ansys总结

合集下载

ANSYS屈曲分析总结

ANSYS屈曲分析总结

《ANSYS屈曲分析总结》很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。

但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。

1. 非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。

特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。

小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。

2. 由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。

若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。

那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。

这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu> Preprocessor> Modeling> Update Geom中完成。

3. 上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。

4. 后处理,主要是看节点位移和节点反作用力(力矩)的变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。

特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。

事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。

它的缺点主要是:不能得到屈曲后路径,不能思忖初始缺陷如初始的变形和应力状态,不能思忖材料的非线性。

ANSYS坐标系总结

ANSYS坐标系总结

ANSYS坐标系总结ANSYS坐标系总结工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。

它们位于模型的总体原点。

三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。

局部坐标系局部坐标系是用户定义的坐标系。

局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。

激活的坐标系是分析中特定时间的参考系。

缺省为总体笛卡尔坐标系。

当创建了一个新的坐标系时,新坐标系变为激活坐标系。

这表明后面的激活坐标系的命令。

菜单中激活坐标系的路径 Workplane>Change active CS to>。

节点坐标系每一个节点都有一个附着的坐标系。

节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。

节点力和节点边界条件(约束)指的是节点坐标系的方向。

时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。

而通用后处理器/POST1中的结果是按结果坐标系进行表达的。

例如: 模型中任意位置的一个圆,要施加径向约束。

首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。

这个局部坐标系现在成为激活的坐标系。

然后选择圆上的所有节点。

通过使用 "Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。

未选择节点保持不变。

节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。

这些节点坐标系的X方向现在沿径向。

约束这些选择节点的X方向,就是施加的径向约束。

ANSYS常用命令总结大全

ANSYS常用命令总结大全

161. EMF(电磁场分析中计算沿路径的电动势和电压降)162. EMID,Key,Edges(增加或删除中间节点)163. EMODIF,IEL,STLOC,I1,I2,I3,I4,I5,I6,I7,I8(调整单元坐标系方向)164. EMORE,Q,R,S,T,U,V,W,X(单元节点超过个时,在E命令后使用)165. EMUNIT, Lab, V ALUE(定义磁场单位)166. EN,IEL,IJ,K,L,M,N,O,P(通过节点生成指定单元)167. ENGEN,IINC,ITIME,NINC,IEL1,IEL2,IEINC,MINC,TINC,RINC,CINC,SINC,DX,DY,DZ(元素复制:用户自己进行编号)168. ENORM,ENUM(重新定义壳单元的法线方向)169. ENSYM,IINC,--,NINC,IEL1,IEL2,IEINC(镜像生成新单元:用户自己进行编号)170. EPLOT(元素显示)171. ERASE(擦除当前图形窗口显示的内容)172. EREFINE,NE1,NE2,NINC,LEVEL,DEPTH,POST,RETAIN(将单元附近的单元网格细化)173. ERESX,Key(控制单元积分点解的外推方式)Key=DEFA(线形材料单元节点解由积分点解外推得到)YES(节点解由积分点解外推得到)NO(节点解由积分点解拷贝得到)174. ERNORM,Key(定义是否进行误差估计)175. ERRANG,EMIN,EMAX,EINC(从文件读入单元数据)176. ESEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS(选择单元子集)177. /ESHAPE,SCALE(显示单元形状)178. ESIZE,SIZE,NDIV(指定线划分单元的默认数目)179. ESLA, Type(选择已选面上的单元)180. ESLL, Type(选择已选线上的单元)181. ESLN, Type, EKEY, NodeType(选择已选节点上的单元)182. ESORT,Item,Lab,ORDER,KABS,NUMB(对单元数据指定新的排序方式)183. ESURF,XNODE,Tlab,Shape(在既有单元表面生成表面单元)184. ESYM,--,NINC,IEL1,IEL2,IEINC(镜像生成新单元:自动编号)185. ESYS,KCN(定义单元坐标系。

