 满分:150分)班级 座号 姓名 成绩一、单项选择题(本大题12小题,每小题4分,共48分)1、已知集合M={0,1,2,3} ,全集I={-1,0,1,2,3},那么C I M=( )A.{-1}B.{-1,0}C.{-1,3}D.{-1,0,3}2、设x=0.80.2 ,y=0.80.5,z=log 60.8则下列关系式中成立的是( ) A. z<y<x B. x<y<z C. z<x<y D. y<x<z3、若42ππα<<,则下列各式中正确的是( ) A. tan cos sin ααα>> B. tan sin cos ααα>>C. sin cos tan ααα>>D. cos tan sin ααα>>4、函数y=cos 2x-sin 2x 的最小正周期是( )A. πB.2πC. 2π D.4π 5、下列命题中,属真命题的是( )A .直线a,b 均与平面α相交,且不平行,则直线a,b 异面B .若直线a,b 异面,直线b,c 异面,则直线a,c 不一定异面C .若直线a,b 都垂直于直线c ,则直线a,b 一定平行D .空间三直线a,b,c 其中直线a,b 异面,c ∥a 则直线b,c 一定异面6、从4种水果品种中选3种,分别种在不同土质的3块地上进行试验,那么不同的种植方法的种数是( )A.10B.24C.30D.1447、若三角形的顶点是()0,0A 、B (6、2),()4,1-C ,则中线CE 长是( )8、在数列{a n }中,已知a n+1=a n +2 (n=1,2,3,…) 且a 1=1则a 5=( )A. 9B.10C.11D.129、下列双曲线方程中,以y=x 21±为渐近线的是( ) A. 1222=-y x B. 116422=-y x C. 1222=-y x D. 141622=-y x 10、下列函数中,与函数x y = 相同的函数是( )A .2x y = B.||2x x y = C.x y 2log 2= D.2)(21x y = 11、已知椭圆132222=++m y m x 的焦点在y 轴上,则m 的取值范围是( ) A.m<1或m>3 B.-1<m<3 C.m>3 D.23-<m<-1 或m>3 12、已知函数y=f(x)是偶函数,x ∈R ,在x<0时,y 是增函数,则( )A. f(1) >f(-2)B. f(1) <f(-2)C. f(1)=f(-2)D.无法确定二、填空题(将答案填写在横线上,每小题5分,共40分)1、函数y=)73(log 12-x 的定义域是2、若f(x+1)=2x-3,则f(1)=3、若)1,1(,0-==•a b a 且,),3(x b = 则x=4、已知随机变量ξ的分布列是则E (ξ)=5、若sin α=54且α为第二象限角,则cos α+tan α= 6、(x+2)6的二项展开式中二项式系数最大的项是7、等边△ABC 在平面α内,平面α外一点P 到平面α的距离为PO ,若P 到△ABC 各边的距离相等且都等于2,△ABC 边长为3,则PO=8、抛物线y 2=8x 上一点到焦点的距离为20,则该点坐标为三、解答题(本大题7个小题,共62分,解答应写出推理、演算步骤)1、(本小题8分)证明:ααααπcot 22cos 2sin 1)2cot(2=-+2、(本小题8分)设二次函数y=ax 2+bx+c 的图像过点(-1,0),(3,0),且最小值为-4,求该函数的解析式,并求f(x)不小于5的解集。
2017年福建高职招考数学考前仿真模拟试题(附答案)
考单招上高职单招网---- 根据历年单招考试大纲出题俯视图主视图左视图频率组距0.00.036 0.024 2017年福建高职招考数学考前仿真模拟试题(附答案)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1+2ii (i 是虚数单位)的实部是 ( )A .25B .25-C .15D .15-2.已知等差数列{}n a 的公差为()0d d ≠,且36101332a a a a +++=,若8m a =,则m 为( )A .12B .8C .6D .43.已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β; 则真命题的个数为 ( )A .0B .1C .2D . 34.如右图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其 体积是 ( )A .36B .423C .433D .835.设点()2,102t P t t ⎛⎫+> ⎪⎝⎭,则OP (O 为坐标原点)的最小值是 ( )A .5B .3C .5D .3 6.学校为了调查学生在课外读物方面的支出情况,考单招上高职单招网---- 根据历年单招考试大纲出题开始1,0n S ==① 否 2nS S =+1n n =+是输出S 结束抽出了一个容量为n 的样本,其频率分布直 方图如图所示,其中支出在[50,60)元的同 学有30人,则n 的值为 ( ) A .100 B .1000 C .90D .9007.已知21()nx x+的二项展开式的各项系数和为32,则二项展开式中x 的系数为 ( ) A .5 B .10 C .20 D .408.若右面的程序框图输出的S 是126,则①应为( ) A .5n ≤? B .6n ≤?C .7n ≤?D .8n ≤?9.已知a ∈R ,则“2a <”是“|2|||x x a -+>恒成立”的 ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设函数()sin(2)3f x x π=+,则下列结论正确的是 ( )考单招上高职单招网---- 根据历年单招考试大纲出题A .()f x 的图像关于直线3x π=对称B .()f x 的图像关于点(,0)4π对称C .把()f x 的图像向左平移12π个单位,得到一个偶函数的图像 D .()f x 的最小正周期为π,且在[0,]6π上为增函数11.已知点F 、A 分别为双曲线C :22221x y a b -=(0,0)a b >>的左焦点、右顶点,点(0,)B b 满足0FB AB ⋅=,则双曲线的离心率为( )A .2B .3C .132+ D .152+ 12.已知直线2x =及4x =与函数2log y x =图像的交点分别为,A B ,与函数lg y x=图像的交点分别为,C D ,则直线AB 与CD( ) A .相交,且交点在第I 象限 B .