初一数学上册有理数加减法练习题

合集下载

人教版数学七年级上册1.3 有理数的加减法 同步练习

人教版数学七年级上册1.3 有理数的加减法 同步练习

一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( ) A .(-3)+5=-2 B .(-7)+(-7)=0 C .(-6)+(-3)=-9 D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17, -32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样 5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =_______. 15.绝对值大于1而小于6的所有整数的和是____. 16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________) =(-19)+(+21)(________________) =2.(______ __________)19. 假设a -(-b)=0,那么a 与 b 的关系是____________. 20. |x|=5,y =3,那么 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.A ,B 两点在数轴上分别表示的数为m ,n . (1)对照数轴填写下表:(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为____________,如果d=3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是(C)A .(-3)+5=-2B .(-7)+(-7)=0C .(-6)+(-3)=-9D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( B ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( B ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( D )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( A )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( C )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( B )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( B )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( B )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( D ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =____-5___. 15.绝对值大于1而小于6的所有整数的和是__0__.16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ 1 __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___) =(-19)+(+21)(____有理数加法法那么__) =2.(______ 有理数加法法那么______)19. 假设a -(-b)=0,那么a 与 b 的关系是___互为相反数_________. 20. |x|=5,y =3,那么 x -y 的值为__2或-8______. 三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212.(4)原式=212+2.5+1-112=4.5.(5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20. (6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(7)原式=-12+5+4+(-9)=-12.(8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513.22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值. 解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8; 当a =3,b =-10,c =-5时,a -b -(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.〔3〕周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.A,B两点在数轴上分别表示的数为m,n.(1)m 6 -6 -6 -6 2 -n 4 0 4 -4 -8 -A,B两点间的距离 2 6 10 2 10 0(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1|当d=3时,|x-(-1)|=3,所以x=2或-4。

【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案

【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案

第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。

七年级上册数学有理数的加减法题

七年级上册数学有理数的加减法题

七年级上册数学有理数的加减法题一、有理数加法题目。

1. 计算:(+3)+(+5)解析:两个正数相加,取相同的符号,并把绝对值相加。

|+3| = 3,|+5| = 5,所以(+3)+(+5)=+(3 + 5)=+8 = 8。

2. 计算:(-2)+(-4)解析:两个负数相加,取相同的符号,并把绝对值相加。

|-2| = 2,|-4| = 4,所以(-2)+(-4)=-(2 + 4)=-6。

3. 计算:(+3)+(-5)解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|+3| = 3,|-5| = 5,5>3,所以(+3)+(-5)=-(5 3)=-2。

4. 计算:(-3)+(+5)解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|-3| = 3,|+5| = 5,5>3,所以(-3)+(+5)=+(5 3)=+2 = 2。

5. 计算:(-2)+0解析:一个数同0相加,仍得这个数,所以(-2)+0=-2。

6. 计算:(+3)+(-3)解析:互为相反数的两个数相加得0,+3和-3互为相反数,所以(+3)+(-3)=0。

7. 计算:(-1.5)+(-2.5)解析:两个负数相加,取相同的符号,并把绝对值相加。

|-1.5| = 1.5,|-2.5| = 2.5,所以(-1.5)+(-2.5)=-(1.5+2.5)=-4。

8. 计算:(+2.3)+(-3.2)解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|+2.3| = 2.3,|-3.2| = 3.2,3.2>2.3,所以(+2.3)+(-3.2)=-(3.2 2.3)=-0.9。

9. 计算:(-5)+(+8)+(-4)解析:先计算(-5)+(+8),异号两数相加,|-5| = 5,|+8| = 8,8>5,(-5)+(+8)=+(8 5)=+3,再计算(+3)+(-4),异号两数相加,|+3| = 3,|-4| = 4,4>3,(+3)+(-4)=-(4 3)=-1。