ANSYS生死单元应用总结

ANSYS生死单元应用总结

ANSYS生死单元应用总结ANSYS生死单元(ELEM死单元)是一种特殊的有限元单元,在一些特殊的仿真分析中起着重要的作用。

它主要用于描述材料失效、破裂和破坏等现象。

本文将从原理、应用场景和使用技巧三个方面对ANSYS生死单元进行总结和分析。

首先,我们来了解一下ANSYS生死单元的原理。

生死单元是基于拉格朗日变形体的有限元模型。

在传统的有限元分析中,单元被认为是连续的,其应变和应力分布是均匀的。

而生死单元则具有不均匀的应变和应力分布,因为它能够模拟材料的失效和断裂。

生死单元会根据预设的破坏准则,在模拟过程中将材料断裂的部分视为未活动的“死单元”,使其不再参与力学响应的计算,从而实现对材料破坏过程的模拟。

接下来,我们来分析ANSYS生死单元的应用场景。

生死单元主要在以下两个领域得到广泛应用:材料破坏和结构破坏。

在材料破坏方面,生死单元可以用于模拟材料在极限载荷下的破坏过程,包括塑性变形、断裂和破碎。

在结构破坏方面,生死单元可以用于模拟结构在外部载荷作用下的破坏过程,如断层、裂纹扩展和结构崩溃等。

生死单元在工程实践中有着广泛的应用。

例如,在航空航天领域,生死单元可以用于模拟飞行器在失速或超过极限载荷时的破坏过程,以评估结构的强度和耐久性。

在汽车工程领域,生死单元可以用于模拟车身在碰撞事故中的变形和破坏,以评估车辆的安全性能。

在材料科学和工业制造领域,生死单元可以用于模拟材料的断裂和破坏过程,以优化材料的性能和工艺。

最后,我们来总结一些使用生死单元的技巧。

首先,需要选择合适的破坏准则。

不同的材料和应用场景可能适用不同的破坏准则,如最大应力准则、最大应变准则和能量准则等。

其次,需要合理设置生死单元的参数。

生死单元有一些参数可以调整,如破坏准则的参数、接触条件的设置和破坏表面的定义等。

合理设置这些参数可以提高模拟精度和计算效率。

最后,需要进行后处理分析。

生死单元模拟的结果可能包括材料的断裂面、裂纹扩展路径和破坏区域等信息。

ANSYS生死单元的总结

ANSYS生死单元的总结

ANSYS‎生死单元的‎总结参考了AN‎S YS的h‎e lp文件‎,ANSYS‎的培训文件‎,崔家春关于‎生死单元的‎总结,还有很多不‎足,欢迎大家补‎充,以及提出错‎误---钢构-明科总结在ANSY‎S中,单元的生死‎功能被称为‎单元非线性‎,是指一些单‎元在状态改‎变时表现出‎的刚度突变‎行为。

1)单元生死的‎原理:1. 在ANSY‎S中,单元的生死‎功能是通过‎修改单元刚‎度的方式实‎现的。

单元被“杀死”时, 它不是从刚‎度矩阵删除‎了, 而是它的刚‎度降为一个‎低值。

杀死的单元‎的刚度乘以‎一个极小的‎减缩系数(缺省为1e-6)。

为了防止矩‎阵奇异, 该刚度不设‎置为0。

2. 与杀死的单‎元有关的单‎元载荷矢量‎(如压力、温度)是零输出3. 对于杀死的‎单元, 质量、阻尼和应力‎刚度矩阵设‎置为0。

4. 单元一被杀‎死, 单元应力和‎应变就被重‎置为05. 因为杀死的‎单元没有被‎删除, 所以刚度矩‎阵尺寸总是‎保持着1. 与之相似,当单元“活”的时候,也是通过修‎改刚度系数‎的方式实现‎的。

所有的单元‎,包括开始被‎杀死的, 在求解前必‎须存在,这是因为在‎分析过程中‎刚度矩阵的‎尺寸不能改‎变, 所以,被激活的单‎元在建模时‎就必须建立‎,否则无法实‎现杀死与激‎活。

2. 当单元被重‎新激活时,它的刚度、质量与荷载‎等参数被返‎回到真实状‎态。

3. 当大变形效‎应打开时(NLGEO‎M,ON),为了与当前‎的节点位置‎相适应,单元被激活‎后,其形状会被‎改变(拉长或压短‎)。

当不使用大‎变形效应时‎,单元将在原‎始位置被激‎活。

4. 当单元“激活”后, 它们没有任‎何应变历史‎记录,它们通过生‎和死操作被‎“退火”,生的时候所‎有应力和所‎有应变等于‎零。

2) 单元生死求‎解过程:1 建模,对将要进行‎杀死或激活‎的单元进行‎分组。

这点非常重‎要,将会影响后‎续工作的效‎率。

2 定义第一个‎荷载步。

学习有限元ANSYS总结

学习有限元ANSYS总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。

在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。

作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。

而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。

实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。

(完整版)ANSYS命令流总结(全)

(完整版)ANSYS命令流总结(全)

ANSYS结构分析单元功能与特性/可以组成一一些命令,一般是一种总体命令(session),三十也有特殊,比如是处理/POST1! 是注释说明符号,,与其他软件的说明是一样的,ansys不作为命令读取,* 此符号一般是APDL的标识符,也就是ansys的参数化语言,如*do ,,,*enddo等等NSEL的意思是node select,即选择节点。

s就是select,选择。

DIM是定义数组的意思。

array 数组。

MP命令用来定义材料参数。

K是建立关键点命令。

K,关键点编号,x坐标,y坐标,z坐标。

K, NPT, X, Y, Z是定义关键点,K是命令,NPT是关键点编号,XYZ是坐标。

NUMMRG, keypoint 用这个命令,要保证关键点的位置完全一样,只是关键点号不一样的才行。

这个命令对于重复的线面都可以用。

这个很简单,压缩关键。

Ngen 复制节点e,节点号码:这个命令式通过节点来形成单元NUMCMP,ALL:压缩所有编号,这样你所有的线都会按次序重新编号~你要是需要固定的线固定的标号NSUBST,100,500,50:通过指定子步数来设置载荷步的子步LNSRCH线性搜索是求解非线性代数方程组的一种技巧,此法会在一段区间内,以一定的步长逐步搜索根,相比常用的牛顿迭代法所要耗费的计算量大得多,但它可以避免在一些情况下牛顿迭代法出现的跳跃现象。

LNSRCH激活线性搜索PRED 激活自由度求解预测NEQIT指定一个荷载步中的最大子步数AUTOTS 自动求解控制打开自动时间步长.KBC -指定阶段状或者用跳板装载里面一个负荷步骤。

