数据库第二章课后习题解答
数据库原理及应用 chp2课后习题答案
2.1 试述关系模型的三个组成部分。 答:关系模型的三个组成部分为关系结构、关系操作和关系完整性约束。 在关系模型中,无论是实体集,还是实体集之间的联系均由单一的关系表示。关系模式
可以形式化地表示为:R(U,D,Dom,F),其中 R 为关系名,U 为组成该关系的属性集 合,D 为属性组 U 中属性所来自的域,Dom 为属性向域的映像的集合,F 为属性间数据的 依赖关系集合。
2.5 假定关系 R 和 S 分别有 n 和 m 个元组,试说明下列运算结果中的最小和最大元组个数:
(1) R U S
(2)R
S
(3)σ F (R) × S ,其中 F 是条件表达式 (4) Π L (R) − S ,其中 L 是属性集合
答:
(1) R U S 的结果,最大元组个数为 m+n,最小为 m( R ⊇ S )个或者 n( R ⊆ S )
属性)为候选码。当一个关系有多个候选码时,应选定其中的一个候选码为主码;而如果关 系中只有一个候选码,这个惟一的候选码就是主码。
设 F 是基本关系 R 的一个或一组属性,但不是关系 R 的主码(或候选码)。如果 F 与基 本关系 s 的主码 KS 相对应,则称厅是基本关系 R 的外码。
2)给定一组域 D1,D2,…, Dn.这些域中可以有相同的部分,则 D1,D2,…, Dn 的笛卡地积为:D1×D2×…×Dn﹦{(dl,d2,…,dn)∣di∈Di,i=1,2, …,n}。
说明:SC 自乘之后,同一个学号下两个课程号不同的元组 若修改为:检索至少选修一门课的学生学号
πSNO(SC)
(7) 检索全部学生都选修的课程的课程号和课程名;
π (C CNO,CNAME
(πSNO,CNO(SC)÷πSNO(S)))
(完整版)数据库系统基础教程第二章答案解析
For relation Accounts, the attributes are:acctNo, type, balanceFor relation Customers, the attributes are:firstName, lastName, idNo, accountExercise 2.2.1bFor relation Accounts, the tuples are:(12345, savings, 12000),(23456, checking, 1000),(34567, savings, 25)For relation Customers, the tuples are:(Robbie, Banks, 901-222, 12345),(Lena, Hand, 805-333, 12345),(Lena, Hand, 805-333, 23456)Exercise 2.2.1cFor relation Accounts and the first tuple, the components are:123456 → acctNosavings → type12000 → balanceFor relation Customers and the first tuple, the components are:Robbie → firstNameBanks → lastName901-222 → idNo12345 → accountExercise 2.2.1dFor relation Accounts, a relation schema is:Accounts(acctNo, type, balance)For relation Customers, a relation schema is:Customers(firstName, lastName, idNo, account) Exercise 2.2.1eAn example database schema is:Accounts (acctNo,type,balance)Customers (firstName,lastName,idNo,account)A suitable domain for each attribute:acctNo → Integertype → Stringbalance → IntegerfirstName → StringlastName → StringidNo → String (because there is a hyphen we cannot use Integer)account → IntegerExercise 2.2.1gAnother equivalent way to present the Account relation:Another equivalent way to present the Customers relation:Exercise 2.2.2Examples of attributes that are created for primarily serving as keys in a relation:Universal Product Code (UPC) used widely in United States and Canada to track products in stores.Serial Numbers on a wide variety of products to allow the manufacturer to individually track each product.Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry to identify vehicles.Exercise 2.2.3aWe can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of 3! = 6 ways. Thus, the number of presentations is 6*6 = 36.Exercise 2.2.3bWe can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880Exercise 2.2.3cWe can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n! ways. Thus, the number of presentations is n!m!Exercise 2.3.1aCREATE TABLE Product (maker CHAR(30),model CHAR(10) PRIMARY KEY,type CHAR(15));CREATE TABLE PC (model CHAR(30),speed DECIMAL(4,2),ram INTEGER,hd INTEGER,price DECIMAL(7,2));Exercise 2.3.1cCREATE TABLE Laptop (model CHAR(30),speed DECIMAL(4,2),ram INTEGER,hd INTEGER,screen DECIMAL(3,1),price DECIMAL(7,2));Exercise 2.3.1dCREATE TABLE Printer (model CHAR(30),color BOOLEAN,type CHAR (10),price DECIMAL(7,2));Exercise 2.3.1eALTER TABLE Printer DROP color;Exercise 2.3.1fALTER TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’; Exercise 2.3.2aCREATE TABLE Classes (class CHAR(20),type CHAR(5),country CHAR(20),numGuns INTEGER,bore DECIMAL(3,1),displacement INTEGER);Exercise 2.3.2bCREATE TABLE Ships (name CHAR(30),class CHAR(20),launched INTEGER);Exercise 2.3.2cCREATE TABLE Battles (name CHAR(30),date DATE);Exercise 2.3.2dCREATE TABLE Outcomes (ship CHAR(30),battle CHAR(30),result CHAR(10));Exercise 2.3.2eALTER TABLE Classes DROP bore;Exercise 2.3.2fALTER TABLE Ships ADD yard CHAR(30); Exercise 2.4.1aR1 := σspeed ≥ 3.00 (PC)R2 := πmodel(R1)model100510061013Exercise 2.4.1bR1 := σhd ≥ 100 (Laptop)R2 := Product (R1)R3 := πmaker (R2)makerEABFGExercise 2.4.1cR1 := σmaker=B (Product PC)R2 := σmaker=B (Product Laptop)R3 := σmaker=B (Product Printer)R4 := πmodel,price (R1)R5 := πmodel,price (R2)R6: = πmodel,price (R3)R7 := R4 R5 R6model price1004 6491005 6301006 10492007 1429Exercise 2.4.1dR1 := σcolor = true AND type = laser (Printer)R2 := πmodel (R1)model30033007Exercise 2.4.1eR1 := σtype=laptop (Product)R2 := σtype=PC(Product)R3 := πmaker(R1)R4 := πmaker(R2)R5 := R3 – R4Exercise 2.4.1fR1 := ρPC1(PC)R2 := ρPC2(PC)R3 := R1 (PC1.hd = PC2.hd AND PC1.model <> PC2.model) R2R4 := πhd(R3)Exercise 2.4.1gR1 := ρPC1(PC)R2 := ρPC2(PC)R3 := R1 (PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model) R2R4 := πPC1.model,PC2.model(R3)Exercise 2.4.1hR1 := πmodel(σspeed ≥ 2.80(PC)) πmodel(σspeed ≥ 2.80(Laptop))R2 := πmaker,model(R1 Product)R3 := ρR3(maker2,model2)(R2)R4 := R2 (maker = maker2 AND model <> model2) R3R5 := πmaker(R4)Exercise 2.4.1iR1 := πmodel,speed(PC)R2 := πmodel,speed(Laptop)R3 := R1 R2R4 := ρR4(model2,speed2)(R3)R5 := πmodel,speed (R3 (speed < speed2 ) R4)R6 := R3 – R5makerBExercise 2.4.1jR1 := πmaker,speed(Product PC)R2 := ρR2(maker2,speed2)(R1)R3 := ρR3(maker3,speed3)(R1)R4 := R1 (maker = maker2 AND speed <> speed2) R2R5 := R4 (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3R6 := πmaker(R5)makerFGhd25080160PC1.model PC2.model1004 1012makerBEmakerADEExercise 2.4.1kR1 := πmaker,model(Product PC)R2 := ρR2(maker2,model2)(R1)R3 := ρR3(maker3,model3)(R1)R4 := ρR4(maker4,model4)(R1)R5 := R1 (maker = maker2 AND model <> model2) R2R6 := R3 (maker3 = maker AND model3 <> model2 AND model3 <> model) R5R7 := R4 (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6R8 := πmaker(R7)makerABDEExercise 2.4.2aπmodelσspeed≥3.00PCExercise 2.4.2bπmakerσhd ≥ 100 ProductLaptopExercise 2.4.2cσmaker=B πmodel,priceσmaker=B πmodel,price