初中七年级数学上学期《有理数的加减混合运算》练习试卷

初中七年级数学上学期《有理数的加减混合运算》练习试卷

初中七年级数学上学期《有理数的加减混合运算》练习试卷一.选择题(共36小题)1.点A从数轴的原点出发,沿数轴先向左(负方向)移动3个单位长度,再向右移动1个单位长度,用算式表示上述过程与结果,正确的是()A.﹣3+1=4B.﹣3﹣1=﹣2C.﹣3+1=﹣2D.﹣3﹣1=﹣42.下列交换加数的位置的变形中,正确的是()A.1﹣4+5﹣4=1﹣4+4﹣5B.C.1﹣2+3﹣4=2﹣1+4﹣3D.4.5﹣1.7﹣2.5+1.8=4.5﹣2.5+1.8﹣1.7 3.下面算法正确的是()A.(﹣4)+8=﹣(8﹣4)B.5﹣(﹣8)=5﹣8C.(﹣5)+0=﹣5D.(﹣3)+(﹣4)=3+44.一天早晨的气温是﹣7℃,中午上升了10℃,半夜又下降了8℃,半夜的气温是()A.﹣9℃B.﹣5℃C.5℃D.11℃5.某日我市的最高气温为零上3℃,记作(+3℃或3℃),最低气温为零下5℃,则可用于计算这天温差的算式是()A.3﹣5B.3﹣(﹣5)C.﹣5+3D.﹣5﹣36.下列运算错误的是()A.3﹣(﹣3)=0B.﹣5+5=0C.D.﹣(﹣4)=4 7.下列各式不成立的是()A.20+(﹣9)﹣7+(﹣10)=20﹣9﹣7﹣10B.﹣1+3+(﹣2)﹣11=﹣1+3﹣2﹣11C.﹣3.1+(﹣4.9)+(﹣2.6)﹣4=﹣3.1﹣4.9﹣2.6﹣4 D.﹣7+(﹣18)+(﹣21)=﹣7﹣(﹣18﹣21)8.下列计算正确的是()A.﹣(﹣5)=﹣5B.﹣5+(﹣8)=13C.﹣5+(﹣8)=﹣(5+8)D.﹣5﹣(﹣8)=5+8 9.﹣(﹣)的相反数是()A.﹣﹣B.﹣+C.﹣D.+10.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣﹣D.﹣(﹣2)=2 11.下面算式计算正确的是()A.[(﹣4)﹣(+7)]﹣(﹣1)=[(﹣4)﹣(+7)]﹣1B.3﹣[(﹣3)﹣10]=3+[(﹣3)﹣10] C.6﹣(7﹣8)=6﹣7﹣8D.(1﹣2)﹣(4﹣7)=(﹣1)﹣(﹣3)12.把﹣(﹣3)﹣4+(﹣5)写成省略括号的代数和的形式,正确的是()A.3﹣4﹣5B.﹣3﹣4﹣5C.3﹣4+5D.﹣3﹣4+513.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣(﹣)=1D.﹣(﹣2)=2 14.某地一天中午12时的气温是4℃,14时的气温升高了2℃,到晚上22时气温又降低了7℃,则22时的气温为()A.6℃B.﹣3℃C.﹣1℃D.13℃15.我国古代用算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,图①可列式计算为(+2)+(﹣1)=1,由此可推算图②可列的算式为()A.(+3)+(+4)=7B.(+3)﹣(﹣4)=7C.(﹣3)+(+4)=1 D.(+3)+(﹣4)=﹣116.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(﹣2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7+2D.﹣5+4+7﹣217.将(﹣2)﹣(+1)﹣(﹣5)+(﹣4)统一为加法运算,正确的是()A.(﹣2)+(+1)+(﹣5)+(﹣4)B.(﹣2)+(﹣1)+(+5)+(﹣4)C.(﹣2)+(+1)+(+5)+(+4)D.(﹣2)+(﹣1)+(﹣5)+(+4)18.下列算式中,运算结果为负数的是()A.|﹣1|B.(﹣5)+3C.(﹣4)﹣(﹣6)D.﹣(﹣10)19.若数轴上点A、B分别表示数3、﹣4,则A、B两点之间的距离可表示为()A.3+(﹣4)B.3﹣(﹣4)C.(﹣4)+3D.(﹣4)﹣320.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是()A.﹣9+3=﹣6B.﹣9﹣3=﹣12C.9﹣3=6D.9+3=12 21.若数轴上点A,B分别表示数3,﹣2,则A,B两点之间的距离可表示为()A.3﹣(﹣2)B.3+(﹣2)C.(﹣2)+3D.(﹣2)﹣322.有理数a、b的对应点在数轴上的位置如图所示,下列结论正确的是()A.a+b>0B.a﹣b>0C.﹣a+b<0D.﹣a﹣b>0 23.如图,在数轴上,点O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置(OA >OB),下面式子结果为正数的是()A.a+b B.a+c C.c+(﹣b)D.a+(﹣c)24.清晨蜗牛从树根沿着树干往上爬,树高12m,白天爬3m,夜间下滑2m,它从树根爬上树顶,需()A.9天B.10天C.11天D.12天25.某公司去年前三个月平均每月盈利﹣1.5万元,4、5、6月平均每月盈利2万元,7﹣10月平均每月盈利1.2万元,最后两个月平均每月盈利﹣3.3万元,则这个公司去年总盈利是()A.﹣0.3万元B.﹣1.3万元C.﹣1.8万元D.﹣2.8万元26.有三个数,它们的绝对值分别为1,2,4,其中绝对值最小的数最大,绝对值最大的数最小,这三个数的和是()A.﹣5B.﹣7C.﹣5或﹣7D.1二.填空题(共13小题)27.计算|﹣1|+(﹣3)+|﹣5|+(﹣7)+…+|﹣97|+(﹣99)=.28.计算:=.29.已知|a|=3,|b|=4,|c|=5,且a>b>c,则a+b﹣c的值是.30.若|x|=11,|y|=14,|z|=20,且|x+y|=x+y,|y+z|=﹣(y+z),则x+y﹣z=.31.某公交车上原有22人,经过3个站点时上、下车情况如下(上车记为正,下车记为负):(+3,﹣7),(+6,﹣4),(+2,﹣1),则车上还有人.32.某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.5元,则股票A这天的收盘价为元.33.若某次数学考试标准成绩定为100分,规定高于标准记为正,两位学生这次数学考试的成绩分别记作:+8,﹣5则两位学生的实际得分之和是.34.计算:1﹣2﹣3+4+5﹣6﹣7+8+9﹣2020+2021﹣2022﹣2023+2024=.三.解答题(共11小题)35..37..38.4﹣1.5﹣(﹣2.75).36..39.40.(1)31+(﹣28)+28+69;(2)﹣4+8.4﹣(﹣4.75)+3.41.(1)1.4+(﹣0.2)+0.6+(﹣1.8);(2)5+(﹣6)+3﹣(﹣4);(3)﹣20+(﹣14)﹣(﹣18)﹣13;(4).42.(1)(+)﹣(+)﹣(﹣)+(﹣).(2)(+4)﹣(﹣5)+(﹣4)﹣(+3).43.(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2);(3);(4).44.(1)﹣12﹣(+5)+(﹣14)﹣(﹣25);(2)3;(3);(4)2(﹣3)﹣|(﹣3)﹣(+0.25)|.。