SPLINE:P1,P2,P3,P4,P5,P6,XV1,YV1,ZV1,XV6,YV6,ZV6(生成分段样条曲线)*DIM,Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3(定义载荷数组的名称)【注】Par: 数组名Type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableIMAX,JMAX,KMAX各维的最大下标号Var1,Var2,Var3 各维变量名,缺省为row,column,plane(当type为table时)/config是设置ansys配置参数的命令格式为/CONFIG, Lab, V ALUELab为参数名称value为参数值例如:/config,MXEL,10000的意思是最大单元数为10000杆单元:LINK1、8、10、11、180梁单元:BEAM3、4、23、24,44,54,188,189管单元:PIPE16,17,18,20,59,602D实体元:PLANE2,25,42,82,83,145,146,182,1833D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209弹簧单元:COMBIN7,14,37,39,40质量单元:MASS21接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178矩阵单元:MATRIX27,50表面效应元:SURF153,154粘弹实体元:VISCO88,89,106,107,108, 超弹实体元:HYPER56,58,74,84,86,158耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81, SOLID98,FLUID129,INFIN110,111,FLUID116,130 界面单元:INTER192,193,194,195 显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16杆单元(Large deflection),F-大应变(Large strain)或有限应变(Finite strain),B-单元生死(Birth and dead),G-应力刚化(Stress stiffness)或几何刚度(Geometric stiffening),A-自适应下降(Adaptive descent )等。

ANSYS学习总结

ANSYS学习总结

学习ANSYS经验总结(来自CAE联盟)1学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。

在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:1.1将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS 之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。

作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。

而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。

实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。

(完整版)ANSYS命令流总结(全)

(完整版)ANSYS命令流总结(全)

ANSYS结构解析单元功能与特征/POST1/可以构成一一些命令,一般是一种整体命令( session),三十也有特别,比方是办理 ! 是说明说明符号,,与其余软件的说明是相同的, ansys 不作为命令读取,*此符号一般是 APDL 的表记符,也就是 ansys 的参数化语言,如 *do ,,,*enddo 等等NSEL 的意思是node select,即选择节点。

s 就是 select,选择。

DIM是定义数组的意思。

array 数组。

MP 命令用来定义资料参数。

K 是建立要点点命令。

K, 要点点编号 ,x 坐标 ,y 坐标, z 坐标。

K, NPT, X, Y , Z 是定义要点点, K 是命令, NPT 是要点点编号, XYZ 是坐标。

NUMMRG , keypoint 用这个命令,要保证要点点的地点完整相同,不过要点点号不一样样的才行。

这个命令关于重复的线面都可以用。

这个很简单,压缩要点。

Ngen 复制节点e,节点号码:这个命令式经过节点来形成单元NUMCMP,ALL :压缩所有编号,这样你所有的线都会挨次次重新编号 ~你若是需要固定的线固定的标号NSUBST,100,500,50 :经过指定子步数来设置载荷步的子步LNSRCH 线性搜寻是求解非线性代数方程组的一种技巧,此法会在一段区间内,以必定的步长逐渐搜寻根,对比常用的牛顿迭代法所要耗费的计算量大得多,但它可以防备在一些状况下牛顿迭代法出现的跳跃现象。

LNSRCH激活线性搜寻PRED 激活自由度求解展望NEQIT 指定一个荷载步中的最大子步数AUTOTS自动求解控制打开自动时间步长.KBC -指定阶段状也许用跳板装载里面一个负荷步骤。

SPLINE :P1, P2, P3,P4, P5, P6, XV1 , YV1 , ZV1 , XV6 ,YV6 , ZV6 (生成分段样条曲线)*DIM , Par,Type ,IMAX ,JMAX , KMAX , Var1,Var2, Var3(定义载荷数组的名称)【注】 Par: 数组名Type: array 数组,仿佛fortran, 下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8 个字符)tableIMAX , JMAX , KMAX各维的最大下标号Var1, Var2,Var3 各维变量名,缺省为row,column,plane( 当 type 为 table 时 )/config 是设置 ansys 配置参数的命令格式为 /CONFIG, Lab, V ALUELab 为参数名称value 为参数值比方: /config , MXEL ,10000 的意思是最大单元数为10000杆单元 : LINK1、 8、 10、 11、 180梁单元: BEAM3、 4、 23、 24,44, 54, 188, 189管单元 : PIPE16, 17, 18, 20, 59, 602D实体元 : PLANE2, 25, 42, 82, 83, 145,146, 182, 1833D实体元 : SOLID45, 46, 64,65, 72, 73,92, 95, 147,148, 185, 186,187, 191壳单元 : SHELL28, 41, 43, 51, 61, 63, 91, 93, 99, 143, 150, 181,208, 209弹簧单元 : COMBIN7, 14, 37,39, 40质量单元 : MASS21接触单元 : CONTAC12, 52, TARGE169, 170, CONTA171, 172, 173, 174, 175, 178矩阵单元 : MATRIX27, 50表面效应元 : SURF153, 154粘弹实体元 : VISCO88, 89, 106, 107, 108,超弹实体元 : HYPER56, 58, 74, 84, 86, 158耦合场单元 : SOLID5, PLANE13, FLUID29, 30,38, SOLID62, FLUID79, FLUID80,81,SOLID98, FLUID129, INFIN110 , 111, FLUID116,130界面单元 : INTER192, 193, 194, 195显式动力解析单元 : LINK160, BEAM161, PLANE162, SHELL163, SOLID164, COMBI16杆单元单元名称简称节点数节点自由度特征备注LINK12D杆2Ux,Uy EPCSDGB常用杆元LINK83D杆Ux,Uy,Uz EPCSDGBLINK103D仅受拉EDGB模拟缆索的废弛及或仅受压杆缝隙LINK113D线性调理EGB模拟液压缸和大转器动LINK1803D有限应变杆EPCDFGB另可考虑粘弹塑性E- 弹性 (Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度deflection), F- 大应变 (Large strain)或有限应变(Finite strain),B-单元存亡(Birth and dead),G-化 (Stress stiffness)或几何刚度(Geometric stiffening),A-自适应降落(Adaptive descent)等。

