信号与系统实验分析报告
《信号与系统》课程实验报告
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告
信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统课程实验报告
合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。
二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。
它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。
2.实验线路检查无误后,打开实验箱右侧总电源开关。
3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。
4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。
信号与系统 matlab实验报告
信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。
通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。
实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。
在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。
通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。
实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。
这就需要进行信号的采样和重构。
在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。
实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。
在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。
此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。
实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。
在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。
通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。
实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。
在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。
通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。
信号与系统实验报告
信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。
信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。
在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。
实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。
信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。
我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。
实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。
在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。
我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。
通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。
实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。
我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。
通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。
实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。
卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。
我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。
实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。
信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。
我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。
通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。
实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。
系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。
我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。
信号与系统分析实验报告
信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。
本实验报告将对信号与系统分析实验进行详细的描述和分析。
实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。
首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。
然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。
实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。
实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。
我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。
实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。
通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。
实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。
通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。
实验结果显示,不同频率的信号在频域上有不同的分布特性。
我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。
实验四:系统辨识本实验旨在研究系统的辨识方法。
我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。
实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。
结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。
实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。
这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。
通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。
信号与系统实验报告
实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。
在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。
1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。
在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。
在MATLAB中连续信号可用向量或符号运算功能来表示。
⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。
向量f为连续信号在向量t所定义的时间点上的样值。
⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。
⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。
%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。
方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。
信号与系统的实验报告
信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。
在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。
实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。
然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。
通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。
实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。
首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。
然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。
通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。
实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。
然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。
通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。
通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。
实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。
然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。
信号与系统实验报告一
信号与系统实验报告一实验一:信号与系统实验报告实验目的:1. 了解信号与系统的基本概念和理论知识;2. 学习使用MATLAB 对信号进行分析和处理;3. 掌握系统的时域和频域分析方法。
实验内容:本次实验包括以下两个部分:1. 信号的生成与表示;2. 系统的时域和频域分析。
一、信号的生成与表示1. 在MATLAB 中生成并绘制以下信号的波形图:(1) 正弦信号:A*sin(2*pi*f*t);(2) 方波信号:sign(sin(2*pi*f*t));(3) 带噪声的正弦信号:(1+N)*sin(2*pi*f*t)。
2. 对以上生成的信号进行分析和处理:(1) 计算各种信号的幅值、频率和相位;(2) 绘制各种信号的功率谱密度图。
二、系统的时域和频域分析1. 在MATLAB 中定义以下信号系统的单位脉冲响应h(n):(1) 线性时不变系统:h(n) = (0.4)^n * u(n),其中,u(n) 表示单位阶跃函数;(2) 非线性时变系统:h(n) = n * u(n)。
2. 对定义的信号系统进行时域和频域分析:(1) 绘制并分析系统的单位脉冲响应;(2) 计算系统的单位脉冲响应的离散时间傅里叶变换;(3) 绘制系统的幅频响应函数。
实验结果:1. 信号的生成与表示:(1) 正弦信号:根据给定的振幅A、频率f 和时间t,在MATLAB 中生成相应的正弦信号,并绘制出波形图。
根据波形图可以观察到正弦信号的周期性和振幅。
(2) 方波信号:根据给定的频率f 和时间t,在MATLAB 中生成相应的方波信号,并绘制出波形图。
方波信号由正负两个幅值相等的部分组成,可以通过绘制图形来观察到。
(3) 带噪声的正弦信号:根据给定的振幅A、频率f、时间t 和噪声系数N,在MATLAB 中生成带噪声的正弦信号,并绘制出波形图。
可以通过观察波形图来分析噪声对信号的影响。
2. 系统的时域和频域分析:(1) 线性时不变系统的单位脉冲响应:根据给定的线性时不变系统的单位脉冲响应函数,计算并绘制出相应的单位脉冲响应图。
信号与系统matlab实验报告
信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。
通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。
本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。
实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。
首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。
然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。
实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。
然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。
最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。
实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。
首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。
然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。
实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。
然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。