2022_2022学年七年级数学上册第一章有理数13有理数的加减法同步课堂练习含解析新版新人教版

2022_2022学年七年级数学上册第一章有理数13有理数的加减法同步课堂练习含解析新版新人教版

第一章有理数
第三节有理数的加减法
一、单项选择题(共10小题)
1.〔2022·重庆市渝北中学校初一期末〕假设 |a |= 3, |b|=1 ,且a > b ,那么a -b 的值是〔〕A.4 B.2 C.-4 D.4或2
【答案】D
【解析】根据绝对值的性质可得a=±3,b=±1,再根据a>b,可得①a=3,b=1②a=3,b=﹣1,然后计算出a-b即可.
【详解】∵|a|=3,|b|=1,∴a=±3,b=±1.
∵a>b,∴有两种情况:
①a=3,b=1,那么:a-b=2;
②a=3,b=﹣1,那么a-b=4.
应选D.
【点睛】此题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.
2.〔2022·靖宇县第四中学初一期末〕某地一天的最高气温是12℃,最低气温是-2℃,那么该地这天的温差是( )
A.−10℃B.10℃C.14℃D.−14℃
【答案】C
【解析】根据题意用最高气温12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到答案.
【详解】12-〔-2〕=14〔℃〕.应选:C.
【点睛】此题考查了有理数的减法运算,关键在于理解题意的列式计算.
3.在2、﹣4、0、﹣3四个数中,最大的数比最小的数大( )
A.﹣6 B.﹣2 C.2 D.6
【答案】D
【解析】用最大的数2减去最小的数-4,再根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:2-〔-4〕,
=2+4,
=6.。

苏科版七年级上册数学有理数加减法练习题

苏科版七年级上册数学有理数加减法练习题

初中数学试卷灿若寒星整理制作有理数加减法练习题有理数的加法 一、 填空题1.(1)同号两数相加,取 并把 。

(2)绝对值不相等的异号两数相加,取 的符号,并用较大的绝对值 较小的绝对值。

(3)互为相反数的两数相加得 。

(4)一个数与零相加,仍得 。

2.计算: (1)(+5)+(+2)= (2)(-8)+(-6)= (3)(+8)+(-3)= (4)(-15)+(+10)= (5)(+208)+0=3.小华向东走了-8米,又向东走了-5米,他一共向东走了 米。

4.在下列括号内填上适当的数。

(1)0+( )= -8 (2)5+( )=-2 (3)10+( )=0 (4)12 +( )= -125.计算:—6+3=二选择题1. 下列计算正确的是( )A. (+6) +(-13) =+7B. (+6) +(-13) =-19C. (+6) +(-13) =-7D. (-5) +(-3) =8 2. 下列计算结果错误的是( )A. (-5) +(-3) =-8B. (-5) +(=3) =2C. (-3) +5 =2D. 3 +(-5) =-2 3. 下列说法正确的是( )A .两数相加,其和大于任何一个加数 B. 0与任何数相加都得0C .若两数互为相反数,则这两数的和为0 D.两数相加,取较大一个加数的符号 ◎ 能力提高 一、 填空题1. 若a+3=0,则a= 。

2. -31的绝对值的相反数与332的相反数的和为 。

3. 绝对值小于2010的所有整数的和为 。

4. 已知两个数是18和-15,这两个数的和的绝对值是 ,绝对值的和是 。

5. a 的相反数是最大的负整数,b 是最小的正整数,那么a+b= 。

二、选择题1. 下列计算中错误的是( )A. (+2) +(-13) =- (13-2) =-11B. (+20) +(+12) =+(20+12) =32C. (-121) +(-132) =+ (121+132) =361D. (-3.4) +(+4.3) =0.9 2. 在1,-1,-2这三个数中任意两数之和的最大值是( ) A .1 B.0 C.-1 D.-33. 某工厂今年第一季度盈利2800元,第二季度亏损4300元,则该厂今年上半年盈余(或亏损)可用算式表示为( )A. (+2800)+(+4300)B. (-2800)+(+4300)C. (-2800)+(-4300)D. (+2800)+(-4300)4. 张老师和同学们做了这样一个游戏:张老师左手和右手分别拿一个写有数字的卡片,请同学们说出它们的和,其中小亮说出的结果比每个加数都小,那么这两个加数( )A. 都为正数B. 都为负数C. 一正一负D.都不能确定 三、计算题1.(-13)+(+19)2. (-4.7)+(-5.3)3.(-2009)+ (+2010)4. (+125) + (-128)5. (+0.1) + (-0.01)6. (-1.375)+(-1.125)7.(-0.25)+ (+43)8. (-831)) + (-421)9. (-1.125) + (+87) 10. (-15.8) + (+3.6)◎ 最新动态1. 如果a+b=0,那么a+b 两个数一定是( )A. 都等于0B. 一正一负C. 互为相反数D. 互为倒数 2. 数轴上A 、B 两点所表示的有理数的和是-5-4-3-2-1012345xA B(第2题图)3. 如果□.+2=0,那么“□.”内应填的数是 。

