电力电子课设.doc

合集下载

电力电子技术的课程设计

电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。

技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。

课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。

学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。

通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。

二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。

教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。

教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。

教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。

教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。

电力电子课程设计

电力电子课程设计

1 绪论所谓电力电子技术就是应用于电力领域的电子技术。

电子技术包括信息电子技术和电力电子技术两大分支。

通常所说的模拟电子技术和数字电子技术都属于信息电子技术。

电力电子技术中所变换的“电力〞和“电力系统〞所指的“电力〞是有区别的。

两者都指“电能〞,但后者更详细,特指电力网的电力,前者那么更一般一些。

详细地说,电力电子技术就是使用电力电子器件对电能进展变换和控制的技术。

电力电子器件是电力电子技术开展的根底。

正是大功率晶闸管的创造,使得半导体变流技术从电子学中别离出来,开展成为电力电子技术这一专门的学科。

电力电子技术是20世纪后半叶诞生和开展的一门崭新的技术,但它的的应用领域已经深化到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。

功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。

电力电子技术在电力系统中的应用中也有了长足的开展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵敏的特点,可以显著地改善电力系统的特性,在进步系统稳定、降低运行风险、节约运行本钱方面有很大潜力。

有人预言,电力电子技术和运动控制一起,将和计算机技术共同成为将来科学技术的两大支柱。

可见,电力电子技术在21世纪中将会起着非常重要的作用,有着非常光明的将来。

随着科学技术的日益开展,人们对电路的要求也越来越高,由于在消费实际中需要大小可调的直流电源,而相控整流电路构造简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。

在电能的消费和传输上,目前是以交流电为主。

电力网供应用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。

要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。

这个方法中,整流是最根底的一步。

整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电,整流的根底是整流电路。

电力电子课程设计课本

电力电子课程设计课本

电力电子课程设计课本一、教学目标本节课的教学目标是使学生掌握电力电子学的基本概念、原理和应用,培养学生对电力电子技术的兴趣和热情,提高学生的科学素养和创新能力。

具体目标如下:1.知识目标:学生能够了解电力电子学的基本概念、原理和主要器件,理解电力电子电路的工作原理和性能,掌握电力电子技术的应用领域。

2.技能目标:学生能够分析简单的电力电子电路,进行电力电子器件的选择和应用,具备设计简单的电力电子电路的能力。

3.情感态度价值观目标:学生能够认识电力电子技术在现代社会中的重要性和地位,培养对电力电子技术的兴趣和热情,提高科学素养和创新能力。

二、教学内容本节课的教学内容主要包括电力电子学的基本概念、原理和应用。

具体安排如下:1.电力电子学的基本概念和原理:介绍电力电子学的定义、特点和基本原理,讲解电力电子器件的分类、特性和应用。

2.电力电子电路:分析电力电子电路的工作原理和性能,介绍电力电子电路的常见应用领域,如电力变换、电力控制等。

3.电力电子技术的应用:介绍电力电子技术在现代社会中的应用案例,如变频调速、电动汽车、智能电网等,强调电力电子技术对现代社会的重要性和影响。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法相结合的方式进行教学。

具体方法如下:1.讲授法:通过讲解电力电子学的基本概念、原理和应用,使学生掌握电力电子技术的基本知识。

2.案例分析法:通过分析具体的电力电子应用案例,使学生了解电力电子技术在实际工程中的应用和价值。

3.实验法:学生进行电力电子实验,使学生亲自操作和观察电力电子电路的工作原理和性能,提高学生的实践能力和创新能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课将采用以下教学资源:1.教材:选用权威、实用的电力电子学教材,为学生提供系统、科学的学习材料。

2.参考书:推荐学生阅读电力电子学相关的参考书籍,拓展学生的知识面。

3.多媒体资料:制作精美的PPT、视频等多媒体资料,为学生提供直观、生动的学习资源。

AC-DC-DC电源设计(电力电子课设)

AC-DC-DC电源设计(电力电子课设)

_______________________________________________________________________________目录1 开关电源 (2)1.1开关电源的概念 (2)1.1.1 PWM技术简介 (2)1.1.2 降压型DC-DC开关电源原理简介 (3)1.2 开关电源的发展简介 (5)1.3 开关电源的发展展望 (6)2 主电路图设计 (7)2.1 三相整流部分 (8)2.2 直流斩波电路部分 (9)2.2.1 参数计算 (10)2.2.2 斩波仿真电路 (10)2.3 主电路仿真 (11)3 控制电路部分 (12)3.1 设计思想 (12)3.2 设计电路图 (13)4 最终设计方案 (15)总结 (17)参考文献 (18)附录 (19)_______________________________________________________________________________ AC-DC-DC电源(120V,500W)设计1 开关电源1.1开关电源的概念开关电源(Switch Mode Power Supply,SMPS)是以功率半导体器件为开关元件,利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。

线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。

另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。

一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

开关电源电路主要由整流滤波电路、DC-DC控制器(内含变压器)、开关占空比控制器以及取样比较电路等模块组成。

电力电子课程设计

电力电子课程设计

1 引言1.1 PWM控制技术简介PWM (Pulse Width Modulation)控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。