ansysworkbench总结

ansysworkbench总结

ansysworkbench总结Workbench 总结1.CAD建模⼏个重要的概念与功能(1)PART 多体部件体from new part和布尔操纵体的区别,Part内部⽆接触,可定义不同材料(2)Active和Freeze冻结体(3)Slice功能与Freeze的配合使⽤(4)抑制体的使⽤suppress(5)⾯印记Imprint Face的功能(6)概念建模:产⽣⾯体(7)要在CAD or DM中使⽤Use CAD or DM to:–Simplify the geometry–Merge small edges–Merge the faces in order to reduce the number of faces–Avoid narrow faces–Keep volume gaps only where important–Decompose the geometry–Remove unnecessary geometries–Add geometries–Repair the geometry2.⽹格划分技巧:Strategies to Improve Mesh Quality策略–CAD Cleanup清理–Virtual Topology拓扑–Pinch Controls微量控制–Sensible Mesh Sizing and Inflation Settings⽹格⼤⼩控制和膨胀设置–General Recommendations ⼀般建议–Mesh Quality Metrics in ANSYS Meshing⽹格质量检查–Skewness 偏斜–Aspect Ratio纵横⽐–Worst Element最差单元Mesh metrics available in ANSYSMeshing include:–Element Quality–Aspect Ratio–Jacob Ration–Warping Factor–Parallel Deviation–Maximum Corner Angle–Skewness1⽹格质量检查Two methods for determining skewness:1.Based on the Equilateral Volume deviation:Skewness =Applies only to triangles and tetrahedronDefault method for tris and tets偏斜=(正四⾯体-- 实际四⾯体)/ 正四⾯体2.Based on the deviation from a Normalized Angle deviation:Skewness =Where θe is the equiangular face/cell (60 for tets and tris, and 90 for quads and hexas) Applies to all cell and face shapes 单元和⾯Used for prisms and pyramids 棱柱和棱锥–skewness–For Hexa, Tri and Quad: it should be less than 0.8–For tetrahedra: it should be less than 0.9Aspect Ratio纵横⽐(1)A spect for generic triangles and quads is a function of the ratio of longest side to the shortest side of the reconstructed quadrangles (see User Guide for details) (2)E qual to 1 (ideal) for an equilateral triangle or a squareFor Aspect Ratio:–It should be less than 40, but this depends onthe flow characteristics–More than 50 may be tolerated at the inflation layers Worst Element最差单元For Aspect Ratio:–It should be less than 40, but this depends onthe flow characteristics–More than 50 may be tolerated at the inflation layers ?For Cell Size Change:It should be between 1 and 2.2策略Model中的Virtual Topology 的功能:合并。

ansys APDL建模与结果后处理个人经验总结

ansys APDL建模与结果后处理个人经验总结

结合自身经验,谈ANSYS中的APDL命令(一)关键字:ansys APDL命令流在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。

在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。

以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。

(1).Lsel,type,item,comp,vmin,vmax,vinc,kswp选择线type:s从全部线中选一组线r从当前选中线中选一组线a再选一部线附加给当前选中组aunoneu(unselect)inve:反向选择item:line线号loc坐标length线长comp:x,y,zkswp:0只选线1选择线及相关关键点、节点和单元(2).Nsel,type,item,comp,vmin,vmax,vinc,kabs选择一组节点type:S:选择一组新节点(缺省)R:在当前组中再选择A:再选一组附加于当前组U:在当前组中不选一部分All:恢复为选中所有None:全不选Inve:反向选择Stat:显示当前选择状态Item:loc:坐标node:节点号Comp:分量Vmin,vmax,vinc:ITEM范围Kabs:“0”使用正负号“1”仅用绝对值(3).Esel,type,item,comp,vmin,vmax,vinc,kabs选择一组单元type:S:选择一组单元(缺省)R:在当前组中再选一部分作为一组A:为当前组附加单元U:在当前组中不选一部分单元All:选所有单元None:全不选Inve:反向选择当前组Stat:显示当前选择状态Item:Elem:单元号Type:单元类型号Mat:材料号Real:实常数号Esys:单元坐标系号(4).mp,lab,mat,co,c1,…….c4定义材料号及特性lab:待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex:弹性模量nuxy:小泊松比alpx:热膨胀系数reft:参考温度reft:参考温度prxy:主泊松比gxy:剪切模量mu:摩擦系数dens:质量密度mat:材料编号(缺省为当前材料号)c:材料特性值,或材料之特性,温度曲线中的常数项c1-c4:材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数(5).定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg(6).根据需要耦合某些节点自由度cp,nset,lab,,node1,node2,……node17nset:耦合组编号lab:ux,uy,uz,rotx,roty,rotz,allnode1-node17:待耦合的节点号。

ansys-workbench-接触的总结

ansys-workbench-接触的总结

ansys-workbench-接触的总结①下⾯对⾮对称⾏为接触表⾯的正确选择给出选择指导:–如果⼀凸的表⾯要和⼀平⾯或凹⾯接触,应该选取平⾯或凹⾯为⽬标⾯.–如果⼀个表⾯有粗糙的⽹格⽽另⼀个表⾯⽹格细密,则应选择粗糙⽹格表⾯为⽬标⾯.–如果⼀个表⾯⽐另⼀个表⾯硬,则硬表⾯应为⽬标⾯.–如果⼀个表⾯为⾼阶⽽另⼀个为低阶,则低阶表⾯应为⽬标⾯.–如果⼀个表⾯⼤于另⼀个表⾯,则⼤的表⾯应为⽬标⾯.②法向刚度WB-Mechanical系统默认⾃动设定。