七年级数学上册有理数的加减法测试题 (含答案)

七年级数学上册有理数的加减法测试题 (含答案)

七年级数学上册《有理数的加减法》测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣1﹣(﹣3)等于()A.﹣4B.2C.4D.﹣22.若x的相反数是2,|y|=5,且x+y<0,则x﹣y的值是()A.3B.3或﹣7C.﹣3或﹣7D.﹣73.下列计算正确的是()A.8+(﹣14)=+6B.8+|﹣14|=﹣6C.8+(﹣14)=﹣22D.8+(﹣14)=﹣64.以下叙述中,正确的有()①减去一个数,等于加上这个数的相反数;②两个正数的和一定是正数;③两个负数的差一定是负数;④在数轴上,零右边的点所表示的数都是正数.A.4个B.3个C.2个D.1个.5.冬季一天早晨的气温是﹣2℃,中午上升了8℃,下午又下降了4℃,则下午的气温是()A.10℃B.2℃C.﹣2℃D.﹣5℃6.在数4,﹣3,﹣12,﹣9中,任取三个不同的数相加,其中和最大的是()A.﹣11B.﹣8C.﹣17D.﹣67.如果a﹣b>0,且a+b<0,那么一定正确的是()A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|8.11月10日,某股票的股价在连续上涨后开始高位震荡,当天开盘价为31.85元,相对开盘价,波动最高+0.13元,最低﹣0.84元,那么这天的最大价差(最高价减去最低价)为()A.31.98元B.31.01元C.0.71元D.0.97元二.填空题(共8小题,满分40分)9.比0小4的数是,比3小4的数是,比﹣5小﹣2的数是.10.我县某天的最低气温为﹣3℃,最高气温为5℃,这一天的最高气温比最低气温高℃.11.已知|x|=5与|y|=4,且x>y,则y﹣x=.12.x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z的值为.13.计算:﹣20+(﹣14)﹣(﹣18)+13=.14.计算(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)的结果是.15.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.16.计算:(+1)+(﹣2)+(+3)+(﹣4)+……+(+2021)+(﹣2022)=.三.解答题(共6小题,满分40分)17.计算:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5 (2)5.3﹣|﹣3|+2﹣2.18.计算下列各题(1)﹣20+(﹣17)﹣(﹣18)﹣11 (2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(3).19.计算:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)(2)(﹣)+3.25+2+(﹣5.875)+1.15 20.数学张老师在多媒体上列出了如下的材料:计算:.解:原式===.上述这种方法叫做拆项法.请仿照上面的方法计算:(1);(2).21.阅读绝对值拓展材料:|a|表示数a在数轴上的对应点与原点的距离,如:|5|表示5在数轴上的对应点到原点的距离而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离,类似的,|5+3|=|5﹣(﹣3)|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.根据上述材料,回答下列问题.(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)借助数轴解决问题:如果|x+2|=1,那么x=;(3)|x+2|+|x﹣1|可以理解为数轴上表示x的点到表示和这两个点的距离之和,则|x+2|+|x﹣1|的最小值是.22.2020年“双十一”期间某淘宝商家提前搞促销活动,计划平均每天销售某品牌学习机100台,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是双十一的一周销售倩况(超额记为正、不足记为负):星期一二三四五六日与计划量的差值+2﹣3+25+8﹣4+2﹣6(1)根据记录的数据,计算该店一周日销量最多比最少多多少台?(2)本周实际销售总量达到了计划数量吗,通过计算说明理由.(3)该店实行每日按销售台数计算工资,每销售一台学习机可得10元,若超额完成任务,则超过部分每台另奖20元;少销售一台扣30元,那么该店铺的销售人员这一周的工资总额是多少元?参考答案一.选择题(共8小题,满分40分)1.解:﹣1﹣(﹣3)=﹣1+3=2.故选:B.2.解:∵﹣2的相反数是2,∴x=﹣2.∵|y|=5,∴y=±5.∵x+y<0,∴x=﹣2,y=﹣5.∴x﹣y=﹣2﹣(﹣5)=﹣2+5=3.故选:A.3.解:8+(﹣14)=8﹣14=﹣6,故D选项正确,A选项、C选项错误;8+|﹣14|=8+14=22,故B选项错误.故选:D.4.解:①减去一个数,等于加上这个数的相反数,说法正确;②∵同号两数相加,取相同的符号,∴两个正数的和一定是正数,故②说法正确;③∵(﹣1)﹣(﹣5)=﹣1+5=4,∴两个负数的差一定是负数不正确,故③说法错误;④在数轴上,零右边的点所表示的数都是正数,说法正确;综上所述,正确的有3个.故选:B.5.解:由题意得,﹣2+8﹣4=2(°C),故选:B.6.解:根据题意得:4﹣3﹣9=﹣8,故选:B.7.解:∵a﹣b>0,∴a>b,①b≥0则a一定是正数,此时a+b>0,与已知矛盾,∵a+b<0,当b<0时,①若a、b同号,∵a>b,∴|a|<|b|,②若a、b异号,∴|a|<|b|,综上所述b<0时,a>0,|a|<|b|.故选:C.8.解:0.13﹣(﹣0.84)=0.13+0.84=0.97(元),故选:D.二.填空题(共8小题,满分40分)9.解:根据题意得:0﹣4=﹣4;3﹣4=﹣1;﹣5﹣(﹣2)=﹣5+2=﹣3,故答案为:﹣4;﹣1;﹣310.解:5﹣(﹣3)=5+3=8(℃).故答案为:811.解:∵|x|=5与|y|=4,∴x=±5,y=±4,∵x>y,∴x=5,y=±4,(1)当x=5,y=4时,y﹣x=4﹣5=﹣1(2)当x=5,y=﹣4时,y﹣x=﹣4﹣5=﹣9故答案为:﹣1或﹣9.12.解:∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x﹣y+z=﹣1﹣1+0=﹣2.故答案为:﹣2.13.解:﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣3.故答案为:﹣314.解:(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)=[(﹣0.5)﹣(﹣7)]+[﹣(﹣3)+2.75]=7+6=13故答案为:13.15.解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.16.解:原式=(1﹣2)+(3﹣4)+…+(20121﹣2022)=﹣1﹣1﹣1…﹣1=﹣1011,故答案为:﹣1011.三.解答题(共6小题)17.解:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5=﹣16﹣8+8﹣3+5=(﹣16﹣8﹣3)+(8+5)=﹣27+13=﹣14;(2)5.3﹣|﹣3|+2﹣2=5.3﹣3+2﹣2=(5.3+2)+(﹣3﹣2)=7.3﹣6=1.3.18.解:(1)原式=﹣20+(﹣17)+18+(﹣11)=﹣37+18+(﹣11)=﹣19+(﹣11)=﹣30;(2)原式=﹣49+(﹣91)+5+(﹣9)=﹣140+5+(﹣9)=﹣135+(﹣9)=﹣144;(3)原式=4+(﹣3.85)+3+(﹣3.15)=(4+3)+[(﹣3.85)+(﹣3.15)]=8+(﹣7)=1.19.解:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)=19+[(﹣6.9)+(﹣3.1)]﹣8.35=19﹣10﹣8.35=9﹣8.35=0.65;(2)(﹣)+3.25+2 +(﹣5.875)+1.15=[(﹣)+(﹣5.875)]+(3.25+1.15+2.6)=﹣6+7=1.20.解:(1)=(28+)+[(﹣25)+(﹣)]=(28﹣25)+(﹣)=3+=3;(2)=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+(﹣)=(﹣2021﹣2022+4044)+(﹣﹣﹣)=1+(﹣1)=0.21.解:(1)2和5的两点之间的距离是|5﹣2|=3,1和﹣3的两点之间的距离是|﹣1﹣(﹣3)|=4,故答案为:3,4;(2)∵|x+2|=1,∴x+2=1或x+2=﹣1,∴x=﹣1或x=﹣3,故答案为:﹣1或﹣3;(3)|x+2|+|x﹣1|表示x轴上点到点﹣2和1的距离之和,∴|x+2|+|x﹣1|的最小距离是3,故答案为:﹣2,1,3.22.解:(1)25﹣(﹣6)=25+6=31(台),答:该店一周日销量最多比最少多31台;(2)2﹣3+25+8﹣4+2﹣6=24>0,∴本周实际销量达到了计划数量;(3)(100×7+24)×10+(2+25+8+2)×20+(﹣3﹣4﹣6)×30=7590(元).答:该店铺的销售人员这一周的工资总额是7590元.。