最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。
实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统实验报告
信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。
本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。
实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。
首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。
然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。
实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。
实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。
通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。
在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。
实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。
实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。
我们通过输入不同频率和幅度的信号,观察系统的输出响应。
实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。
通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。
实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。
通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。
实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。
实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。
结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。
实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。
信号与线性系统分析试验报告
信号与线性系统分析实验报告专业:学号:姓名:1.画出信号波形(1))tf t--=e(2t()2()uA=1; a=-2;t=0:0.01:10;ft=2-A*exp(a*t);plot(t,ft);grid on;2))]u=t+tfπttu-(-(2())1(cos)[A=1; w=pi;t=0:0.01:2;ft=1+A*cos(w*t);plot(t,ft);grid on;2.信号)(f t--=,求)etu2())(2tf-波形2(t2(tf、)A=1; a=-2;t=0:0.01:10;ft=2-A*exp(a*t);subplot(2,2,1);plot(t,ft); grid on;title ('f(t)');ft1=2-A*exp(a*2*t);subplot(2,2,2);plot(t,ft1); grid on;ft2=2-A*exp(a*(2-t))subplot(2,2,3);plot(t,ft2); grid on;title ('f(2-t)');3.绘制单位阶跃序列 (k+5) 的MA TLAB程序:k1=-10;k2=5; k0=5;k=k1:-k0-1; kk=-k0:k2;n=length(k);nn=length(kk);u=zeros(1,n);uu=ones(1,nn);stem(k,u,'filled')hold onstem(kk,uu,'filled')hold offaxis([k1,k2,0,1.5])实验二 1 已知描述系统的微分方程和激励信号e (t ) 分别如下,试用解析方法求系统的单位冲激响应h(t)和零状态响应r (t ),并用MATLAB 绘出系统单位冲激响应和系统零状态响应的波形,验证结果是否相同。
①''()4'()4()'()3()y t y t y t f t f t ++=+;()()t f t e t ε-=分析 1 求冲激响应的MATLAB 程序:a=[1 4 4];b=[1 3];impulse(b,a,4);2求系统零状态响应的MATLAB 程序:a=[1 4 4];b=[1 3];p1=0.01;t1=0:p1:5;x1=exp(-1*t1);lsim(b,a,x1,t1),hold on;p2=0.5;t2=0:p2:5;x2=exp(-1*t2);lsim(b,a,x2,t2),hold off;2. 请用MATLAB 分别求出下列差分方程所描述的离散系统,在0~20时间范围内的单位函数响应和系统零状态响应的数值解,并绘出其波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统分析报告实验一:典型信号的观测与测试图1-1 600Hz正弦波信号幅值: 4V,周期:1500ms图1-2 1.4kHz方波信号幅值:2.5V 周期:727ms图1-3 2.2kHz三角波信号幅值:2.2V 周期:512ms图1-4 1000Hz冲击串信号幅值:2.5V 周期:1003ms实验二:线性时不变系统的冲激响应和阶跃响应1.有源低通滤波器的单位冲击和阶跃响应图2-1 1000Hz冲激串为输入信号的输出波形图2-2 500Hz冲激串为输入信号的输出波形图2-3 333Hz冲激串为输入信号的输出波形图2-4 250Hz冲激串为输入信号的输出波形图2-5 200Hz冲激串为输入信号的输出波形图2-6 200Hz方波作为输入信号的输出波形图2-7 1000Hz方波作为输入信号的输出波形图2-8 5kHz方波作为输入信号的输出波形2.无源低通滤波器的单位冲激和阶跃响应图2-9 1000Hz冲激串作为输入信号的输出波形图2-10 500Hz冲激串作为输入信号的输出波形图2-11 333Hz冲激串作为输入信号的输出波形图2-12 250Hz冲激串作为输入信号的输出波形图2-13 200Hz冲激串作为输入信号的输出波形图2-14 5kHz方波作为输入信号的输出波形图2-15 2.2kHz方波作为输入信号的输出波形图2-16 600Hz方波作为输入信号的响应的输出波形实验三:连续信号的分解及频谱图3-1 未被分解的输入1kHz方波信号分析:可以看到该输入方波幅度为2.5V,周期为1030ms,占空比为50%,包含众多奇次频率分量。
由频谱图可以看出,当频率为1kHz时幅度最大。
由傅立叶级数的知识可以知道,方波的傅立叶级数为:a k=sin(πk/2)/kπ,k≠0;当k为偶数(不为零),a k=0。
也就是说,方波的频谱图应只含有奇次分量,对应偶次分量的幅度为零。
实验结果存在较少偶次分量的也正说明了这一点。
图3-2 分解后的方波一次谐波分量上图为方波分解之后的一次谐波,波形为正弦波。
幅值:2.4V,周期为:1030ms,仍含有众多频率分量,同样是1kHz时幅度最大。
图3-3分解后的方波二次谐波分量上图的波形近似为一直线,符合傅立叶级数的结果,此时的波形为傅立叶级数的直流分量。
但仍含有众多频率分量。
图3-4分解后的方波三次谐波分量上图为分解后的方波三次谐波分量,波形为正弦波。
幅值:1V 左右。
周期:343ms。
仍含有众多频率分量。
幅度相比一次谐波有所减小。
图3-5分解后的方波四次谐波分量上图的波形近似为一直线。