σmaker=Bπmodel,priceProduct PC Laptop Printer ProductProductExercise 2.4.2dPrinter σcolor = true AND type = laserπmodelExercise 2.4.2e σtype=laptop σtype=PC πmakerπmaker –Product ProductExercise 2.4.2fρPC1ρPC2 (PC1.hd = PC2.hd AND PC1.model <> PC2.model)πhdPC PCExercise 2.4.2gρPC1ρPC2PC PC(PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model)πPC1.model,PC2.modelExercise 2.4.2hPC Laptop σspeed ≥ 2.80σspeed ≥ 2.80πmodelπmodel πmaker,modelρR3(maker2,model2)(maker = maker2 AND model <> model2)makerExercise 2.4.2iPCLaptopProductπmodel,speed πmodel,speed ρR4(model2,speed2)πmodel,speed(speed < speed2 )–makerExercise 2.4.2jProduct PC πmaker,speed ρR3(maker3,speed3)ρR2(maker2,speed2)(maker = maker2 AND speed <> speed2)(maker3 = maker AND speed3 <> speed2 AND speed3 <> speed)πmakerExercise 2.4.2kπmaker(maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) (maker3 = maker AND model3 <> model2 AND model3 <> model)(maker = maker2 AND model <> model2)ρR2(maker2,model2)ρR3(maker3,model3)ρR4(maker4,model4)πmaker,modelProduct PCExercise 2.4.3aR1 := σbore ≥ 16 (Classes)R2 := πclass,country (R1)Exercise 2.4.3bR1 := σlaunched < 1921 (Ships)R2 := πname (R1)KirishimaKongoRamilliesRenownRepulseResolutionRevengeRoyal OakRoyal SovereignTennesseeExercise 2.4.3cR1 := σbattle=Denmark Strait AND result=sunk(Outcomes)R2 := πship (R1)shipBismarckHoodExercise 2.4.3dR1 := Classes ShipsR2 := σlaunched > 1921 AND displacement > 35000 (R1)R3 := πname (R2)nameIowaMissouriMusashiNew JerseyNorth CarolinaWashingtonWisconsinYamatoExercise 2.4.3eR1 := σbattle=Guadalcanal(Outcomes)R2 := Ships (ship=name) R1R3 := Classes R2R4 := πname,displacement,numGuns(R3)name displacement numGuns Kirishima 32000 8Washington 37000 9Exercise 2.4.3fR1 := πname(Ships)R2 := πship(Outcomes)R3 := ρR3(name)(R2)R4 := R1 R3nameCaliforniaHarunaHieiIowaKirishimaKongoMissouriMusashiNew JerseyExercise 2.4.3gFrom 2.3.2, assuming that every class has one ship named after the class.R1 := πclass (Classes) R2 := πclass (σname <> class (Ships)) R3 := R1 – R2Exercise 2.4.3hR1 := πcountry (σtype=bb (Classes)) R2 := πcountry (σtype=bc (Classes)) R3 := R1 ∩ R2Exercise 2.4.3iR1 := πship,result,date (Battles (battle=name) Outcomes)R2 := ρR2(ship2,result2,date2)(R1)R3 := R1 (ship=ship2 AND result=damaged AND date < date2) R2R4 := πship (R3)No results from sample data.Exercise 2.4.4aσbore ≥ 16πclass,countryClassesExercise 2.4.4bNorth Carolina Ramillies Renown Repulse Resolution Revenge Royal Oak Royal Sovereign Tennessee Washington Wisconsin Yamato Arizona Bismarck Duke of York Fuso Hood King George V Prince of Wales Rodney Scharnhorst South Dakota West Virginia Yamashiro class Bismarck country Japan Gt. Britainπnameσlaunched < 1921ShipsExercise 2.4.4cπshipσbattle=Denmark Strait AND result=sunkOutcomesExercise 2.4.4dπnameσlaunched > 1921 AND displacement > 35000Classes Ships Exercise 2.4.4eσbattle=Guadalcanal