PWM控制的思想源于通信技术,全控型器件的发展使得实现PWM控制变得十分容易。

PWM技术的应用十分广泛,它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。

PWM控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。

1.2 PWM控制的基本原理PWM稳压电源主电路与市面上成熟的PWM稳压电源类似。

当交流电机和一个脉宽调制变频器一起被用于变频调速时,设计V PWM是为了测量交流电机有效电压。

这种类型的变频器首先从交流源产生一个直流电压E,被称为直流链电压。

然后利用电力电子变换技术,采用脉宽调制来变换直流链电压,可以得到一个三相电源系统,例如:通过IGBT 在数ms内将直流电压开关数百次,来创建频率可调的三相电压。

然而输出电压并不是正弦波,而是一个恒幅值的高频斩波波形,如图1-1所示。

这种电压被送给电机,由于电机是一个大的感性负载,主要对电源电压低频部分作出响应,故电流波形仅具有少量的高频成分,近似为一个正弦波。

对于系统设计者和使用者,能够测量出电机实际接收到的电压V PWM,检查电机的矢量参数或v/f是否超出范围是非常重要的。

如果长时间超出电机的标称v/f值(例如,电机在高频、低速下运转),电机将会发热,甚至损坏,而产生严重后果。

然而需要注意的是,用电压表测量该斩波波形的电压是有效值V rms,而电机响应的实际有效电压V PWM与图1的脉宽调制波的有效值V rms之间存在非常大的误差。

例如某系统,当V PWM=144V时,V rms=192V,误差率为(192-144)/144=33。

3%图1-1采样经检测系统将数据送给控制系统。

控制系统通过计算基频的整个周期的绝对平均电压的有效值即均方根值检测出VPWM。

电力电子技术基础课程设计

电力电子技术基础课程设计

电力电子技术基础课程设计一、设计背景电力电子技术是现代电力系统运行、传输、转换、控制等方面的重要技术,是推进电力系统安全、稳定、节能、环保等方面的关键技术之一。

本课程设计旨在通过基础电力电子器件的设计和仿真,使学生深入了解电子元器件特性与运行原理,提高学生的电力电子技术理论和实践能力,为其今后进一步从事该领域的研究和应用提供必要的基础。

二、课程设计内容1. 设计任务设计一个电源电路,要求输入交流电压230V,输出稳定的直流电压5V、1A。

设计过程中需要包括选型、分析、仿真等环节,最终完成基于电阻、电容等电力电子器件的电源电路。

2. 设计流程2.1 电路选型通过分析电源电路需要的功能和特性,确定需要使用的元器件类型。

根据输入输出电压、电流等参数,选择合适的器件型号。

2.2 电路原理图设计根据电路选型,使用电路设计软件(如Multisim等)进行原理图设计,将所需元器件拖入工作区域并进行连线、参数设置等操作。

2.3 电路仿真在Multisim等软件上进行电路仿真,并通过仿真结果调整电路中各元器件的参数。

2.4 PCB版图设计在电路仿真和参数调整完毕后,根据电路原理图进行PCB版图设计,并导入PCB设计软件进行布局和布线等操作。

2.5 PCB板上电路的组装与测试完成PCB版图设计后,将电路中的器件安装到PCB板上,进行电路测试并调查是否达到预期目标。

3. 作品展示最终成品应能够将输入的交流电压转换成稳定的5V直流电压,并能够提供至少1A的电流输出。

学生可在作品展示环节进行电路说明和参数分析,以展现其深入学习电力电子技术的优秀成果。

三、思考题1.在设计电源电路时,需要考虑哪些因素?2.在Multisim软件进行仿真电路时,应该如何对仿真结果进行分析和评估?3.在硬件实际搭建电路时,应注意哪些事项?如何快速排错?四、总结本课程设计要求学生深入学习电力电子技术的理论与实践,并且应用软件进行电路仿真与测试。

其设计思路清晰,流程简洁清晰,体现出了电子电路设计的全流程与实践过程,为学生今后进一步从事该领域的研究和应用提供必要的基础。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告.doc本次课程设计的主题是电力电子技术,旨在通过实践操作及深入研究,掌握电力电子器件和系统的运行原理、设计与控制方法。

本报告将详细介绍本次课程设计的内容、目的及实施过程,并对结果进行总结与展望。

一、课程设计的内容及目的本次课程设计的主要内容为电力电子器件模块的设计及控制,具体包括以下内容:(1)电力电子器件模块的设计:本次课程设计的目标是实现一个电力电子器件模块,该模块采用的器件是MOSFET,要求能够实现输入电压与输出电压的变化控制,并具有良好的稳定性和可靠性。