相交,且交点在第II 象限 C .相交,且交点在第IV 象限D .相交,且交点在坐标原点第Ⅱ卷(非选择题 共90分)二、填空:本大题共4小题,每小题4分,共16分. 13.2(2)x x e dx -=⎰;14.已知3sin()45x π-=,则sin 2x 的值为;15.已知集合2{120,Z A x x x x =--≤∈},从集合A 中任选三个不同的元素,,a b c 组成集合{,,}M a b c =,则能够满足0a b c ++=的集合M 的概率为=;考单招上高职单招网---- 根据历年单招考试大纲出题16.定义:区间[]()1212,x x x x <的长度为21x x -.已知函数||2x y =的定义域为[],a b ,值域为[]1,2,则区间[],a b 的长度的最大值与最小值的差为_________.三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别是C B A ∠∠∠,,的对边长,已知A A cos 3sin 2=. (I )若mbc b c a -=-222,求实数m 的值; (II )若3=a ,求ABC ∆面积的最大值.18.(本小题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有.放回..地先后抽得两张卡片的标号分别为x 、y ,设O 为坐标原点,点P 的坐标为(2,)x x y --,记2OP ξ= .(I )求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (II )求随机变量ξ的分布列和数学期望.考单招上高职单招网---- 根据历年单招考试大纲出题19.(本小题满分12分)已知函数()32331f x ax x a=-+-(R a ∈且0)a ≠,求函数)(x f 的极大值与极小值.20.(本小题满分12分)在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,1(0)AB PA BC a a==>. (I )当1a =时,求证:BD PC ⊥;(II )若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角QPD A --的余弦值.A DP考单招上高职单招网---- 根据历年单招考试大纲出题21.(本小题满分12分)已知C B A ,,均在椭圆)1(1:222>=+a y a x M 上,直线AB 、AC 分别过椭圆的左右焦点1F 、2F ,当120AC F F ⋅= 时,有21219AF AF AF =⋅. (I )求椭圆M 的方程;(II )设P 是椭圆M 上的任一点,EF 为圆()12:22=-+y x N 的任一条直径,求PF PE ⋅的最大值.22.(本小题满分14分)已知等比数列{}n a 的前n 项和为23(R,N )n n S k k n *=⋅+∈∈ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足4(5)n n a b n a k =+,n T 为数列{}n b 的前n 项和,试比较316n T - 与14(1)n n b ++的大小,并证明你的结论.考单招上高职单招网---- 根据历年单招考试大纲出题参考答案一、选择题:ABCCA ABBCC DD 二、填空题:13.25e -; 14.725;15.328;16.1; 17.解:(I )由A A cos 3sin 2=两边平方得:A A cos 3sin 22=即0)2)(cos 1cos 2(=+-A A 解得: 21cos =A …………………………3分 而mbc b c a -=-222可以变形为22222mbc a c b =-+ 即212cos ==m A ,所以1m =…………………………6分 (II )由(Ⅰ)知 21cos =A ,则23sin =A …………………………7分 又212222=-+bc a c b …………………………8分 所以22222a bc a c b bc -≥-+=即2a bc ≤…………………………10分 故433232sin 22=⋅≤=∆a A bc S ABC………………………………12分 18.解:(Ⅰ)x 、y 可能的取值为1、2、3,12≤-∴x ,2≤-x y ,22(2)()5x x y ξ∴=-+-≤,且当3,1==y x 或1,3==y x 时,5ξ=. 因此,随机变量ξ的最大值为5…………………………4分有放回抽两张卡片的所有情况有933=⨯种,2(5)9P ξ∴==…………………6分考单招上高职单招网---- 根据历年单招考试大纲出题(II )ξ的所有取值为0,1,2,5.0=ξ 时,只有2,2==y x 这一种情况.1ξ=时,有1,1==y x 或1,2==y x 或3,2==y x 或3,3==y x 四种情况, 2ξ=时,有2,1==y x 或2,3==y x 两种情况.91)0(==∴ξP ,4(1)9P ξ==,2(2)9P ξ==…………………………8分 则随机变量ξ的分布列为:ξ0 1 2 5P9194 92 92 ………………10分因此,数学期望1422012529999E ξ=⨯+⨯+⨯+⨯=…………………………12分 19.解:由题设知)2(363)(,02ax ax x ax x f a -=-='≠令2()00,f x x x a'===得 或……………………………2分 当0a >时,随x 的变化,()'f x 与()f x 的变化如下:x(),0-∞20,a ⎛⎫ ⎪⎝⎭2a2,a ⎛⎫+∞ ⎪⎝⎭)(x f ' + 0 - 0 + )(x f极大极小∴()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小………6分 当0a <时,随x 的变化,()'f x 与()f x 的变化如下:考单招上高职单招网---- 根据历年单招考试大纲出题x2,a ⎛⎫-∞ ⎪⎝⎭2a2,0a ⎛⎫ ⎪⎝⎭()0,+∞)(x f '- 0 + 0 - )(x f极小极大∴()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小…………11分 总之,当0a >时,()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小; 当0a <时,()()301f x f a ==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小……12分 20.解:(I )当1a =时,底面ABCD 为正方形,∴BD AC ⊥又因为BD PA ⊥,BD ∴⊥面PAC …………………………2分 又PC ⊂面PACBD PC ∴⊥…………………………3分(II )因为AP AD AB ,,两两垂直,分别以它们所在直线为x 轴、y 轴、z 轴建立坐标系,如图所示,令1AB =,可得BC a = 则)1,0,0(),0,,1()0,,0(),0,0,1(P a C a D B …………………4分 设m BQ =,则)0)(0,,1(a m m Q ≤≤要使QD PQ ⊥,只要0)(1=-+-=⋅m a m QD PQ 即210m am -+=………6分 由0∆=2a ⇒=,此时1m =。
