人教版八年级下册数学第18章《平行四边形》易错题综合练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级下册数学第18章《平行四边形》易错题综合练习题
1.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F 两点,垂足是点O.
(1)求证:△AOE≌△COF;
(2)问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明).
2.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线与点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
3.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE =度.
4.如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.
(1)求证:△ABE≌△DAF;
(2)求证:BE⊥AF;
(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.
5.如图,点A、F、C、D在同一直线上,AB∥DE,AC=DF,AB=DE.
(1)求证:四边形BCEF是平行四边形;
(2)若∠ABC=90°,AB=8,BC=6,当AF为何值时,四边形BCEF是菱形.
6.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD 交于点N.
(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.
7.(1)已知:如图,E、F、G、H分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.
求证:四边形EFGH是矩形.
(2)已知:E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD上与顶点均不重合的点,且四边形EFGH是矩形.AE与AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明.
8.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
9.如图,E、F是四边形ABCD的对角线AC上两点,AE=CF,DF∥BE,DF=BE.(1)求证:四边形ABCD是平行四边形;
(2)若AC平分∠BAD,求证:▱ABCD为菱形.
10.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)BD与CD有什么数量关系,并说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
(3)在(2)的条件下,△ABC满足条件,矩形AFBD是正方形.
参考答案
1.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC(平行四边形的对边相互平行).
∴∠EAO=∠FCO,∠AEO=∠CFO(两直线平行,内错角相等);∵EF垂直平分AC,
∴OA=OC.
在△AOE和△COF中,
∠EAO=∠FCO,∠AEO=∠CFO,OA=OC.
∴△AOE≌△COF(AAS);
(2)由(1)知,
△AOE≌△COF,则OE=OF,
∴AC垂直平分EF,
又∵AC的垂直平分线是EF,
∴四边形AFCE是菱形.
2.(1)证明:∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
在△AEF和△DEB中,

∴△AEF≌△DEB(AAS);
(2)证明:由(1)得:△AEF≌△DEB,
∴AF=DB,
又∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=BC=CD,
∴四边形ADCF是菱形;
(3)解:∵D是BC的中点,
∴S菱形ADCF=2S△ADC=S△ABC=AB•AC=×8×6=24.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,

∴△BCP≌△DCP(SAS);
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC;
(3)解:与(2)同理可得:∠DPE=∠ABC,
∵∠ABC=58°,
∴∠DPE=58°.
故答案为:58.
4.解:(1)证明:∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在Rt△ABE和Rt△DAF中,

∴Rt△ABE≌Rt△DAF(HL);
(2)证明:∵Rt△ABE≌Rt△DAF,
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∴BE⊥AF;
(3)∵BE⊥AF,
∵点H为BF的中点,
∴GH=BF,
∵在Rt△BCF中,BC=5,CF=CD﹣DF=5﹣2=3,根据勾股定理,得∴BF==,
∴GH=.
5.(1)证明:∵AB∥DE,
∴∠A=∠D,
在△BAC和△EDF中,
∴△BAC≌△EDF(SAS),
∴BC=EF,∠BCA=∠EFD,
∴BC∥EF,
∴四边形BCEF是平行四边形;
(2)解:连接BE,交CF于点G,
∵四边形BCEF是菱形,
∴CG=FG,BE⊥AC,
∵∠ABC=90°,AB=8,BC=6,
∴AC==10,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,
∴=,
即=,
∴CG=3.6,
∵FG=CG,
∴FC=2CG=7.2,
∴AF=AC﹣FC=10﹣7.2=2.8.
6.(1)证明:∵四边形ABCD是矩形,
∴∠B=∠D=90°,AB=CD,AD∥BC,
∵四边形AECF是矩形,∴AE∥CF,
∴四边形AMCN是平行四边形,
∴AM=CN,
在Rt△ABM和Rt△CDN中,
∵,
∴Rt△ABM≌Rt△CDN(HL);
(2)解:当AB=AF时,四边形AMCN是菱形,
理由:∵四边形ABCD、AECF是矩形,
∴∠B=∠BAD=∠EAF=∠F=90°,
∴∠BAD﹣∠NAM=∠EAF﹣∠NAM,即∠BAM=∠FAN,在△ABM和△AFN中∠BAM=∠FAN,AB=AF,∠B=∠F
∵,
∴△ABM≌△AFN(ASA),
∴AM=AN,
由(1)知四边形AMCN是平行四边形,
∴平行四边形AMCN是菱形.
7.(1)证明:∵四边形ABCD是菱形,
∴∠A=∠C,∠B=∠D,AB=BC=CD=DA
∵AE=AH=CF=CG,
∴BE=BF=DH=DG,
在△AEH与△CGF中,

∴△AEH≌△CGF,
同理△BEF≌△DGH,
∴EH=FG,EF=GH,
∴四边形EFGH是平行四边形,
∵∠A+∠D=180°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形EFGH是矩形;
(2)如图,m、n是经过菱形对角线交点且与对边垂直的2条直线,交AB于P,交AD 于Q,
由(1)知,△AEH≌△CGF,△BEF≌△DGH,显然,AE与AH不相等.
故AE和AH不一定相等.
8.(1)证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
∴四边形ADCE是平行四边形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四边形ADCE是菱形;
(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,
∴AD=DB=CD=6.
∴AB=12,由勾股定理得.
∵四边形DBCE是平行四边形,
∴DE=BC=6.
∴.9.证明:(1)∵DF∥BE,
∴∠DFA=∠CEB,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在△ADF和△CBE中,
∴△ADF≌△CBE(SAS),
∴AD=CB,∠DAC=∠ACB,
∴AD∥CB,
∴四边形ABCD是平行四边形;
(2)∵AC平分∠BAD,
∴∠DAC=∠BAC,
∴∠BAC=∠ACB,
∴AB=BC,
∴▱ABCD为菱形.
10.解:(1)BD=CD,
理由:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEC中,,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∴AF=BD,
∴DB=CD;
(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD(三线合一),
∴∠ADB=90°,
∴▱AFBD是矩形.
(3)△ABC满足∠BAC=90°,矩形AFBD是正方形;∵BD=CD,∠BAC=90°,
∴AD=BD,
∴矩形AFBD是正方形.。

相关文档
最新文档