Outcomes Ships(ship=name)πname,displacement,numGunsExercise 2.4.4f Ships Outcomesπnameπship ρR3(name)Exercise 2.4.4g Classes Shipsπclass σname <> class πclass–Exercise 2.4.4hClasses Classesσtype=bb σtype=bcπcountry πcountry∩Exercise 2.4.4iBattles Outcomes (battle=name)πship,result,dateρR2(ship2,result2,date2)(ship=ship2 AND result=damaged AND date < date2)πshipExercise 2.4.5The result of the natural join has only one attribute from each pair of equated attributes. On the other hand, the result of the theta-join has both columns of the attributes and their values are identical.Exercise 2.4.6UnionIf we add a tuple to the arguments of the union operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then the set behavior will eliminate that tuple.Thus the union operator is monotone.IntersectionIf we add a tuple to the arguments of the intersection operator, we will get all of the tuples of the originalresult and maybe the added tuple. If the added tuple does not exist in the relation that it is added but does exist in the other relation, then the result set will include the added tuple. Thus the intersection operator is monotone.DifferenceIf we add a tuple to the arguments of the difference operator, we may not get all of the tuples of the originalresult. Suppose we have relations R and S and we are computing R – S. Suppose also that tuple t is in R but not in S. The result of R – S would include tuple t. However, if we add tuple t to S, then the new result will not have tuple t. Thus the difference operator is not monotone.ProjectionIf we add a tuple to the arguments of the projection operator, we will get all of the tuples of the original result and the projection of the added tuple. The projection operator only selects columns from the relation and does not affect the rows that are selected. Thus the projection operator is monotone.SelectionIf we add a tuple to the arguments of the selection operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple satisfies the select condition, then it will be added to the newresult. The original tuples are included in the new result because they still satisfy the select condition. Thusthe selection operator is monotone.Cartesian ProductIf we add a tuple to the arguments of the Cartesian product operator, we will get all of the tuples of the original result and possibly additional tuples. The Cartesian product pairs the tuples of one relation with the tuples ofanother relation. Suppose that we are calculating R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already in R, then we expect the result of R x S to have (m + 1) * n tuples. Thus the Cartesianproduct operator is monotone.Natural JoinsIf we add a tuple to the arguments of a natural join operator, we will get all of the tuples of the original result and possibly additional tuples. The new tuple can only create additional