–⽤户可以输⼊“法向刚度因⼦Normal Stiffness Factor” (FKN) 它是计算刚度代码的乘⼦.因⼦越⼩,接触刚度就越⼩。

默认 FKN =10 (对于绑定和不分离的接触)默认 FKN=10(其他形式接触) 默认 FKN1.0 (其他形式接触)接触问题法向刚度选择⼀般准则:–体积为主的问题: ⽤“Program Controlled”或⼿动输⼊“Normal Stiffness Factor”为“1”–弯曲为主的问题: ⼿动输⼊“Normal Stiffness Factor”为“0.01”到“0.1”之间的数值。

-在⼤变形问题的⽆摩擦或摩擦接触中建议使⽤“Augmented Lagrange”法向接触刚度 knormal是影响精度和收敛⾏为最重要的参数.–刚度越⼤,结果越精确,收敛变得越困难.–如果接触刚度太⼤,模型会振动,接触⾯会相互弹开。

- 其中update stifness 设置可以控制计算收敛与否。

③-刚度增加, 渗透减少,⽽最⼤压⼒增加. 并且通常会有更多的迭代和更长运⾏时间④不管使⽤了何种接触⾏为 (对称或反对称), 模型的变形和等效应⼒本质是相同的. 对称⾏为可以提⾼收敛. 但对称接触结果不容易解释,为接触⾯与⽬标⾯结果的平均值。

0.0032902 0.0033033 0.0033052 0.0033055 0.0033053565.05Mp a 774.12Mp a 811.34Mp a 816.26Mp a 812.78Mp a0.011864 0.0016253 0.0017035 0.000017138 0.00001998417 17 20 24 57⑤在详细窗⼝中⽤户可以选择“Adjusted to Touch”或“AddOffset”-“AdjstedtoToch”让Simlation 决定需要多⼤的接触偏移量来闭合缝隙建⽴初始接触。

ANSYS网格划分总结大全

ANSYS网格划分总结大全

有限元分析中的网格划分好坏直接关系到模型计算的准确性.本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。

1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素.从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的.同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分.辛普生积分点的间隔是一定的,沿厚度分成奇数积分点.由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。

在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。

为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。

利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。

有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。

在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则.在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。

ansys经验总结(一)

ansys经验总结(一)

ansys经验总结(一)ANSYS是一款常用于工程设计及仿真的软件,对于使用ANSYS进行建模和仿真有着一定经验的工程师来说,其能够对复杂问题进行有效分析和有效解决。