(2)控制电力电子器件模块:本次课程设计还要求实现对电力电子器件模块的控制,包括输出电压的变化控制和保护性措施的设计等。

通过本次课程设计,学生可以了解电力电子器件的工作原理、性能特点和设计方法,掌握电力电子器件的调节和控制技术,提高学生的综合实践能力和创新能力。

二、课程设计的实施过程本次课程设计主要分为设计、制作及测试三个阶段。

1、设计阶段在设计阶段,学生需按照要求完成电力电子器件模块的设计,具体包括以下内容:(1)设计输入输出电压的大小和变化范围。

(2)选择合适的电力电子器件,确定电路拓扑结构。

(3)设计电力电路的关键参数,包括电流、电压、功率等。

(4)根据设计参数选择合适的控制电路,包括开关电路、反馈电路等。

(5)通过电路仿真软件进行仿真分析,调整电路参数,保证各项参数性能合理、稳定、可靠。

2、制作阶段在设计阶段完成电路模块的主要参数设定后,开始实际制作电路模块。

具体操作流程如下:(1)选购相关器件,如MOSFET、电容、电感等。

(2)通过电路图纸完成电路板原理图和PCB布局设计。

(3)利用PCB设计软件进行图纸制作,并进行打样检验。

(4)进行电路元器件焊接。

(5)检查焊接后电路元器件的连接情况是否正确。

(6)测试电路模块的基本性能,包括输入输出电压的测试、开关信号测试等。

3、测试阶段在电路模块制作完成后,需要进行测试,以检验电路的性能是否满足要求。

电力电子毕业课程设计

电力电子毕业课程设计

电力电子毕业课程设计一、课程目标知识目标:1. 学生能理解电力电子技术的基本原理,掌握常见电力电子器件的工作原理及应用。

2. 学生能掌握电力电子装置的设计方法,包括器件选型、参数计算和电路搭建。

3. 学生了解电力电子技术在新能源、电力系统和工业控制中的应用。

技能目标:1. 学生具备分析和解决实际电力电子工程问题的能力,能运用所学知识进行电路设计与调试。

2. 学生能运用相关软件(如PSPICE、MATLAB等)进行电力电子电路的仿真分析,提高实际操作能力。

3. 学生具备查阅相关技术文献、资料的能力,提高自学能力和团队协作能力。

情感态度价值观目标:1. 学生通过课程学习,培养对电力电子技术的兴趣,激发创新意识和探索精神。

2. 学生能够关注电力电子技术的发展趋势,认识到其在国家能源战略和节能减排中的重要性。

3. 学生在课程实践中,培养严谨、负责的工作态度,提高沟通与协作能力。

本课程针对电力电子专业毕业生,结合学生特点和教学要求,注重理论与实践相结合,提高学生的实际操作能力和工程素养。

通过课程学习,使学生具备电力电子技术的基本知识和技能,为未来的职业发展打下坚实基础。

同时,培养学生对电力电子技术的兴趣和责任感,为我国电力电子行业的发展贡献力量。

二、教学内容1. 电力电子器件原理及特性:包括二极管、晶体管、晶闸管、场效应晶体管等常见器件的工作原理、特性参数和应用领域。

教材章节:第1章 电力电子器件2. 电力电子变换电路:介绍AC-DC、DC-AC、DC-DC等基本电力电子变换电路的原理、拓扑结构及其应用。

教材章节:第2章 电力电子变换电路3. 电力电子装置设计:讲解装置设计方法、步骤,包括器件选型、参数计算、电路搭建等。

教材章节:第3章 电力电子装置设计4. 电力电子电路仿真:运用PSPICE、MATLAB等软件进行电力电子电路的仿真分析,提高学生实际操作能力。

教材章节:第4章 电力电子电路仿真5. 电力电子技术在新能源、电力系统和工业控制中的应用:分析各类应用实例,让学生了解电力电子技术的实际应用。

电力电子升降压变换器课程设计.docx

电力电子升降压变换器课程设计.docx

1绪论《电力电子技术》课程是一门专业技术基础课,电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。

其目的是训练学生综合运用学过的变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。

《电力电子技术》课程设计是配合变流电路理论教学,为自动化专业开设的专业基础技术技能设计,课程设计对自动化专业的学生是一个非常重要的实践教学环节。

通过设计能够使学生巩固、加深对变流电路基本理论的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力。

斩波电路 (DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器( DC/DC Converter)。

直流斩波电路的种类很多,包括 6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路, Cuk 斩波电路, Sepic 斩波电路, Zeta 斩波电路,前两种是最基本电路。

应用Matlab 的可视化仿真工具 Simulink 建立了电路的仿真模型,在此基础上对升降压斩波 Boost—Buck 电路进行了较详细的仿真分析。

本文分析了升降压斩波电路的工作原理,又用 Matlab 对升压 -降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。

2升降压斩波电路的设计2.1 升降压斩波电路工作原理(1)V 通时,电源 E 经 V 向 L 供电使其贮能,此时电流为i1 。

同时, C 维持输出电压恒定并向负载R 供电。

(2)V 断时, L 的能量向负载释放,电流为i2 。

负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。

a)原理图b)波形图图( 3)升压 /降压斩波电路的原理图及波形图数量关系:稳态时,一个周期T 内电感 L 两端电压 uL 对时间的积分为零,即:TuLdt当 V 处于通态时, u L E ;当 V 处于断态时, u Lu o ;于是:Et onU 0 toff所以输出电压为:U 0t on EtonEEt offTton1由此可见,改变导通占空比α,就能够控制斩波电路输出电压U 。