successful joins, not less. If, however, the added tuple cannot successfully join with any of the existing tuples, then we will have zero additionalsuccessful joins. Thus the natural join operator is monotone.Theta JoinsIf we add a tuple to the arguments of a theta join operator, we will get all of the tuples of the original result and possibly additional tuples. The theta join can be modeled by a Cartesian product followed by a selection onsome condition. The new tuple can only create additional tuples in the result, not less. If, however, the addedtuple does not satisfy the select condition, then no additional tuples will be added to the result. Thus the theta join operator is monotone.RenamingIf we add a tuple to the arguments of a renaming operator, we will get all of the tuples of the original result and the added tuple. The renaming operator does not have any effect on whether a tuple is selected or not. In fact, the renaming operator will always return as many tuples as its argument. Thus the renaming operator is monotone.Exercise 2.4.7aIf all the tuples of R and S are different, then the union has n + m tuples, and this number is the maximum possible.The minimum number of tuples that can appear in the result occurs if every tuple of one relation also appears in the other. Then the union has max(m , n) tuples.Exercise 2.4.7bIf all the tuples in one relation can pair successfully with all the tuples in the other relation, then the natural join has n * m tuples. This number would be the maximum possible.The minimum number of tuples that can appear in the result occurs if none of the tuples of one relation can pairsuccessfully with all the tuples in the other relation. Then the natural join has zero tuples.Exercise 2.4.7cIf the condition C brings back all the tuples of R, then the cross product will contain n * m tuples. This number would be the maximum possible.The minimum number of tuples that can appear in the result occurs if the condition C brings back none of the tuples of R. Then the cross product has zero tuples.Exercise 2.4.7dAssuming that the list of attributes L makes the resulting relation πL(R) and relation S schema compatible, then the maximum possible tuples is n. This happens when all of the tuples of πL(R) are not in S.The minimum number of tuples that can appear in the result occurs when all of the tuples in πL(R) appear in S. Then the difference has max(n–m , 0) tuples.Exercise 2.4.8Defining r as the schema of R and s as the schema of S:1.