2021年福建省福州市普通高校高职单招数学测试题(含答案)
2021年福建省福州市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1B.x2/4+y2/3=1C.x2/2+y2=1D.y2/2+x2=12.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.653.下列各组数中成等比数列的是()A.B.C.4,8,12D.4.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.B.C.D.5.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]7.下列函数为偶函数的是A.B.y=7xC.y=2x+18.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件B.a=0或b=0是AB=0的充分条件C.a=0且b=0是AB=0的必要条件D.a=0或b=0是AB=0的必要条件9.若lgx<1,则x的取值范围是()A.x>0B.x<10C.x>10D.0<x<1010.实数4与16的等比中项为A.-8B.C.811.垂直于同一个平面的两个平面()A.互相垂直B.互相平行C.相交D.前三种情况都有可能12.下列各组数中,表示同一函数的是()A.B.C.D.13.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切14.A.B.C.D.15.A.B.C.D.16.已知等差数列{a n}满足a2+a4=4,a3+a5=它的前10项的和S n()A.138B.135C.95D.2317.A.B.C.D.U18.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)19.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.B.C.D.20.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题(20题)21.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.22.已知数列{a n}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{a n}的前n项和S n=______.23.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.24.己知等比数列2,4,8,16,…,则2048是它的第()项。
2022年福建省宁德市普通高校高职单招数学测试题(含答案)
2022年福建省宁德市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.A.B.C.D.2.若等差数列{a n}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.03.A.2B.3C.44.A.B.C.5.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<16.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-117.A.B.C.8.若sinα与cosα同号,则α属于( )A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角9.在等差数列{a n}中,a5=9,则S9等于( )A.95B.81C.64D.4510.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角11.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法12.己知tanα,tanβ是方程2x2+x-6 = 0的两个根,则tan(α+β)的值为( )A.-1/2B.-3C.-1D.-1/813.已知向量a=(1,2),b=(3,1),则b-a=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)14.A.偶函数B.奇函数C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数15.展开式中的常数项是()A.-20B.-15C.20D.1516.A.B.C.D.17.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±618.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.B.C.D.19.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)20.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.B.C.D.二、填空题(20题)21.log216 + cosπ + 271/3= 。
2022年福建省泉州市普通高校高职单招数学摸底卷(含答案)