电力电子技术课程设计

电力电子技术课程设计

电力电子技术课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及功能,理解不同器件在电力转换中的应用。

2. 使学生了解电力电子电路的基本拓扑结构,掌握常见电力电子电路的原理及分析方法。

3. 帮助学生掌握电力电子装置的控制策略,了解电力电子技术在节能、环保等方面的应用。

技能目标:1. 培养学生运用所学知识分析、设计简单电力电子电路的能力。

2. 提高学生动手实践能力,能正确搭建、调试和优化电力电子实验装置。

3. 培养学生运用电力电子技术解决实际问题的思维方法和创新能力。

情感态度价值观目标:1. 激发学生对电力电子技术学科的兴趣,培养其探索精神和求知欲。

2. 培养学生具备良好的团队合作意识,学会在团队中沟通交流,共同解决问题。

3. 增强学生的节能环保意识,使其认识到电力电子技术在未来可持续发展中的重要性。

课程性质:本课程为专业核心课程,旨在让学生掌握电力电子技术的基本理论和实践技能,培养学生具备分析和解决实际问题的能力。

学生特点:学生具备一定的电子技术基础,具有较强的学习能力和实践操作能力,对新技术和新事物充满好奇心。

教学要求:注重理论与实践相结合,强调学生的主体地位,鼓励学生主动参与、积极思考,提高其分析问题和解决问题的能力。

通过课程学习,使学生达到预定的学习成果,为后续相关课程的学习和实际工作打下坚实基础。

二、教学内容1. 电力电子器件原理及分类:包括半导体器件、二极管、晶体管、晶闸管等基本原理、特性及应用。

教材章节:第一章《电力电子器件》2. 电力电子电路拓扑结构:分析常见电力电子电路如整流电路、斩波电路、逆变电路的原理及性能。

教材章节:第二章《电力电子电路拓扑》3. 电力电子装置控制策略:学习PID控制、PWM控制等在电力电子装置中的应用。

教材章节:第三章《电力电子装置的控制》4. 电力电子技术应用:介绍电力电子技术在工业、家电、新能源等领域的应用案例。

教材章节:第四章《电力电子技术的应用》5. 实践教学:组织学生进行电力电子电路搭建、调试和优化实验,提高学生动手能力。

电力电子课程设计模板

电力电子课程设计模板

电力电子课程设计模板一、教学目标本课程的教学目标是使学生掌握电力电子的基本原理、基本电路和基本分析方法,培养学生运用电力电子技术解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解电力电子的基本概念、原理和特点;(2)熟悉电力电子器件的结构、工作原理和特性;(3)掌握电力电子电路的分析方法及应用。

2.技能目标:(1)能够分析简单的电力电子电路,并进行仿真或实验;(2)具备设计简单电力电子电路的能力;(3)学会使用相关仪器仪表进行电力电子电路的测试与维护。

3.情感态度价值观目标:(1)培养学生对电力电子技术的兴趣和热情,提高学生的人文素养;(2)培养学生团队协作、创新思维和实践能力;(3)使学生认识到电力电子技术在现代社会中的重要性,提高学生的社会责任感和使命感。

二、教学内容本课程的教学内容主要包括电力电子的基本概念、电力电子器件、电力电子电路分析及应用。

具体安排如下:1.电力电子的基本概念:电力电子的定义、特点和应用领域;2.电力电子器件:晶闸管、GTO、IGBT等器件的结构、原理和特性;3.电力电子电路分析:直流斩波电路、交流调压电路、相控整流电路等;4.电力电子电路应用:电力电子设备在电力系统、交通运输、工业生产等领域的应用案例。

三、教学方法为实现教学目标,本课程将采用以下教学方法:1.讲授法:系统讲解电力电子的基本概念、原理和特性;2.案例分析法:分析典型的电力电子电路及应用案例,提高学生的实际应用能力;3.实验法:进行电力电子电路的仿真或实验,培养学生的动手能力和实践能力;4.讨论法:分组讨论电力电子技术的发展趋势、创新点和应用前景,培养学生的团队协作和思辨能力。

四、教学资源为实现教学目标,本课程将采用以下教学资源:1.教材:《电力电子技术》等相关教材,为学生提供系统、全面的知识体系;2.参考书:电力电子技术相关的论文、专著,为学生提供拓展阅读资料;3.多媒体资料:电力电子电路的动画、视频等,帮助学生形象直观地理解电路原理;4.实验设备:电力电子实验板、仿真软件等,为学生提供动手实践的机会。

电力电子实训课程设计

电力电子实训课程设计

电力电子实训课程设计一、课程目标知识目标:1. 学生能理解电力电子器件的基本原理,掌握其工作特性和应用范围。

2. 学生能掌握常见电力电子电路的组成、工作原理及电路分析方法。

3. 学生能了解电力电子装置在实际应用中的注意事项,如散热、电磁兼容等。

技能目标:1. 学生能正确使用电力电子器件,进行简单电路的搭建与调试。

2. 学生能运用所学知识,分析和解决实际电力电子电路中存在的问题。

3. 学生能通过实训课程,提高动手能力,培养实际操作技能。

情感态度价值观目标:1. 学生通过课程学习,培养对电力电子技术的兴趣,提高科技创新意识。

2. 学生能够认识到电力电子技术在节能减排、可持续发展等方面的重要作用,增强环保意识。

3. 学生能够在团队合作中发挥积极作用,培养沟通、协作、解决问题的能力。

本课程针对高年级学生,具有较强的实践性和应用性。

课程设计紧密联系实际,注重培养学生的动手能力和实际操作技能。

在教学过程中,教师应充分关注学生的个体差异,激发学生的学习兴趣,引导学生主动探究,提高学生的综合素质。

课程目标的设定旨在使学生在掌握电力电子技术基本知识的基础上,能够将其应用于实际工作中,为我国电力电子行业的发展做出贡献。

通过对课程目标的分解,有助于教学设计和评估的实施,确保课程目标的达成。

本课程教学内容主要包括以下几部分:1. 电力电子器件原理及其特性:介绍常见的电力电子器件如二极管、晶体管、晶闸管等的工作原理、特性参数及应用场合。

2. 常见电力电子电路:分析整流电路、斩波电路、逆变电路、变频电路等典型电路的组成、工作原理及电路分析方法。

3. 电力电子装置的散热与电磁兼容设计:讲解散热技术、电磁兼容原理,分析实际应用中应注意的问题及解决方法。

4. 电力电子电路的仿真与实验:运用相关软件进行电力电子电路的仿真分析,开展实际电路的搭建、调试与性能测试。

具体教学安排如下:第一周:电力电子器件原理及其特性第二周:整流电路第三周:斩波电路第四周:逆变电路第五周:变频电路第六周:电力电子装置的散热与电磁兼容设计第七周:电力电子电路仿真与实验(上)第八周:电力电子电路仿真与实验(下)教学内容与教材紧密关联,按照教学大纲逐步展开,旨在确保学生能够系统地掌握电力电子技术的基本知识和实践技能。