七年级数学上册有理数的加减法测试题

七年级数学上册有理数的加减法测试题

七年级数学上册有理数的加减法测试题基础检测1·计算:(1)15+(-22) (2)(-13)+(-8) (3)(-0.9)+1.51 (4))32(21-+ 2·计算: (1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)3·计算:(1))1713(134)174()134(-++-+- (2))412(216)313()324(-++-+- 4·计算: (1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+ 拓展提高1、 (1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。

2、 若2,3==b a ,则=+b a ________。

3、 已知,3,2,1===c b a 且a >b >c,求a +b +c 的值。

4、 若1<a <3,求a a -+-31的值。

5、 计算:7.10)]323([3122.16---+-+-6、 计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、 10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?体验中招1·数轴上A ·B 两点所表示的有理数的和是________。

2·小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2, 这五天的最低温度的平均值是( )A ·1B ·2C ·0D ·-1参考答案基础检测1·-7,-21,0.61,-61 严格按照加法法则进行运算。

2·-10,-3.把符号相同的数就·或互为相反数的数结合进行简便运算3·-1,213-。

七年级数学上册有理数加减练习含答案

七年级数学上册有理数加减练习含答案

七年级数学上册有理数加减练习含答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】七年级数学上册:有理数的加减法测试题一、选择题1.计算(-3)+5的结果等于()2.比-2小1的数是()3.计算(-20)+17的结果是()4.比-1小2015的数是()5.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.个个个个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()个个个个7.算式-3-5不能读作()与-5的差与5的差的相反数与5的差减去58.一个数减去2等于-3,则这个数是()9.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是(),7,14,20,19,7,19,14,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是( ),8,9,10,7,3,12,7,4,11,6,5,1111.与-3的差为0的数是( )13D.13二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)++()(2)(-7)+(-4)+(+9)+(-5)(3)14+(-23)+56+(−14)+(−13)(4)535+(−523)+425+(−13)(5)(-9512)+1534+(−314)+(−22.5)+(−15712)(6)(-1845)+(+5335)+()+(+1845)+(-100)七年级数学上册:有理数的加减法 测试题18.解:(1);(2)-7;;(4)4;(5)-35;(6)(-100.(3)16。