πr(R S)2.R δ(πr∩s(S)) where δ is the duplicate-elimination operator in Section 5.2 pg. 2133.R – (R –πr(R S))Exercise 2.4.9Defining r as the schema of R1.R - πr(R S)Exercise 2.4.10πA1,A2…An(R S)Exercise 2.5.1aσspeed < 2.00 AND price > 500(PC) = øModel 1011 violates this constraint.Exercise 2.5.1bσscreen < 15.4 AND hd < 100 AND price ≥ 1000(Laptop) = øModel 2004 violates the constraint.Exercise 2.5.1cπmaker(σtype = laptop(Product)) ∩ πmaker(σtype = pc(Product)) = øManufacturers A,B,E violate the constraint.Exercise 2.5.1dThis complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R4 that stand for nodes of expression trees. Here is the sequence:R1(maker, model, speed) := πmaker,model,speed(Product PC)R2(maker, speed) := πmaker,speed(Product Laptop)R3(model) := πmodel(R1 R1.maker = R2.maker AND R1.speed ≤ R2.speed R2)R4(model) := πmodel(PC)The constraint is R4 ⊆ R3Manufacturers B,C,D violate the constraint.Exercise 2.5.1eπmodel(σLaptop.ram > PC.ram AND Laptop.price ≤ PC.price(PC × Laptop)) = øModels 2002,2006,2008 violate the constraint.Exercise 2.5.2aπclass(σbore > 16(Classes)) = øThe Yamato class violates the constraint.Exercise 2.5.2bπclass(σnumGuns > 9 AND bore > 14(Classes)) = øNo violations to the constraint.Exercise 2.5.2cThis complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:R1(class,name) := πclass,name(Classes Ships)R2(class2,name2) := ρR2(class2,name2)(R1)R3(class3,name3) := ρR3(class3,name3)(R1)R4(class,name,class2,name2) := R1 (class = class2 AND name <> name2) R2R5(class,name,class2,name2,class3,name3) := R4 (class=class3 AND name <> name3 AND name2 <> name3) R3The constraint is R5 = øThe Kongo, Iowa and Revenge classes violate the constraint.Exercise 2.5.2dπcountry(σtype = bb(Classes)) ∩ πcountry(σtype = bc(Classes)) = øJapan and Gt. Britain violate the constraint.Exercise 2.5.2eThis complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:R1(ship,bat tle,result,class) := πship,battle,result,class(Outcomes (ship = name) Ships)R2(ship,battle,result,numGuns) := πship,battle,result,numGuns(R1 Classes)R3(ship,battle) := πship,battle(σnumGuns < 9 AND result = sunk (R2))R4(ship2,battle2) := ρR4(ship2,battle2)(πship,battle(σnumGuns > 9(R2)))R5(ship2) := πship2(R3 (battle = battle2) R4)The constraint is R5 = øNo violations to the constraint. Since there are some ships in the Outcomes table that are not in the Ships table, we are unable to determine the number of guns on that ship.Exercise 2.5.3Defining r as the schema A1,A2,…,A n and s as the schema B1,B2,…,B n:πr(R) πs(S) = øwhere is the antisemijoinExercise 2.5.4The form of a constraint as E1 = E2 can be expressed as the other two constraints.Using the “equating an expression to the empty set” method, we can simply say:E1– E2 = øAs a containment, we can simply say:E1⊆ E2 AND E2⊆ E1Thus, the form E1 = E2 of a constraint cannot express more than the two other forms discussed in this section.。
数据库技术与应用第二版第2章习题参考答案
第2章习题解答1.选择题(1)下列(C)不是sql 数据库文件的后缀。
A..mdf B..ldf C..tif D..ndf(2)SQL Server数据库对象中最基本的是(B)。
A.表和语句B.表和视图C.文件和文件组D.用户和视图(3)事务日志用于保存(C.)。
A. 程序运行过程B. 程序的执行结果C. 对数据的更新操作D. 数据操作(4)Master数据库是SQL Server系统最重要的数据库,如果该数据库被损坏,SQL Server将无法正常工作。
该数据库记录了SQL Server系统的所有(D)。
A. 系统设置信息B. 用户信息C. 对数据库操作的信息D. 系统信息(5)SQL Server中组成数据库的文件有(B)类型。