电力电子的课程设计报告

电力电子的课程设计报告

电力电子的课程设计报告一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及特性,了解其在电力转换中的应用。

2. 使学生了解电力电子电路的基本拓扑结构,能分析简单电力电子电路的工作原理。

3. 引导学生理解电力电子装置的控制策略,了解不同控制方法对电力转换性能的影响。

技能目标:1. 培养学生运用电力电子器件和电路知识,解决实际电力转换问题的能力。

2. 提高学生分析、设计和调试简单电力电子电路的能力。

3. 培养学生运用电力电子控制策略,优化电力转换系统性能的技能。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣和热情,激发学生学习主动性和创新精神。

2. 培养学生严谨的科学态度,注重实践操作的安全性和可靠性。

3. 引导学生关注电力电子技术在节能减排、可持续发展等方面的应用,培养环保意识和责任感。

本课程针对高年级学生,结合电力电子学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平和实践能力。

课程目标具体、可衡量,便于教师进行教学设计和评估,同时充分考虑学生的认知特点,使学生在掌握电力电子技术基本原理的基础上,能够解决实际问题,培养创新精神和实践操作能力。

二、教学内容本章节教学内容主要包括以下三个方面:1. 电力电子器件原理与特性- 基本电力电子器件(如:二极管、晶体管、晶闸管等)的工作原理、特性参数及应用。

- 教材章节:第1章《电力电子器件》。

2. 电力电子电路拓扑结构与分析- 常见电力电子电路拓扑(如:整流电路、逆变电路、斩波电路等)的组成、工作原理及性能分析。

- 教材章节:第2章《电力电子电路》。

3. 电力电子装置控制策略与应用- 电力电子装置控制策略(如:相控、PWM控制等)的原理、实现方法及其对电力转换性能的影响。

- 教材章节:第3章《电力电子装置的控制》。

教学进度安排:1. 课时分配:共12课时,每个部分各4课时。

2. 教学内容逐步深入,从基本器件原理到电路拓扑分析,最后探讨控制策略及其应用。

电力电子课程设计完整版

电力电子课程设计完整版

电力电子课程设计完整版一、教学目标本课程旨在电力电子领域提供一个全面的学习框架,通过深入理解电力电子的基本原理、关键技术和应用实践,使学生能够:1.知识目标:–描述电力电子的基本概念、发展和分类。

–解释电力电子器件的工作原理和特性,包括二极管、晶闸管、GTO、IGBT等。

–阐述电力电子电路的控制策略和设计方法。

–分析电力电子系统的效率、损耗和稳定性问题。

2.技能目标:–能够识别和分析不同类型的电力电子器件和电路。

–设计简单的电力电子转换电路,如AC-DC、DC-DC和DC-AC 转换器。

–运用仿真软件对电力电子系统进行模拟和优化。

–进行电力电子设备的故障诊断和维护。

3.情感态度价值观目标:–培养对电力电子技术在现代社会应用重要性的认识。

–强化节能减排和绿色技术的意识,在设计中考虑可持续性。

–激发对电力电子领域创新的兴趣,以促进技术进步和社会发展。

二、教学内容本课程的教学内容围绕电力电子的基本理论、器件结构、电路设计及其应用展开,具体包括:1.电力电子导论:电力电子的历史、发展趋势和其在现代电力系统中的应用。