2022年福建省泉州市普通高校高职单招数学摸底卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.函数的定义域( )A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)2.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)3.已知a∈(π,3/2π),cosα=-4/5,则tan(π/4-α)等于()A.7B.1/7C.-1/7D.-74.直线以互相平行的一个充分条件为()A.以都平行于同一个平面B.与同一平面所成角相等C.平行于所在平面D.都垂直于同一平面5.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.86.设a>b>0,c<0,则下列不等式中成立的是A.ac>bcB.C.D.7.若a,b两直线异面垂直,b,c两直线也异面垂直,则a,c的位置关系()A.平行B.相交、异面C.平行、异面D.相交、平行、异面8.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±69.A.B.C.D.10.A.1B.2C.3D.411.2与18的等比中项是()A.36B.±36C.6D.±612.已知函数f(x)=㏒2x,在区间[1,4]上随机取一个数x,使得f(x)的值介于-1到1之间的概率为A.1/3B.3/4C.1/2D.2/313.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.714.己知向量a=(3,-2),b=(-1,1),则3a+2b等于( )A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)15.A.B. C.16. A. B. C. D.17. A. B. C. D.18.tan960°的值是()A.B.C.D.19.“没有公共点”是“两条直线异面”的( )A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件20.A.B.{-1}C.{0}D.{1}二、填空题(20题)21.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.22.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.23.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.24.如图所示的程序框图中,输出的S的值为______.25.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.26.sin75°·sin375°=_____.27.28.29.30.31.32.33.若f(x-1) = x2-2x + 3,则f(x)= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省春季高考高职单招数学模拟试题(三)班级: 姓名: 座号:一. 填空题(本大题满分36分)1. 函数2log (2)y x =+的定义域是2. 方程28x =的解是3. 抛物线28y x =的准线方程是 4. 函数2sin y x =的最小正周期是 5. 已知向量(1 )a k = ,,(9 6)b k =- ,。
若//a b ,则实数 k = 6. 函数4sin 3cos y x x =+的最大值是7. 复数23i +(i 是虚数单位)的模是 8. 在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B === ,,,则b= 9.在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为10. 从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为 。
11. 若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S 12. 36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为二.选择题(本大题满分36分) 13.展开式为ad-bc 的行列式是( )(A )a bd c (B)acb d(C)a d bc(D)b a dc14.设-1()f x为函数()f x = )(A) 1(2)2f-= (B) 1(2)4f -=(C) 1(4)2f-= (D) 1(4)4f -=15.直线2310x y -+=的一个方向向量是( ) (A) (2 3)-, (B) (2 3), (C) (3 2)-, (D) (3 2),16函数12()f x x -=的大致图像是( )17.如果0a b <<,那么下列不等式成立的是( ) (A)11a b < (B) 2ab b < (C) 2ab a -<- (D) 11a b-<- 18.若复数12 z z 、满足21z z =,则12 z z 、在复数平面上对应的点12 Z Z 、( ) (A) 关于x 轴对称 (B)关于y 轴对称 (C) 关于原点对称 (D)关于直线y x =对称19. 10(1)x +的二项展开式中的一项是( )(A )45x (B )290x (C ) 3120x (D )4252x 20.既是偶函数又在区间(0 )π,上单调递减的函数是( )(A )sin y x = (B )cos y x = (C )sin 2y x = (D )cos 2y x = 21.若两个球的表面积之比为1:4,则这两个球的体积之比为( ) (A )1:2 (B )1:4 (C )1:8 (D )1:16 22.设全集U R =,下列集合运算结果为R 的是( )D 1 C 1 B 1A 1D CA B(A )N C Z U (B )N C Z U (C )}{φU C (D ){0}U C23.已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件24.已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是( )(A )圆 (B ) 椭圆 (C ) 抛物线 (D )双曲线三、解答题(本大题满分78分)本大题共有7题,解答下列各题必须写出必要的步骤。