符合傅立叶级数的结果,此时的波形为傅立叶级数的直流分量。
但仍含有众多频率分量。
图3-6分解后的方波五次谐波分量上图为分解后的方波五次谐波分量,波形为正弦波。
幅值:1V左右。
周期:206ms。
仍含有众多频率分量。
幅度相比一、三次谐波有所减小。
图3-7基波和二次谐波迭加波形图3-8基波、二、三、四次谐波迭加波形图3-9基波、二、三、四、五次谐波迭加波形分析:图3-1为未经分解的方波信号,图3-2~图3-6为其分解之后的各次谐波分量,随着次数(频率)的增加,各次谐波的幅度依次减小。
且频谱图都在1kHz出现最大值,并且含有众多频率分量。
由于SSPdemo.exe选择的是合成测量模式,推测,计算机得到的是,抑制某一谐波分量或多个谐波分量后合成波形的频谱,波形为某一谐波分量或多个谐波分量合成的波形,所以频谱会出现众多频率分量,并且与原方波输入信号的频谱相似。
此外,在二、四谐波的波形中出现了直流分偏置量,理论幅度可以由方波一个周期内的积分算出。
图3-7~图3-9,为各次谐波的合成,频谱图仍含有众多频率分量,基本与方波信号频谱相似,原因同上。
可以看到基波(图3-2)和二次谐波(图3-3)的合成仍为正弦信号,这是因为基波是正弦信号,二次谐波是幅度很小的信号,两者迭加仍为正线信号。
由图3-8和图3-9可以明显的看出,直到用于合成的谐波分量增多时,其合成信号越接近于原方波输入信号。
此外,在图3-3,图3-5,图3-8,图3-9中出现了偶次的负幅度频率分量,某一谐波分量或多个谐波分量被抑制后,其他频率分量的叠加就可能出现负幅度频率分量的出现,推测,当为偶次谐波时波形均为直流偏置量,从图中可以得出结论,当抑制了直流分量后,干扰偶次分量与抑制后的众多频率分量(含有基波分量)迭加之后的波形频谱会出现较大负幅度的频率分量。
图3-10未被分解的输入1kHz三角波信号上图为三角波的频谱图,幅度:4.2V,周期:1030ms。
可以看到1kHZ时幅度最大,这是因为1kHz为基波频率,并且含有众多频率分量。
三角波微分之后的图形为幅度为m(m为实常数)和一组周期性冲击串的组合,由傅立叶级数和变换的知识可知,x(t)=m的傅立叶级数为a0=m;a k=0,k≠0。
周期性冲激串的傅立叶级数为a k=1/T,这里T=1030ms。
因此,三角波的频谱图会含有奇次和偶次分量。
上图为分解后的三角波一次谐波分量,幅度:3.6V,周期:1030ms。
上图为分解后的三角波二次谐波分量,幅度:2V,周期:515ms。
图3-13分解后的三角波三次谐波分量上图为分解后的三角波三次谐波分量,幅度:1 V,周期:343ms。
图3-14分解后的三角波四次谐波分量上图为分解后的三角波四次谐波分量,幅度:0.5 V,周期:257.5ms。
图3-15分解后的三角波五次谐波分量上图为分解后的三角波五次谐波分量,幅度:0.33V,周期:206ms。
图3-16基波和二次谐波迭加波形图3-17基波、二、三、四次谐波迭加波形图3-18基波、二、三、四、五次谐波迭加波形分析:图3-10为未经分解的三角波信号,图3-11~图3-15为其分解之后的各次谐波分量,随着次数(频率)的增加,各次谐波的幅度依次减小,含有众多频率分量。
由于SSPdemo.exe选择的是合成测量模式,推测,计算机得到的是,抑制某一谐波分量或多个谐波分量后合成波形的频谱,波形为某一谐波分量或多个谐波分量合成的波形,所以频谱会出现众多频率分量,并且与原三角波输入信号的频谱相似。
且在1kHz处幅度最大,这是因为1kHz为基波频率。
图3-16~图3-18,为各次谐波的合成,由图3-8和图3-9可以明显的看出,当用于合成的谐波分量越多时,其合成信号越接近于原输入三角波信号。
此外由方波分析的结论可以知道,推测:本身同时具有奇次和偶次谐波分量的三角波,当出现抑制某一或多个观测谐波分量后合成波形的迭加不会出太多的明显负幅度频率分量。
实验四:连续时间系统模拟图4-1 200Hz方波作为输入信号的输出波形图4-2 1kHz方波作为输入信号的输出波形图4-3 5kHz方波作为输入信号的输出波形图4-4 200Hz正弦波作为输入信号的输出波形图4-5 1kHz正弦波作为输入信号的输出波形图4-6 5kHz正弦波作为输入信号的输出波形分析:该一阶微分连续时间系统的输入和输出满足y'+a0y=x,符合初始松弛条件。
可以令y'= x -a0y,然后利用积分器,加法器和放大器进行系统的模拟。
系统框图为:图4-1~图4-3 分别为输入200Hz、1kHz、5kHz方波情况下的系统输出,可以看到方波信号信号出现了失真,正弦波未出现失真。
在方波信号的上升沿和下降沿,分别产生了一个突变,在上升沿变为一个瞬时的冲击脉冲,下降沿变为一段具有负斜率的直线。
而这些在输入正弦波的情况下,输出维持了原来的正弦波走势。
未发生任何突变,如图4-4~图4-6所示。
对y'+a0y=x进行变形可以的得到:y=(x-y')/ a0;由于等号右边有y',因此设积分器的初值为y(0),假设系统无输入时,则y= y(0),当信号最初通过系统时,输出是x减去y'(0)再除以一个系数a0,属于线性变换,此时系统对该时刻的输入无本质影响,接着积分器开始发挥作用,此后x减去y'(0)再除以一个系数a0的结果与输入相关,并且是对原信号进行了微分,发生了非线性变化,于是在方波的上升沿和下降沿可以看到一个突变,这是微分的结果。
而正弦波没有变化是因为正弦信号微分之后,只是信号的相位发生改变,因而输出波形与原来相比,无太大变化。
此外,对比图4-1到图4-3,以及图1-2可以看到,图4-1到图4-3的频谱图产生了众多寄生频率分量,并且随着频率的增加这一现象越来越不明显。
这是因为随着周期的变小,方波的上升沿和下降沿产生的突变△亦减小,因而更不易被积分器捕获,使系统产生响应,从而抑制了寄生频率分量的产生。
而正弦波由于只是相位的变化,因而无多余的寄生分量产生。
实验五:连续系统的转移函数模拟实验一阶反馈系统的方框图为:其中,A、B分别为反相和同相放大器,因此系统为正反馈系统,并可以得到系统的微分方程为x=-(y'/B) -Ay/B,与实验四相似。
因此对上式进行变换,输出表达式:y=-B[x+(y'/B)]/A。
同样可以假设积分器初值为y(0),对系统输出进行分析。
图5-1 1kHz的三角波输入信号图5-2 减小反相放大倍数A时的输出波形图5-3 增大反相放大倍数A时的输出波形分析:可以看到减小反相放大倍数A,输出波形的幅度明显减小。
并且在三角波的下降沿出现了一个突变的负向脉冲。
这是由于积分器的作用,由输出表达式y=-B[x+(y'/B)]/A,可以看出当输入的瞬时变化量较大时,会有一个非常大的导数值出现,因而会变成一个脉冲迭加在原波形上,形成图5-3的波形。
当增大放大倍数时,突变脉冲也会被放大,但小于原信号的放大程度,进而输出波形趋近于原信号波形。
图5-4增大反相放大倍数B时的输出波形(1)图5-5增大反相放大倍数B时的输出波形(2)图5-6增大反相放大倍数B时的输出波形(3)图5-7增大反相放大倍数B时的输出波形(4)分析:可以看到,图5-4中同样出现了突变脉冲,原因同上。
在图5-4到图5-7中,均出现了失真,这是由于同相放大倍数过大,放大器工作在了非线性工作区的原因。
此外,在图5-7中波形严重失真,由于产生的突变脉冲也被放大并大于正常波形放大程度,故无突变的脉冲出现。
图5-8 1kHz正弦波输入信号图5-9 增大反相放大器A的输出波形(1)图5-10 增大反相放大器A的输出波形(2)图5-11增大反相放大器A的输出波形(3)图5-12增大反相放大器A的输出波形(4)图5-13增大反相放大器A的输出波形(5)分析:由图5-9到图5-13可以看到当改变反相放大器A时,输出波形出现了从幅度逐渐被放大到出现了失真,甚至在图5-13出现了类似高频调制信号的波形,出现失真是因为放大器由于放大倍数过大工作在了非线性工作区,使波形出现了失真。
而高频信号的出现是因为,系统为正反馈系统,当放大倍数过大时,满足起振条件,产生了高频振荡,再和原信号迭加、相乘产生了调制波形。