人教版2020年七年级数学上册1.3《有理数的加减法》课后练习 学生版

人教版2020年七年级数学上册1.3《有理数的加减法》课后练习 学生版

人教版2020年七年级数学上册1.3《有理数的加减法》课后练习一、选择题1.绝对值小于5的所有整数的和为A. 0B.C. 10D. 202.定义新运算:对任意有理数a、b,都有,例如,,那么的值是A. B. C. D.3.下面结论正确的有两个有理数相加,和一定大于每一个加数一个正数与一个负数相加得正数.两个负数和的绝对值一定等于它们绝对值的和两个正数相加,和为正数.两个负数相加,绝对值相减正数加负数,其和一定等于0.A. 0个B. 1个C. 2个D. 3个4.计算:的结果是A. B. 2 C. 8 D.5.计算的结果等于A. 2B.C. 8D.6.计算的结果等于A. 6B.C. 12D.7.比1小2的数是A. B. C. D. 08.下列结论不正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,且,则9.计算的结果等于A. B. C. 3 D. 710.某地一天的最高气温是,最低气温是,则该地这天的温差是A. B. C. D.二、填空题11.已知,,,那么 ______ .12.已知,,,,化简 ______ .13.已知,,则的值是______.14.已知,,且,则的值等于______ .15.计算: ______ ; ______ .16.计算: ______ .17.观察下面的几个算式:,,,,根据你所发现的规律,请你直接写出下面式子的结果:______.18.大于且不大于4的整数的和是______ .19.已知,,且,则的值为______ .20.甲地的气温是,乙地的气温比甲地高,则乙地的气温是______三、解答题21.计算.(3).(4)计算:.22.一个数a减去与2的和,所得的差是6,求a的值.23.某自行车厂一周计划生产1400辆自行车,平均每天生产自行车200辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入下表是某周的自行车生产情况超计划生产量为正、不足计划生产量为负,单位:辆:星期一二三四五六日增减根据记录可知前三天共生产自行车______ 辆;产量最多的一天比产量最少的一天多生产______ 辆;若该厂实行按生产的自行车数量的多少计工资,即计件工资制如果每生产一辆自行车可得人民币60元,那么该厂工人这一周的工资总额是多少元?。

七年级上册数学同步练习题库:有理数的加减法(较难)

七年级上册数学同步练习题库:有理数的加减法(较难)

有理数的加减法(较难)1、50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是()A.0 B.50 C.﹣50 D.50502、1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是()A.0 B.100 C.﹣1003 D.10033、六个整数的积a•b•c•d•e•f=﹣36,a、b、c、d、e、f互不相等,则a+b+c+d+e+f的和可能是()A.0 B.10 C.6 D.84、如图,数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点位置,判断|a-c|之值与下列选项中哪个不同()A. |a-b|+|c-b|B. |a|+|d|-|c+d|C. |a-d|-|d-c|D. |a|+|d|-|c-d|5、亚奥理事会于2015年9月16日在土库曼斯坦阿什哈巴德举行第34届代表大会,并在会上投票选出2022年第19届亚运会举办城市为杭州.5个城市的国际标准时间(单位:时)在数轴上表示如图所示,那么北京时间2015年9月16日20时应是()A.伦敦时间2015年9月16日11时B.巴黎时间2015年9月16日13时C.智利时间2015年9月16日5时D.曼谷时间2015年9月16日18时6、古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.36=15+21 B.49=18+31 C.25="9+16" D.13=3+107、观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.8、a、b、c在数轴上的位置如图所示:a-b___0 ; b-c ___0 ; -b-c___0 ; a-(-b)_____0 (填>,<,=)9、若|x|=7,|y|=5,且x+y>0,那么x-y的值是 .10、计算1+4+9+16+25+…的前 29 项的和是______.11、101﹣102+103﹣104+…+199﹣200=______.12、跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第3格可以有___种方法;从格外跳到第6格可以有___种方法13、如图所示,三阶幻方是由1,2,3,4,5,6,7,8,9九个数字组成的一个三行三列的数表,要求其对角线、横行、纵向的和都相等。

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)人教新版初一上册数学有理数的加减法试题参考答案一、选择题(共13小题)1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是( )A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( )A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为( )A. B. C. D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣ =﹣ .故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣ )=( )A. B.﹣ C. D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣ )=1+ = .故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是( )A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7= ﹣7 .【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)= 4 .【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4= ﹣1 .【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015= ﹣15 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|= 10 .【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键初一数学复习指导一、多看主要是指认真阅读数学课本。

七年级数学上册有理数加减法的计算题

七年级数学上册有理数加减法的计算题

有理数加减法计算题_七年级数学上册有理数加减法的计算题一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣182.(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃4.比1小2的数是()A.3B.1C.﹣1D.﹣25.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃6.计算,正确的结果为()A.B.C.D.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣8.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.39.计算2﹣3的结果是()A.﹣5B.﹣1C.1D.510.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时13.与﹣3的差为0的数是()A.3B.﹣3C.D.二、填空题(共5小题)14.计算:0﹣7=.15.)计算:3﹣(﹣1)=.16.计算:3﹣4=.17.计算:2000﹣2015=.18.|﹣7﹣3|=.一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是()A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为()A.B.C.D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣=﹣.故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是()A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是()A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7=﹣7.【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)=4.【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4=﹣1.【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015=﹣15.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18.|﹣7﹣3|=10.【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.看了“七年级数学上册有理数的加减法计算题”的人还看了:1.人教新版初一上册数学有理数的加减法试题及答案2.初一上册数学有理数的加减法试题及答案3.七年级数学上册2.5有理数的减法练习题4.2017七年级数学上册有理数的加减法试卷5.初一上学期有理数加减混合运算练习卷。