25.(本题满分7分)如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积。
[解]26(本题满分7分)如图,某校有一块形如直角三角形ABC 的空地,其中B ∠为直角,AB 长40米,BC 长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B 为矩形的一个顶点,求该健身房的最大占地面积。
[解]27.(本题满分8分)已知数列{}n a 的前n 项和为2n S n n =-+,数列{}n b 满足2n a n b =,求12lim n n b b b →∞+++ ()。
[解]B 1A 1 C 1 ACBA B C28.(本题满分13分)本题共有2个小题,第1小题满分4分,第2小题满分9分。
已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、(1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥,求直线l 的方程。
[解](1)(2)29.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分。
已知抛物线2 4C y x =:的焦点为F 。
(1)点 A P 、满足2AP FA =-。
当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由。
[解](1)(2)30.(本题满分13分)本题共有2个小题,第一小题满分4分,第二小题满分9分。
在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈。
(1)若31arctan3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值。
[解](1)(2)31.(本题满分18分)已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”。
(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标;(2)求函数22()log 4xh x x=- 图像对称中心的坐标;(3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b ,使得函数()y f x a b =+- 是偶函数”。
判断该命题的真假。
如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明)。
[解](1)(2)(3)福建省春季高考高职单招数学模拟试题(三)参考答案一.(第1至12题)每一题正确的给3分,否则一律得0分。
1.(2,)-+∞ 2 . 3 3. 2x =- 4. 2π 5. 34- 6. 5 7.8. 7 9. 3π10. 45 11. 25766n n - 12. 4836三.(第25至31题) 25.[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π。
在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==, 从而2ABC S BC ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==.26.[解]如图,设矩形为EBFP , FP 长为x 米,其中040x <<, 健身房占地面积为y 平方米。
因为CFP ∆∽CBA ∆,以FP CF BA CB =,504050x BF -=,求得5504BF x =-, 从而255(50)5044y BF FP x x x x =⋅=-=-+25(20)5005004x =--+≤, 当且仅当20x =时,等号成立。
答:该健身房的最大占地面积为500平方米。
27.[解]当2n ≥时,221(1)(1)22n n n a s s n n n n n -=-=-++---=-+。
且110a s ==,所以n a =22n -+。
因为22112()4n n n b -+-==,所以数列{}n b 是首项为1、公比为14的无穷等比数列。
故12lim n n b b b →∞+++ ()141314==-。
28[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>。
根据题意知2221a b a b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=。
(2)容易求得椭圆C 的方程为2212x y +=。
当直线l 的斜率不存在时,其方程为1x =,不符合题意;AB CF P E当直线的斜率存在时,设直线l 的方程为(1)y k x =-。
由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=。
设1122( ) ( )P x y Q x y ,,,,则 2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++,,,,, 因为11F P F Q ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++--2221212(1)(1)()1k x x k x x k =+--+++22711k -==+, 解得217k =,即k =。
故直线l 的方程为10x +-=或10x -=。
29.(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,, 因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,。
即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax xy y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-。
(2)设点Q 的坐标为( 0)t ,.点Q 关于直线2y x =的对称点为( )Q x y ',, 则122yx t y x t ⎧=-⎪⎪-⎨⎪=+⎪⎩ 解得3545x t y t⎧=-⎪⎪⎨⎪=⎪⎩若Q '在C 上,将Q '的坐标代入24y x =,得24150t t +=,即0t =或154t =-。