2.电力电子器件:各类电力电子器件的结构、工作原理和特性分析。

3.电力电子电路:常用电力电子电路的拓扑结构、控制策略及其性能分析。

4.功率因数校正:功率因数的概念、功率因数校正电路的设计与应用。

5.变频技术:变频器的工作原理、变频技术的应用领域。

6.电力电子仿真:使用仿真工具对电力电子电路进行模拟和分析。

三、教学方法为了提高学生的综合能力和实践技能,本课程将采用多种教学方法:1.讲授法:用于基础理论知识和关键概念的传授。

2.案例分析法:分析具体的电力电子应用案例,加深对理论的理解。

3.实验法:通过实验操作,培养学生的动手能力和问题解决能力。

4.讨论法:分组讨论,促进学生之间的交流与合作,激发创新思维。

四、教学资源为确保高质量的教学效果,将充分利用以下教学资源:1.教材:《电力电子学》及相关辅助教材。

电力电子技术课程设计

电力电子技术课程设计

电力电子技术 课程设计一、课程目标知识目标:1. 让学生掌握电力电子技术的基本概念、分类及其在电力系统中的应用。

2. 使学生了解各种电力电子器件的工作原理、特性及选型方法。

3. 帮助学生掌握电力电子变换器的主电路拓扑、控制策略及其在电力系统中的应用。

技能目标:1. 培养学生运用电力电子器件和变换器解决实际问题的能力。

2. 提高学生分析、设计和调试电力电子电路的能力。

3. 培养学生运用相关软件(如PSPICE、MATLAB等)进行电力电子电路仿真分析的能力。

情感态度价值观目标:1. 培养学生对电力电子技术学科的兴趣,激发学生主动学习的积极性。

2. 培养学生严谨的科学态度,注重实践与创新能力的培养。

3. 增强学生的团队合作意识,培养学生的沟通与协作能力。

课程性质分析:本课程为专业核心课程,具有较强的理论性和实践性,旨在培养学生的电力电子技术基础知识和应用能力。

学生特点分析:学生为高中年级学生,具备一定的物理、数学基础,对电力电子技术有一定了解,但尚未系统学习。

教学要求:结合学生特点和课程性质,采用理论教学与实践教学相结合的方法,注重启发式教学,引导学生主动探究,培养实际操作能力。

1. 掌握电力电子技术的基本概念、分类和应用。

2. 熟悉各种电力电子器件的工作原理、特性和选型方法。

3. 学会分析、设计和调试电力电子电路。

4. 提高运用软件进行电力电子电路仿真分析的能力。

5. 增强团队合作意识,提高沟通与协作能力。

二、教学内容1. 电力电子技术基本概念:介绍电力电子技术的定义、分类及其在电力系统中的应用。

教材章节:第一章 电力电子技术概述内容:电力电子器件、电力电子装置、电力电子变换器等。

2. 电力电子器件:讲解各种电力电子器件的工作原理、特性及选型方法。

教材章节:第二章 电力电子器件内容:二极管、晶闸管、MOSFET、IGBT等器件的工作原理、特性参数及应用。

3. 电力电子变换器:分析电力电子变换器的主电路拓扑、控制策略及其在电力系统中的应用。

电力电子毕业课程设计

电力电子毕业课程设计

电力电子毕业课程设计一、教学目标本章节的教学目标包括以下三个方面:1.知识目标:使学生掌握电力电子的基本原理、方法和应用,了解电力电子技术在现代社会中的重要作用。

2.技能目标:培养学生具备分析、解决电力电子问题的能力,能够运用电力电子技术进行实际工程设计和应用。

3.情感态度价值观目标:激发学生对电力电子技术的兴趣和热情,培养学生的创新意识和团队合作精神,提高学生的人文素养和社会责任感。

二、教学内容本章节的教学内容主要包括以下几个方面:1.电力电子的基本原理:电力电子器件的工作原理、特性及其应用。

2.电力电子电路:电力电子电路的种类、特点及其应用,包括整流电路、逆变电路、变频电路等。

3.电力电子技术应用:电力电子技术在电力系统、交通运输、工业生产等领域的应用案例。

4.电力电子设备的设计与维护:电力电子设备的设计方法、维护技巧和安全注意事项。

三、教学方法为了实现本章节的教学目标,将采用以下几种教学方法:1.讲授法:通过讲解电力电子的基本原理、方法和应用,使学生掌握相关知识。

2.案例分析法:分析电力电子技术在实际工程中的应用案例,提高学生的应用能力。

3.实验法:让学生亲自动手进行电力电子实验,加深对电力电子技术的理解和掌握。

4.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新能力。

四、教学资源为了保证本章节的教学质量,将准备以下教学资源:1.教材:选用国内权威的电力电子技术教材,为学生提供系统、科学的学习材料。

2.参考书:推荐学生阅读电力电子技术相关的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作精美的PPT、教学视频等多媒体资料,提高学生的学习兴趣。

4.实验设备:准备充足的电力电子实验设备,确保每个学生都能动手进行实验。

五、教学评估本章节的教学评估主要包括以下几个方面:1.平时表现:评估学生在课堂上的参与程度、提问回答等情况,以体现学生的学习态度和积极性。

2.作业:评估学生完成的电力电子相关作业的质量,包括习题、实验报告等,以检验学生的知识掌握和应用能力。

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

电力电子课程设计内容

电力电子课程设计内容

电力电子课程设计内容一、教学目标本课程旨在让学生了解和掌握电力电子的基本原理、技术和应用,培养学生对电力电子领域的兴趣和热情,提高学生的科学素养和工程实践能力。

具体目标如下:1.知识目标:通过本课程的学习,学生能够理解电力电子的基本概念、原理和特性,掌握电力电子器件的工作原理和选用方法,了解电力电子技术的应用领域和发展趋势。

2.技能目标:学生能够运用电力电子的基本原理和方法,分析和解决电力电子系统中的实际问题,具备一定的电力电子系统设计和调试能力。

3.情感态度价值观目标:通过本课程的学习,学生能够认识到电力电子技术在现代社会中的重要地位,培养对电力电子技术的敬畏之心,激发学生对科学研究的热情和责任感。

二、教学内容本课程的教学内容主要包括电力电子的基本原理、电力电子器件、电力电子电路和电力电子技术应用四个部分。

具体安排如下:1.电力电子的基本原理:介绍电力电子技术的基本概念、特点和分类,阐述电力电子器件的工作原理和性能参数。

2.电力电子器件:讲解常用的电力电子器件,如晶闸管、GTO、IGBT等,及其选用方法和应用场合。

3.电力电子电路:分析电力电子电路的基本结构和工作原理,包括整流电路、逆变电路、变频电路等。

4.电力电子技术应用:介绍电力电子技术在各个领域的应用实例,如电力系统、交通运输、工业控制等。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。