初一上册数学有理数的加减法试题及答案

初一上册数学有理数的加减法试题及答案

初一上册数学有理数的加减法试题及答案一、选择题(共26小题)1.计算(﹣3)+(﹣9)的结果等于( )A.12B.﹣12C.6D.﹣6【考点】有理数的加法.【分析】根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.【解答】解:(﹣3)+(﹣9)=﹣12;故选B.【点评】本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.计算:﹣2+1的结果是( )A.1B.﹣1C.3D.﹣3【考点】有理数的加法.【分析】符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以﹣2+1=﹣1.【解答】解:﹣2+1=﹣1.故选B.【点评】此题主要考查了有理数的加法法则:符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.﹣2+3的值是( )A.﹣5B.5C.﹣1D.1【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进行计算即可.故选:D.【点评】此题主要考查了有理数的加法,关键是掌握有理数的加法法则.4.计算(+2)+(﹣3)所得的结果是( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【分析】运用有理数的加法法则直接计算.【解答】解:原式=﹣(3﹣2)=﹣1.故选B.【点评】解此题关键是记住加法法则进行计算.5.气温由﹣1℃上升2℃后是( )A.﹣1℃B.1℃C.2℃D.3℃【考点】有理数的加法.【分析】根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.【解答】解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.【点评】此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.6.计算﹣2+3的结果是( )A.﹣5B.1C.﹣1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.故选B.【点评】此题考查了有理数的加法法则,熟练掌握运算法则是解本题的关键.7.计算:5+(﹣2)=( )A.3B.﹣3C.7D.﹣7【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:5+(﹣2)=+(5﹣2)=3.故选A.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.8.计算﹣|﹣3|+1结果正确的是( )A.4B.2C.﹣2D.﹣4【考点】有理数的加法;绝对值.【分析】首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.【解答】解:﹣|﹣3|+1=﹣3+1=﹣2.故选C.【点评】此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.9.下面的数中,与﹣2的和为0的是( )A.2B.﹣2C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.10.比﹣1大1的数是( )A.2B.1C.0D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.【点评】本题考查了有理数的加法,互为相反数的和为0.11.计算(﹣2)+(﹣3)的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的加法.【专题】计算题.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.﹣3+(﹣5)的结果是( )A.﹣2B.﹣8C.8D.2【考点】有理数的加法.【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.【解答】解:原式=﹣(3+5)=﹣8.故选:B.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.13.计算:﹣2+3=( )A.1B.﹣1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加,取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:﹣2+3=+(3﹣2)=1.故选:A.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.14.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.7【考点】有理数的加法.【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值的运算.15.计算﹣2+3的结果是( )A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【专题】计算题.【分析】根据异号两数相加的法则进行计算即可.【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选:A.【点评】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.16.若( )﹣(﹣2)=3,则括号内的数是( )A.﹣1B.1C.5D.﹣5【考点】有理数的加法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3,故选:B.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.17.计算:|﹣5+3|的结果是( )A.﹣2B.2C.﹣8D.8【考点】有理数的加法;绝对值.【分析】先计算﹣5+3,再求绝对值即可.【解答】解:原式=|﹣2|=2.故选B.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.18.计算﹣3+(﹣1)的结果是( )A.2B.﹣2C.4D.﹣4【考点】有理数的加法.【分析】根据同号两数相加的法则进行计算即可.【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.19.计算(﹣3)+(﹣9)的结果是( )A.﹣12B.﹣6C.+6D.12【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.20.计算3+(﹣3)的结果是( )A.6B.﹣6C.1D.0【考点】有理数的加法.【分析】根据有理数的加法运算法则计算即可得解.【解答】解:∵3与﹣3互为相反数,且互为相反数的两数和为0.∴3+(﹣3)=0.故选D.【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.21.计算2﹣3的结果为( )A.﹣1B.﹣2C.1D.2【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可.【解答】解:2﹣3=2+(﹣3)=﹣1,故选:A.【点评】本题主要考查了有理数的减法计算,减去一个数等于加上这个数的相反数.22.若等式0□1=﹣1成立,则□内的运算符号为( )A.+B.﹣C.×D.÷【考点】有理数的减法;有理数的加法;有理数的乘法;有理数的除法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:∵0﹣1=﹣1,∴□内的运算符号为﹣.故选B.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.23.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( )A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.24.已知a>b且a+b=0,则( )A.a<0B.b>0C.b≤0D.a>0【考点】有理数的加法.【专题】计算题.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.【解答】解:∵a>b且a+b=0,∴a>0,b<0,故选:D.【点评】此题考查了有理数的加法,熟练掌握互为相反数两数的性质是解本题的关键.25.计算:﹣3+4的结果等于( )A.7B.﹣7C.1D.﹣1【考点】有理数的加法.【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.【解答】解:﹣3+4=1.故选:C.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.26.计算﹣2+1的结果是( )A.﹣3B.﹣1C.3D.1【考点】有理数的加法.【分析】异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣2+1=﹣1,故选B【点评】此题考查有理数的加法,关键是根据异号两数相加的法则计算.二、填空题(共4小题)27.计算:|﹣2|+2= 4 .【考点】有理数的加法;绝对值.【分析】先计算|﹣2|,再加上2即可.【解答】解:原式=2+2=4.故答案为4.【点评】本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.28.计算:﹣10+(+6)= ﹣4 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.29.计算:﹣2+(﹣3)= ﹣5 .【考点】有理数的加法.【专题】计算题.【分析】根据有理数的加法法则求出即可.【解答】解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.【点评】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.30.计算:﹣9+3= ﹣6 .【考点】有理数的加法.【专题】计算题.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:﹣9+3=﹣(9﹣3)=﹣6.故答案为:﹣6.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.初一数学学习方法一、注重学习内容的衔接1.初一数学是在小学数学的基础上进行拓展和提高的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题。