在这篇文章中,我们将根据自己的经验,总结一些ANSYS 软件的使用技巧和注意事项,以便于其他工程师能够更加高效和准确地使用ANSYS软件。

一、ANASYS的优点ANSYS是一款功能十分强大的建模和仿真软件。

其灵活性和可定制性极高,可以对各种不同的问题进行分析和解决。

同时,其具有高精度、高可靠性和高效率的特点,可以帮助工程师在最短时间内得出最优的设计和方案。

二、 ANSYS的使用技巧1.合理选择单元类型在进行建模时,我们应该根据实际的工程问题和要求,合理地选择不同类型的单元。

不同类型的单元具有不同的特点和优势,合理的选择可以提高仿真的准确性和效率。

2.合理设置边界条件在进行模拟计算时,合理设置边界条件十分重要。

不同的边界条件会对模拟的结果产生影响,正确设置边界条件可以得到准确的仿真结果。

同时,在设置边界条件时考虑力学和物理条件也十分重要,合理的设置可以得到更加准确和真实的仿真结果。

3.注意网格质量网格质量是影响仿真准确性的重要因素。

在进行网格划分时,尽量保证网格的质量和均匀性,同时也要注意网格的精度和形状,避免误差产生。

4.合理使用求解器ANSYS软件中提供了多种不同类型的求解器,不同的求解器适用于不同的问题。

因此,在选择求解器时,应该综合考虑问题的类型和求解器的特点和优势,选择最优化的求解器。

三、ANSYS的常见问题1.模型不稳定模型不稳定是ANSYS仿真过程中的常见问题。

其主要原因是网格质量不佳,边界条件设置不当,模型不精细或涉及到较长时间的仿真计算等,需要在建模和仿真中注重调整和优化。

2.计算速度较慢ANSYS计算时需要进行大量的计算,特别是对于较复杂的模型,计算所消耗的时间更加长。

可以从提升计算机性能、选择合适的求解算法、优化网格、缩短实验时间和精细化建模等方式来提高计算速度。

ANSYS常用命令总结大全

ANSYS常用命令总结大全

ANSYS常用命令总结大全161. EMF(电磁场分析中计算沿路径的电动势和电压降)162. EMID,Key,Edges(增加或删除中间节点)163. EMODIF,IEL,STLOC,I1,I2,I3,I4,I5,I6,I7,I8(调整单元坐标系方向)164. EMORE,Q,R,S,T,U,V,W,X (单元节点超过个时,在E命令后使用)165. EMUNIT, Lab, V ALUE(定义磁场单位)166. EN,IEL,IJ,K,L,M,N,O,P(通过节点生成指定单元)167. ENGEN,IINC,ITIME,NINC,IEL1,IEL2,IEINC,MINC,TINC,RINC,CINC,SINC,DX,DY,DZ(元素复制:用户自己进行编号)168. ENORM,ENUM(重新定义壳单元的法线方向)169. ENSYM,IINC,--,NINC,IEL1,IEL2,IEINC(镜像生成新单元:用户自己进行编号)170. EPLOT(元素显示)171. ERASE(擦除当前图形窗口显示的内容)172. EREFINE,NE1,NE2,NINC,LEVEL,DEPTH,POST,RETAIN(将单元附近的单元网格细化)173. ERESX,Key(控制单元积分点解的外推方式)Key=DEFA(线形材料单元节点解由积分点解外推得到)YES(节点解由积分点解外推得到)NO(节点解由积分点解拷贝得到)174. ERNORM,Key(定义是否进行误差估计)175. ERRANG,EMIN,EMAX,EINC(从文件读入单元数据)176. ESEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS(选择单元子集)177. /ESHAPE,SCALE(显示单元形状)178. ESIZE,SIZE,NDIV(指定线划分单元的默认数目)179. ESLA, Type(选择已选面上的单元)180. ESLL, Type(选择已选线上的单元)181. ESLN, Type, EKEY, NodeType(选择已选节点上的单元)182. ESORT,Item,Lab,ORDER,KABS,NUMB(对单元数据指定新的排序方式)183. ESURF,XNODE,Tlab,Shape(在既有单元表面生成表面单元)184. ESYM,--,NINC,IEL1,IEL2,IEINC(镜像生成新单元:自动编号)185. ESYS,KCN(定义单元坐标系。

ansys技巧总结_桥梁计算(常用的计算方法)

ansys技巧总结_桥梁计算(常用的计算方法)
3.实体(配筋)单元:桥墩系统、基础结构。
4.拉杆单元:拱桥的系杆、吊杆。
5.拉索单元:斜拉桥的索、悬索桥的钢丝绳。
6.预紧单元:索力控制、螺栓铆钉连接。
7.连接单元:支座、地基。
二、常见桥梁连接部位
在桥梁建立模型时要准确模拟边界条件,因此要准确分析连接部位的
能受压。如果混凝土与节点底板分离,单元将不起作用,否则Hnkl0单元要
承受拉力。如果用Linkl0的话,你可以把不与结构相联接的一端所有自由度
在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁
工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由
度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。
*** 关于单元选择问题
这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先
3.用温度变化模拟。
在常用的软件系统中,预应力混凝土分析根据作用不妨分为两类:分离
式和整体式。所谓分离式就是将混凝土和力筋的作用分别考虑(脱离体),
以荷载的形式取代预应力钢筋的作用,典型.的如等效荷载法;而整体式则是
将二者的作用一起考虑,典型的如Ansys中用Link单元模拟力筋的方法。
(2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同
组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和
用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不
同的结果。 ·
体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。
*** 桥梁仿真单元类型