具体方法如下:1.讲授法:通过教师的讲解,使学生掌握电力电子的基本原理和知识。

2.讨论法:学生进行课堂讨论,培养学生的思考能力和团队协作精神。

3.案例分析法:分析实际案例,使学生更好地理解电力电子技术的应用。

4.实验法:安排实验课程,让学生亲自动手操作,提高学生的实践能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料。

2.参考书:提供丰富的参考书籍,拓展学生的知识视野。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子课设摘要整流电路是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。

整流电路的应用十分广泛,例如直流电动机,电镀,电解电源,同步发电机励磁,通信系统电源等。

本次研究的就是交流电经过整流电路,变成直流电,供给直流电动机负载。

采用并联多重12脉冲联结(两个三相桥式全控整流电路并联)和顺序控制的方法,减少交流输入的电流谐波,同时减少直流输出电压中的谐波幅值,提高纹波频率。

由于晶闸管的导通,必须有触发脉冲,所以整流电路外加触发电路,由于集成电路可靠性高,体积小,功耗低,调试方便,所以触发电路由KJ004和KJ041集成电路组成。

本文通过理论分析、仿真研究和实验验证,证实了该电路的合理性、可靠性,实用性。

关键词:12脉并联;整流电路;KJ004;KJ041目录第1章绪论 (4)1.1电力电子技术概况 (4)1.2本文设计内容 (5)第2章电路设计 (6)2.1总体设计方案 (6)2.2.1主电路设计 (6)2.2.2触发电路设计 (9)2.3元器件型号选择 (9)第3章课程设计总结 (18)参考文献 (19)第1章绪论1.1电力电子技术概况电力电子器件应用与电力电子系统,它是利用电力电子器件对电能进行变换和控制的新兴学科。

电力电子技术主要应用于电力变换。

电力电子器件的发展是以电力电子器件为核心,伴随着变换技术和控制技术的发展而发展。

电力电子技术可以理解为功率强大,可供诸如电力系统那样的大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它运行效率问题。

为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式,这种开关方式就是电力电子器件运能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、行的特点。

新型电力电子器件呈现出许多优势,它使得电力电子技术发生了突变,进入了现代电力电子技术阶段。

现代电力电子技术的主要特点是:(1)全控化是由半控型普通晶闸管发展到各类自关断器件,是电力电子器件在功能上的重大突破。

自关断器件实现了全控化,取消了传统电力电子器件的复杂换相电路,使电路大大简化。

(2)集成化与传统电力电子器件的分立方式完全不同,所有的全控型器件都是由许多单元器件并联在一起,集成在一个基片上。

(3)高频化是指随着器件集成化的实现,同时也提高了器件的工作速度,例如GTR可工作在10kHz频率以下,IGBT工作在几十千赫兹以上,功率MOSFET 可达数百千赫兹以上。

(4)高效率化体现在器件和变换技术这2个方面,由于地电力电子器件的导通压降不断减少,降低了导通损耗;器件开关的上升和下降过程加快,也降低了开关损耗;器件处于合理的运行状态,提高了运行效率;变换器中采用的软开关技术,使得运行效率得到进一步提高。

(5)变换器小型化是指随着器件的高频化,控制电路的高度集成化和微型化,使得滤波电路和控制器的体积大大减小。

电力电子器件的多单元集成化,减少了主电路的体积。

控制器和功率半导体器件等,采用微型化的表面贴技术使得变换器的体积得到了进一步减少,功率为10kV 。

1.2本文设计内容本设计的主要内容是采用多脉整流,以减小输出直流的脉动,为1台额定电压220V、功率为42kW的直流电动机提供直流可调电源,以实现直流电动机的调速。

课题对带三相 PFC 的AC / DC变换器进行一些有益的研究,重点对传统的12脉波整流电路进行了改进,加入辅助电路有效的减小了流入电网的谐波电流,并且在较宽的范围内可以调节输出电压。

交流电源三相380V经过整流输出电压U在0~220V连续可调,同时整流输出电流最大值为200A,向直流电动机负载d供电。

根据实际工作情况最小控制角α取20~300左右。

220V/200A并联多重12脉可控整流电路的设计包括方案的经济技术论证、设计并联多重可控整流电路的主电路设计、通过计算选择整流器件的具体型号、确定变压器变比及容量、触发电路设计和选择绘制相关电路图。

第2章 电路设计2.1总体设计方案对于输入交流电流,采用多重联结不仅可以减少交流输入电流的谐波,同时也可以减少直流输出电压中的谐波幅值并提高纹波频率,因而可减少平波电抗器。

初选并联6脉可控整流、串联12脉可控整流、并联12脉可控整流。

12脉冲整流器在多项性能指标优于6脉整流器,同时并联和串联整流器效果是相同的。

但根据本次设计的主要内容、技术要求和经济支持下,采用并联12脉可控整流。

电路设计构想方案如下:图2.1电路方框图2.2具体电路设计 2.2.1主电路设计随着整流装置功率的进一步加大,它所产生的谐波、无功功率等对电网的干扰也随之加大,为了减轻干扰,可采用多重化整流电路。

即将几个整流电路多重联结可减少交流侧输入电流的谐波,而对晶闸管多重整流电路采用顺序控制的方法可提高功率因数。

交流电输入 并联整流电路 电动机负载 触发电路根据此次设计的要求,采用将两个三相桥式全控整流电路(带阻感负载)并联多重12脉波整流电路,并且连接一个额定电压为220V 、额定功率为42KW 的直流电动机的负载,还有一个电感L,平衡电抗器Lp 。