A. 2B. 3C. 4D. 5(6)分离数据库就是将数据库从(B)中删除,但是保持组成该数据的数据文件和事务日志文件中的数据完好无损。
A. WindowsB. SQL ServerC. U盘D. 企业管理器(7)以下是指对数据库的完整备份,包括所有的数据以及数据库对象。
A. 数据库完全备份B. 数据库差异份C. 事务日志备份D. 文件或文件组备份(8)下面描述错误的是()。
A.每个数据文件中有且只有一个主数据文件。
B.日志文件可以存在于任意文件组中。
C.主数据文件默认为PRIMARY文件组。
D.文件组是为了更好的实现数据库文件组织。
(9)下列文件中不属于SQL Server数据库文件的是()。
A.device_data.MDF B.device_log.LDFC.device_mdf.DAT D.device_data.NDF(10)SQL Server 对象的完整名称不包括下面()。
A.服务器名B.数据库名C.对象名D.文件夹名2.填空题(1)数据库逻辑结构中的文件主要存储(用户数据),而且存储所有与(用户数据)相关的信息。
(2)数据库物理结构主要应用于面向计算机的(数据)组织和管理。
数据库第二章课后习题解答
第3部分习题及其解答第一章的两道题3-2 习题22.6 分别把习题1.10、习题1.11的ER图转换成关系模型数据结构。
【参考答案】1.习题1.10的ER图可转换成如下的关系模型数据结构。
①程序员(编号,,性别,年龄,单位,职称),其中编号是关键字;②程序(程序名称,,专利号,价格),其中程序名称是关键字;③设计(编号,程序名称,开始时间,结束时间),其中(编号,程序名称)是关键字。
2.习题1.11的ER图可转换成如下的关系模型数据结构。
①工厂(工厂名称,厂址,联系),其中工厂名称是关键字;②产品(产品号,产品名,规格,单价),其中产品号是关键字;③工人(工人编号,,性别,职称,工厂名称,雇用期,月薪),其中工人编号是关键字,工厂名称是外关键字,雇用期和月薪是联系属性;④生产(工厂名称,产品号,月产量),其中(工厂名称,产品号)是关键字,生产关系是表示联系的。
2.8 判断下列情况,分别指出它们具体遵循那一类完整性约束规则?1.用户写一条语句明确指定月份数据在1~12之间有效。
2.关系数据库中不允许主键值为空的元组存在。
3.从A关系的外键出发去找B关系中的记录,必须能找到。
【解答】1.用户用语句指定月份数据在1~12之间有效,遵循用户定义的完整性约束规则。
2.关系数据库中不允许主键值为空的元组存在,遵循实体完整性约束规则;3.从A关系的外键出发去找B关系的记录,必须能找到,遵循引用完整性约束规则。
2.9 判断下列情况,分别指出他们是用DML还是用DDL来完成下列操作?1.创建“学生”表结构。
2.对“学生”表中的学号属性,其数据类型由“整型”修改为“字符型”。
3.把“学生”表中学号“021”修改为“025”。
【解答】1.创建“学生”表结构,即定义一个关系模式,用DDL完成。
2.修改“学生”表中学号属性的数据类型,即修改关系模式的定义,用DDL完成。
3.修改“学生”表中学号属性的数据值,即对表中的数据进行操作,用DML完成。
数据库系统原理第二章基本概念及课后习题有答案
数据库系统原理第二章基本概念及课后习题有答案一、数据库系统生存期1.数据库系统生存期:数据库应用系统从开始规划、设计、实现、维护到最后被新的系统取代而停止使用的整个期间。
2.数据库系统生存期分七个阶段:规划、需求分析、概念设计、逻辑设计、物理设计、实现、运行维护。
3.规划阶段三个步骤:系统调查、可行性分析、确定数据库系统总目标。
4.需求分析阶段:主要任务是系统分析员和用户双方共同收集数据库系统所需要的信息内容和用户对处理的需求,并以需求说明书的形式确定下来。
5.概念设计阶段:产生反映用户单位信息需求的概念模型。
与硬件和DBMS无关。
6.逻辑设计阶段:将概念模型转换成DBMS能处理的逻辑模型。
外模型也将在此阶段完成。
7.物理设计阶段:对于给定的基本数据模型选取一个最适合应用环境的物理结构的过程。
数据库的物理结构主要指数据库的存储记录格式、存储记录安排和存取方法。
8.数据库的实现:包括定义数据库结构、数据装载、编制与调试应用程序、数据库试运行。
二、ER模型的基本概念ER模型的基本元素是:实体、联系和属性。
2.实体:是一个数据对象,指应用中可以区别的客观存在的事物。
实体集:是指同一类实体构成的集合。
实体类型:是对实体集中实体的定义。
一般将实体、实体集、实体类型统称为实体。
3.联系:表示一个或多个实体之间的关联关系。
联系集:是指同一类联系构成的集合。
联系类型:是对联系集中联系的定义。
一般将联系、联系集、联系类型统称为联系。
4.同一个实体集内部实体之间的联系,称为一元联系;两个不同实体集实体之间的联系,称为二元联系,以此类推。
5.属性:实体的某一特性称为属性。
在一个实体中,能够惟一标识实体的属性或属性集称为实体标识符。
6. ER模型中,方框表示实体、菱形框表示联系、椭圆形框表示属性、实体与联系、实体与其属性、联系与其属性之间用直线连接。
实体标识符下画横线。
联系的类型要在直线上标注。
注意:联系也有可能存在属性,但联系本身没有标识符。
数据库第二章习题及答案
第二章 关系数据库习题二一、单项选择题:1、系数据库管理系统应能实现的专门关系运算包括 B 。
A .排序、索引、统计 B.选择、投影、连接 C .关联、更新、排序 D.显示、打印、制表2、关系模型中,一个关键字是 C 。
A .可由多个任意属性组成 B .至多由一个属性组成C .可由一个或多个其值能惟一标识该关系模型中任何元组的属性组成D .以上都不是3、个关系数据库文件中的各条记录 B 。
A .前后顺序不能任意颠倒,一定要按照输入的顺序排列B .前后顺序可以任意颠倒,不影响库中的数据关系C .前后顺序可以任意颠倒,但排列顺序不同,统计处理的结果就可能不同D .前后顺序不能任意颠倒,一定要按照关键字段值的顺序排列 4、有属性A ,B ,C ,D ,以下表示中不是关系的是 C 。
A .R (A ) B .R (A ,B ,C ,D ) C .D)C B R(A ⨯⨯⨯ D .R (A ,B )5、概念模型中,一个实体相对于关系数据库中一个关系中的一个 B 。