ansys workbench有限元总结

ansys workbench有限元总结
帕姆格伦一迈因纳(PalmgrenMiner)定理设在载荷谱
该零件在给定载荷谱的作用下,可以承受6. 238×l03次循环。
13.疲劳,(静载荷)静应力应力循环比r=1,(恒定振幅载荷)脉动循环变应力r=0,(恒定振幅载荷)对称循环变应力r=-1,(非恒定振幅载荷)非对称循环变应力-1<r<1.疲劳强度因子0.8,设计寿命10e6,疲劳敏感曲线最小基本载荷变化幅度为50%,最大基本载荷变化幅度为200%,寿命云图,安全系数云图,雨流分析法(雨流阵列图和损伤阵列图)是用于把不规律应力历程转化为用于疲劳计算的循环的一种技术。疲劳是由于重复加载引起的,恒定振幅载荷(Constant amplitude load)是指最大和最小的应力水平恒定,比如对称循环载荷,否则称为变化振幅或者非恒定振幅载荷(Non-constant amplitude load)需要历程数据,比如随机载荷疲劳分析,应力范围 定义为 ,平均应力 定义为 ,应力幅或交变应力 是 ,应力比R是 ,当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。这就是σm=0,R=-1的情况。当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是σm=σmax/2,R=0的情况。
No Separation(不分离): 这种接触方式和绑定类似。它只适用于面。不允许接触区域的面分离,但是沿着接触面可以有小的无摩擦滑动。
Frictionless(无摩擦): 这种接触类型代表单边接触,即,如果出现分离则法向压力为零。只适用于面接触。因此,根据不同的载荷,模型间可以出现间隙。它是非线性求解,因为在载荷施加过程中接触面积可能会发生改变。假设摩擦系数为零,因此允许自由滑动。使用这种接触方式时,需注意模型约束的定义,防止出现欠约束。程序会给装配体加上弱弹簧,帮助固定模型,以得到合理的解。无摩擦约束给施加面上提供了垂直方向的限制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目标:熟悉ANSYS基本关键字的含义k --> Keypoints 关键点l --> Lines 线a --> Area 面v --> Volumes 体e --> Elements 单元n --> Nodes 节点cm --> component 组元et --> element type 单元类型mp --> material property 材料属性r --> real constant 实常数d --> DOF constraint 约束f --> Force Load 集中力sf --> Surface load on nodes 表面载荷bf --> Body Force on Nodes 体载荷ic --> Initial Conditions 初始条件目标:了解命令流的整体结构,掌握每个模块的标识!文件说明段/BATCH/TITILE,test analysis !定义工作标题/FILENAME,test !定义工作文件名/PREP7 !进入前处理模块标识!定义单元,材料属性,实常数段ET,1,SHELL63 !指定单元类型ET,2,SOLID45 !指定体单元MP,EX,1,2E8 !指定弹性模量MP,PRXY,1,0.3 !输入泊松比MP,DENS,1,7.8E3 !输入材料密度R,1,0.001 !指定壳单元实常数-厚度......!建立模型K,1,0,0,, !定义关键点K,2,50,0,,K,3,50,10,,K,4,10,10,,K,5,10,50,,K,6,0,50,,A,1,2,3,4,5,6, !由关键点生成面......!划分网格ESIZE,1,0,AMESH,1......FINISH !前处理结束标识/SOLU !进入求解模块标识!施加约束和载荷DL,5,,ALLSFL,3,PRES,1000SFL,2,PRES,1000......SOLVE !求解标识FINISH !求解模块结束标识/POST1 !进入通用后处理器标识....../POST26 !进入时间历程后处理器……/EXIT,SAVE !退出并存盘以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助/ANGLE !指定绕轴旋转视图/DIST !说明对视图进行缩放/DEVICE !设置图例的显示,如:风格,字体等/REPLOT !重新显示当前图例/RESET !恢复缺省的图形设置/VIEW !设置观察方向/ZOOM !对图形显示窗口的某一区域进行缩放生成关键点和线部分1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:K,1,0,0,02.在激活坐标系生成直线LSTR,关键点P1,关键点P2例:LSTR,1,23.在两个关键点之间连线L,关键点P1,关键点P2例:L,1,2注:此命令会随当前的激活坐标系不同而生成直线或弧线4.由三个关键点生成弧线LARC,关键点P1,关键点P2,关键点PC,半径RAD例:LARC,1,3,2,0.05注:关键点PC是用来控制弧线的凹向5.通过圆心半径生成圆弧CIRCLE,关键点圆心,半径RAD,,,,圆弧段数NSEG例:CIRCLE,1,0.05,,,,46.通过关键点生成样条线BSPLIN,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6例:BSPLIN,1,2,3,4,5,67.生成倒角线LFILLT,线NL1,线NL2,倒角半径RAD例:LFILLT,1,2,0.0058.通过关键点生成面A,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6,P7,P8...例:A,1,2,3,49.通过线生成面AL,线L1,线L2,线L3,线L4,线L5,线L6,线L7,线L8,线L9,线L10例:AL,5,6,7,810.通过线的滑移生成面ASKIN,线NL1,线NL2,线NL3,线NL4,线NL5,线NL6,线NL7,线NL8,线NL9例:ASKIN,1,4,5,6,7,8注:线1为滑移的导向线目标:掌握常用的实体-面的生成生成矩形面1.通过矩形角上定位点生成面BLC4,定位点X方向坐标XCORNER,定位点Y方向坐标YCORNER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH例:BLC4,0,0,5,3,02.通过矩形中心定位点生成面BLC5,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH注:与上条命令的不同就在于矩形的定位点不一样例:BLC5,2.5,1.5,5,3,03.通过在工作平面定义矩形X.Y坐标生成面RECTNG,矩形左边界X坐标X1,矩形右边界X坐标X2,矩形下边界Y坐标Y1,矩形上边界Y 坐标Y2例:RECTNG,0,5,0,3生成圆面4.通过中心定位点生成实心圆面CYL4,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,圆面的内半径RAD1,内圆面旋转角度THETA1,圆面的外半径RAD2,外圆面旋转角度THETA2,圆面的深度DEPTH注:如要实心的圆面则不用RAD2,THETA2,DEPTH例:CYL4,0,0,5,3605.生成扇形圆面命令介绍如上例1实心扇形:CYL4,0,0,5,60例2扇形圆环:CYL4,0,0,5,60,10,60例3整的圆环:CYL4,0,0,5,360,10,360注:同时可通过定义圆面的深度以生成柱体6.