电路采用平衡电抗器来平衡各组整流器的电流,其原理与双反星型电路中采用平衡电抗器是一样的。

变压器二次侧的两绕组的机型相反可消除贴心的直流磁化,设置电感量为Lp 的平衡电抗器是为了保护两组三相全控桥式整流电路同时导电,每组承担一半负载。

依据题意控制角取30º,利用变压器的二次绕组不同,使两组三相交流电源间相位错开30º,从而使输出整流电压Ud,在每个交流电源周期中脉动12次,故该电路是12脉冲整流电路。

整流变压器二次绕组分别采用星形和三角形接法构成相位差30º、大小相等的两组电压,接至相互并联的两组整流桥。

因绕组接法不同,变压器一次绕组和两组二次绕组的匝比为。

L LP50 %12a1c1b1c2b2a2M K2TT id VT1VT3VT5VT4VT6VT2VT7VT9VT11VT10VT12VT8图2.1并联多重12脉冲可控整流电路主电路原理图此次设计采用多重联结电路顺序控制,使得各整流电桥交流二次输入电压错开一定此相位,但工作是各桥的控制角。

这样可以使输入电流谐波含量大为降低。

根据总直流输出电压从低到高的变化,按顺序依次对各桥进行控制,虽然不能减少输入电流的谐波,但是各组桥中只有一组在进行相位控制,其余各组或不工作,或位移因数为1,因此总的功率因数提高。

下面介绍三相桥式全控整流电路:a1c1b1TVT1VT3VT5VT4VT6VT2负载nL图2.3 三相桥式全控整流电路原理在图2.3中阴极连接在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组,阳极连接在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组。

晶闸管的导通顺序为VT1-VT2-VT3-VT4- VT5-VT6.整流输出电压Up的波形早一周期内波动六次,且每次脉动的波形相同,所以计算器平均值时,只需要对一个脉波(即1/6周期)进行计算即可,当整流输出电压连续时,(即带阻感负载时,或带电阻负载α≤60º)的平均值为:(因为是并联两个三项全控整流电路的电压相等)同时输出电流平均值.。

同理只有当两个电源的电压平均值和瞬时平均值相等时,才能使负载电流平均分配。

所以变压器二次侧电流为:2.2.2触发电路设计使晶闸管开始导通,必须施加触发脉冲,在晶闸管触发电路中必须有触发电路,触发电路性能的好坏直接影响晶闸管电路工作的可靠性,也影响系统的控制精度,正确设计触发电路是晶闸管电路应用的重要环节。

由于集成电路可靠性高,技术性能好,体积小,功耗低,调试方便。

所以此次触发电路是由六片继承触发电路芯片KJ004和两片继承双脉冲发生器芯片KJ041组成。

三片继承触发电路芯片KJ004和一片继承双脉冲发生器芯片KJ041就可形成六路双脉冲,再由六个晶体管进行脉冲放大,即构成完整的三相桥式全控整流电路的集成触发电路,两个完整的三相桥式全控整流电路的集成触发电路并联即是此次设计的触发电路。

锯齿波的斜率一致,各晶闸管的触发脉冲间隔是60º。

同理,角接三相桥式全控整流电路触发电路的电路和星接三相桥式全控整流触发电路相似,至VT1变为至VT7,依次类推。

如图2.4所示触发电路均为模拟的,其优点是结构简单、可靠、但缺点是易受电网电压影响,触发脉冲的不对称度较高,可达,精度低,在对精度要求较高的大容量变流装置中,越来越多的采用数字触发电路,可获得很好的触发脉冲对称度。

但以上触发电路应用于此次设计可以。

2.3元器件型号选择一个额定功率为42kW的,额定电压为220V的直流电动机,12个晶闸管,一个可调的变电感,一个电感,星接变压器,交接变压器,若干导线。

具体参数计算如下:u的波形在一个周期内脉动6次,且每次脉动的波形相同,因此在计算其dα=所平均值时,只需对一个脉波(即1/6周期)进行计算即可。

此外,因为030以电压输出波形是连续的,以线电压的过零点为时间坐标的零点,可得整流输α=和出电压连续时的平均值为。

030输出电流平均值为:U1K J 00412345678910111213141516U2K J 00412345678910111213141516U3K J 00412345678910111213141516U4KJ04112345678910111213141516V15V R10C1R11C2R12C3R1R7R4R2R8R5R3R9R6C7C8C9Uco50 %up 50 %RP450 %RP550 %RP650 %R R0R01至VT1至VT2至VT3至VT4至VT5至VT6R19R20R21R16R17R18C4C5C6RP150 %RP250 %RP350 %V1-15VR13R14R15Usa Usb Usc图2.4星接三相桥式全控整流电路触发电路的电路原理图代入式计算有:变压器二次侧电流为:代入数值计算得:将电流波形分解为傅里叶级数,以a相为例,将电流正、负半波的中点作为时间零点,则有所以解电流基波和各次谐波有效值分别为:有上述式子可得基波因数为:可明显看出电流基波与电压的相位差仍为а,故位移因数仍为功率因数即为α=代入计算得把030交流输入相电压有效值:Boost 开关频率: 50KHz输出额定电压:输出最大电流:输出额定功率:Boost电感的参数设计:Boost 电路输入电流峰值为输入相电流峰值式中,为输入相电压有效值,假设效率为 0.95。

设计电路中电流纹波的峰峰值为电流峰值的 15%,占空比为计算出电感值为开关电源的变压器、电感磁心一般是低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

相关文档
最新文档