1、大于–3.5,小于2.5的整数共有( )个。

A.6 B.5 C.4 D.3
2、如果一个数的相反数比它本身大,那么这个数为 ( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数
3、在有理数中,绝对值等于它本身的数有 ( ) A. 1个 B. 2个 C. 3个 D. 无穷多个
4.、在 -(-3),-(-(-3)),-|-3| ,(-3)中,负数有( ) (A )1个 (B )2个 (C )3个 (D )4个
5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )
A 0.8kg
B 0.6kg
C 0.5kg
D 0.4kg 6、下列说法正确的是( )
A 任何负数都小于它的相反数
B 两个负数比较大小,大的反而小
C 几个因数相乘,如果负因数有奇数个,积为负数。

D B 和C 都对
7、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 8、-3的相反数是( ) A 、-3
B 、3
1
C 、-3
1
D 、3
9、在-2,0,1,3这四个数中,比0小的数是( ) A 、-2 B 、0 C 、1 D 、3 10、下列计算正确的是( )
A 、-1+1=0
B 、-1-1=0
C 、3÷⎪⎭

⎝⎛-31=-1
D 、-22=4
11、某天股票A 开盘价为12元,上午12:00跌1.0元,下午收盘时又涨了0.2元,则股票A 的收盘价是( )
A 、0.2元
B 、9.8元
C 、11.2元
D 、12元
12、在数轴上,到表示-1的点的距离等于6的点表示的数是( ) A 、5 B 、-7 C 、5或-7 D 、8 13、如果|x|=|-5|,那么x 等于( )
A 、5
B 、-5
C 、+5或-5
D 、以上都不对
14、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)
(C)a -b>0 (D)b -15、654321-+-+-+……+2005-2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数 二、填空:
1已知两数为 556和-82
3
,这两个数的相反数的和是 ,两数和的绝对值是 .
2. 绝对值不大于5的所有正整数的和为 .
3. 若m ,n 互为相反数,则|m-1+n|= .
4. 已知x.y ,z 三个有理数之和为0,若x=812,y=-51
2
,则z= .
5. 已知m 是6的相反数,n 比m 的相反数小2,则m-n 等于 。

6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 .
7.-1
3
的绝对值的相反数与323的相反数的和为______________。

8、如果向东走3米记为+3米,那么向西走6米记作 。

9、计算31-2
1
= .
10、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为
___________。

11、相反数是它本身的数是 ;绝对值是它本身的数是 。

12、m -的相反数是 ,1m -+的相反数是 ,1m +的相反数是 . 13、若|m -2|+|n +3|=0,则2n-3m= 。

14、绝对值比﹣2012小的所有整数的积是_____。

15、已知点A 和点B 在同一数轴上, 点A 表示数﹣2 , 又已知点B 和点A 相距5个单位长度, 则
点B 表示的数是_______ 。

16、既不是正数也不是负数的数是_________,其相反数是________. 17、+5.7相反数与-6.3的绝对值的和的相反数是______。

18、若|a -3|=4,则a=_____。

19、计算(1-2)+(2-3)+(3-4)+….. +(19-20)=_____。

三、计算:
(-8)+(-15) (-20)+15 16+(-25)
2.7+(-
3.8) 12()23+- 11
()()43
-+-
(+3.41)-(-0.59) ⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝

-75137413 ()85.30--
(-0.6)+1.7+(+0.6 )+(-1.7 )+(-9 ) -3-4+19-11+2
()[]()5.13.42.56.34.1---+-- ()2
1
2115.22
12--+---
8+(-14
)-5-(-0.25) )43
5()41()813()25.0(-+-+-++
33.1-10.7-﹙-22.9﹚-|-23
10
|-2|-(-2.5)―|1-4|
四、求值。

1、已知,a=12 ,b=-13 ,c=1,求abc
(a-b )(b-c )(a-c ) 的值。

2、如果|x -4 |+|y +7 |+|13+z|=0,求6x -11y+3z 的值。

4、若|a|=2, b=-3,c 是最大的负整数,求a +b-c 的值。

五、分析计算题:
1、为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师。

如果规定向东为正,向西为负,出租车的行程如下。

(单位:千米) +15 -4 +13 -10 -12 +3 -13 -17
(1) 当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少? (2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?
2、 某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?
3、 将-2,-1,0,1,2,3,4,5,6这9个数分别填入图方阵的9个空格中,使得横、竖、斜对角的3个数相加的和为6.
4、某工厂一周计划每日生产自行车100
辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
(1)
(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?
5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7 (1)、到晚上6时,出租车在什么位置。

(2)、若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?
7、钟面上有1,2,3,…,11,12共12个数字,试在这些数前标上正,负号,使它们的和为0.。

相关文档
最新文档