通过在工作平面定义起始点生成圆面CYL5,开始点X坐标XEDGE1,开始点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2,圆面深度DEPTH例:CYL5,0,0,2,2,7.通过在工作平面定义内外半径和起始角度来生成圆面PCIRC,内半径RAD1,外半径RAD2,起始角度THETA1,结束角度THETA2例:PCIRC,2,5,30,1808.生成面与面的倒角AFILLT,面1的编号NA1,面2的编号NA2,倒角半径RAD例:AFILLT,2,5,21.生成多边形面命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA例:RPR4,4,0,0,0.15,30注:这条命令可通过定义不同的NSIDES生成三边形,四边形,...,八边形2.生成多边形体命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA,多边形的深度DEPTH例:RPR4,4,0,0,0.15,30,0.1注:多边形体和面命令唯一的不同就在于深度DEPTH的定义目标:掌握体的生成命令1.通过关键点生成体命令:V,关键点P1,关键点P2, P3, P4, P5, P6, P7, P8例:V,4,5,6,7,15,24,252.通过面生成体命令:VA,面A1,面A2, A3, A4, A5, A6, A7, A8, A9, A10例:VA,3,4,5,8,103.通过长方形角上定位点生成体命令:BLC4该命令前面在讲生成面的时候已作介绍,唯一的不同在于深度DEPTH的定义.4.通过长方形中心定位点生成面命令:BLC55.通过定义长方体起始位置生成体命令:BLOCK,开始点X坐标X1,结束点X坐标X2, Y1, Y2, Z1, Z2例:BLOCK,2,5,0,2,1,36.生成圆柱体基本命令通生成圆形面,不同在于DEPTH的定义基本命令:CYL4基本命令:CYL5基本命令:CYLIND7.生成棱柱基本命令通生成多边形,不同在于DEPTH的定义基本命令:RPR48.通过球心半径生成球体命令:SPH4,球心X坐标XCENTER,球心Y坐标YCENTER,半径RAD1,半径RAD2例:SPH4,1,1,2,59.通过直径上起始点坐标生成球体命令:SPH5,起点X坐标XEDGE1,起点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2例:SPH5,2,5,7,610.在工作平面起点通过半径和转动角度生成球体命令:SPHERE,半径RAD1,半径RAD2,转动角度THETA1,转动角度THETA2例:SPHERE,2,5,0,6011.生成圆锥体命令:CONE,底面半径RBOT,顶面半径RTOP,底面高Z1,顶面高Z2,转动角度THETA1,转动角度THETA2例:CONE,10,20,0,50,0,180目标:掌握常用的布尔操作命令1.沿法向延伸面生成体命令:VOFFST,面的编号NAREA,面拉伸的长度DIST,关键点增量KINC例:VOFFST,1,2,,2.通过坐标的增量延伸面生成体命令:VEXT,面1的编号NA1,面2的编号NA2,增量NINC,X方向的增量DX,Y方向的增量DY,Z 方向的增量DZ, RX, RY, RZ例:VEXT,1,5,1,1,2,2,3.面绕轴旋转生成体命令:VROTAT,面1的编号NA1,面2的编号NA2,NA3, NA4, NA5, NA6,定位轴关键点1编号PAX1,定位轴关键点2编号PAX2,旋转角度ARC,生成体的段数NSEG例:VROTAT,1,2,,,,,4,5,360,44.沿线延伸面生成体命令:VDRAG,面1的编号NA1,面2的编号NA2, NA3, NA4, NA5, NA6,导引线1的编号NLP1,导引线2的编号NLP2, NLP3, NLP4, NLP5, NLP6例:VDRAG,2,3,,,,,8,5.线绕轴旋转生成面命令:AROTAT,线1的编号NL1, NL2, NL3, NL4, NL5, NL6,定位轴关键点1的编号PAX1,定位轴关键点2的编号PAX2,旋转角度ARC,生成面的段数NSEG例:AROTAT,3,4,,,,,6,8,360,46.沿线延伸线生成面命令:ADRAG,线1的编号NL1,NL2, NL3, NL4, NL5, NL6,导引线1的编号NLP1, NLP2, NLP3, NLP4, NLP5, NLP6例:ADRAG,3,,,,,,87.同理可以延伸关键点,相应的命令如下:LROTAT, NK1, NK2, NK3, NK4, NK5, NK6, PAX1, PAX2, ARC, NSEGLDRAG, NK1, NK2, NK3, NK4, NK5, NK6, NL1, NL2, NL3, NL4, NL5, NL6各选项的含义雷同于上.8.延伸一条线命令:LEXTND,线的编号NL1,定位关键点编号NK1,延伸的距离DIST,原有线是否保留控制项KEEP例:LEXTND,5,2,1.5,09.布尔操作:加命令:LCOMB,线编号NL1,线编号NL2,是否修改控制项KEEP例:LCOMB,2,5注:对面和体的相应为:VADD,AADD.选项的含义都类似10.布尔操作:粘接和搭接搭接的核心关键字为:OVLAP,随实体的不同略有不同,如:对体为VOVLAP对面为AOVLAP对线为LOVLAP粘接的核心关键字为:GLUE,随实体的不同略有不同,如:对体为VGLUE对面为AGLUE对线为LGLUE但其他的选项的含义是类似的,这里就不再累述.目标:掌握体素的移动,复制,删除,映射一.移动关键点命令:KMODIF,关键点编号NPT,移动后的坐标X,移动后的坐标Y,移动后的坐标Z例:KMODIF,5,0,0,2二.移动复制关键点命令:KGEN,复制次数选项ITIME,起始关键点编号NP1,结束关键点编号NP2,增量NINC,偏移DX,偏移DY,偏移DZ,关键点编号增量KINC,生成节点单元控制项NOELEM,原关键点是否被修改选项IMOVE例:KGEN,2,1,10,1,2,2,2,,,,注:IMOVE选项说明,设置为0时,不修改原关键点,即为复制,设置为1时,修改原关键点,即为移动,从而通过控制IMOVE选项实现移动或复制.三.移动复制线命:LGEN,ITIME,NL1,NL2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上四.移动复制面命:AGEN,ITIME,NA1,NA2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上五.移动复制体命令:VGEN,ITIME,NV1,NV2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上六.修改面的法向方向命令:ANORM,面的编号ANUM,单元的法向方向是否修改选项NOEFLIP例:ANORM,2七.体素的删除基本的命令为:*DELE组合不同的关键字形成不同的命令如:KDELE,LDELE,ADELE,VDELE基本的命令格式为:*DELE,起始体素编号N*1,结束体素编号N*2,增量NINC,是否删除体素下层的元素选项KSWP如:LDELE,2,5,1,1八.体素的映射基本的命令为:*SYMM组合不同的关键字形成不同的命令如:KSYMM,LSYMM,ARSYM,VSYMM基本的命令格式为:*SYMM,映射轴选项NCOMP,起始体素编号N*1,结束体素编号N*2,增量NINC,关键点编号增量KINC,NOELEM, IMOVE如:VSYMM,X,1,10,1,,,,【分享】log文件整理心得作者:bigmao1.要注意时间,因为每次做的东西都会跟在log文件后面,所以要根据时间取舍,不是所有的log 文件中的内容就有用的,一开始我建议从新建一个文件开始。

相关文档
最新文档