A 、属性 B 、元组 C 、列 D 、字段二、设有一个SPJ 数据库,包括S ,P ,J ,SPJ 四个关系模式: S( SNO ,SNAME ,STA TUS ,CITY); P(PNO ,PNAME ,COLOR ,WEIGHT); J(JNO ,JNAME ,CITY);SPJ(SNO ,PNO ,JNO ,QTY);供应商表S 由供应商代码(SNO )、供应商姓名(SNAME )、供应商状态(STATUS )、供应商所在城市(CITY )组成;零件表P 由零件代码(PNO )、零件名(PNAME )、颜色(COLOR )、重量(WEIGHT )组成; 工程项目表J 由工程项目代码(JNO )、工程项目名(JNAME )、工程项目所在城市(CITY )组成; 供应情况表SPJ 由供应商代码(SNO )、零件代码(PNO )、工程项目代码(JNO )、供应数量(QTY )组成,表示某供应商供应某种零件给某工程项目的数量为QTY 。
数据库1-3章习题参考答案
第二章 习题
二、多项选择题 5、下列关系代数运算中,要求是相容关系的是( ) A. 投影 B. 并 C.交 D.差 6、 关系模型的完整性规则包括( )。 A. 实体完整性规则 B.参照完整性规则 C.安全性规则 D.用户定义的完整性规 则 7.扩充关系代数 包括 ( )。 A. 外联接 B. 除 C.外部并 D.联接 8、自然联接运算是由( )操作组合而成 A. 投影 B.选择 C.笛卡儿积 D.并 9、关系模型是由( )组成 A. 数据结构 B.数据描述语言 C.数据操作 D.完 整性规则
6、试述过程性DML与非过程性DML的区别 。 用户使用过程性DML编程时,不仅需要指出 “做什么”,而且还需指出“怎么做”。用 户使用非过程性DML编程时,则需指出“做 什么”,不需指出“怎么做” 。
三、应用题
1、为某百货公司设计一个E-R模型。 某百货公司管辖若干个连锁商店,每家商 店经营若干种商品,每家商店有若干职工, 但每个职工只能服务于一家商店。 试画出反映商店、商品、职工之间联系的 E-R模型,并将其转换成关系模式集。
1、在关系中能唯一标识元组的属性集为( D )。 A.外部键 B.候选键 C.主键 D.超键
2、在实体中有属性可作为键而选定其中一个时,称
为该实体的 ( C )。 A.外部键 B.候选键 C.主键 D.主属性
3、若某属性虽非该实体的主键,却是另一实体的主
键,称该属性为( A )。 A.外部键 B.候选键 C.主键 D.主属性
第一章 习题
6、数据独立性与数据联系这两个概念有什 么区别? 7、试述DBMS在用户访问数据库过程中所 起的作用。
8、试述过程性DML与非过程性DML的区别 。
三、应用题
1、为某百货公司设计一个E-R模型。 某百货公司管辖若干个连锁商店,每家商 店经营若干种商品,每家商店有若干职工, 但每个职工只能服务于一家商店。 试画出反映商店、商品、职工之间联系的 E-R模型,并将其转换成关系模式集。
数据库学习课程第二章习题和答案
数据库学习课程第二章习题和答案一.单项选择1.SQL语言是 B 的语言,易学习.A 过程化B 非过程化C 格式化D 导航式提示:SQL是一种介于关系代数与关系演算之间的结构化查询语言,它是高度非过程化的.2.SQL语言是 C 语言.A 层次数据库B 网络数据库C 关系数据库D 非数据库提示:SQL是关系数据库标准语言.3.SQL语言具有 B 的功能.A 关系规范化,数据操纵,数据控制B 数据定义,数据操纵,数据控制C 数据定义,关系规范化,数据控制D 数据定义,关系规范化,数据操纵提示:SQL语言自身不具备关系规范化功能.4.在SQL中,用户可以直接操作的是 D .A 基本表B 视图C 基本表和视图D 基本表和视图5.在SQL语言中,实现数据检索的语句是 A .A SELECTB INSERTC UPDATED DELETE6.SELECT语句执行结果是 C .A 数据项B 元组C 表D 数据库7.在SQL语句中,对输出结果排序的语句是 B .A GROUP BYB ORDER BYC WHERED HA VING8.在SELECT语句中,需对分组情况满足的条件进行判断时,应使用 D .A WHEREB GROUP BYC ORDER BYD HA VING9.在SELECT语句中使用*表示 B .A 选择任何属性B 选择全部属性C 选择全部元组D 选择主码10.在SELECT语句中,使用MAX(列名)时,该”列名”应该 D .A 必须是数值型B 必须是字符型C 必须是数值型或字符型D 不限制数据类型11.使用CREATE TABLE语句创建的是 B .A 数据库B 表C 试图D 索引12.下列SQL语句中,修改表结构的是 A .A ALTERB CREATEC UPDATED INSERT13.在SQL中使用UPDATE语句对表中数据进行修改时,应使用的语句是 D .A WHEREB FROMC V ALUESD SET14.视图建立后,在数据库中存放的是 C .A 查询语句B 组成视图的表的内容C 视图的定义D 产生视图的表的定义15.以下叙述中正确的是 B .A SELECT命令是通过FOR子句指定查询条件B SELECT命令是通过WHERE子句指定查询条件C SELECT命令是通过WHILE子句指定查询条件D SELECT命令是通过IS子句指定查询条件16.与WHERE AGE BETWEEN 18 AND 23完全等价的是 D .A WHERE AGE>18 AND AGE<23B WHERE AGE<18 AND AGE>23C WHERE AGE>18 AND AGE<=23 D WHERE AGE>=18 AND AGE<=2317.在查询中统计记录(元组)的个数时,应使用 C 函数.A SUMB COUNT(列名)C COUNT(*)D A VG18.在查询中统计某列中值的个数应使用 B 函数.A SUMB COUNT(列名)C COUNT(*)D A VG19.已知基本表SC(S#,C#,GRADE),其中S#为学号,C#为课程号,GRADE为成绩.则”统计选修了课程的学生人数”的SQL—SELECT语句为 A .A SELECT COUNT(DISTINCT S#)FROM SCB SELECT COUNT(S#)FROM SC C SELECT COUNT()FROM SCD SELECT COUNT(DISTINCT *)FROM SC20.在数据库中有如图所示的两个表,若职工表的主码是职工号,部门表的主码是部门号,SQL 操作 B 不能执行.A 从职工表中删除行(‘025’,’王芳’,’03’,720)B 将行(‘005’,’乔兴’,’04’,750)插入到职工表中C 将职工号为”001”的工资改为700D 将职工号为”038”的部门号改为’03’提示:由于职工表中的职工号为主码,不能向其中插入同主码的记录.21.若用如下SQL语句创建一个表studentCREATE TABLE student(NO CHAR(4) NOT NULL,NAME CHAR(8) NOT NULL,SEX CHAR(2),AGE INT)可以插入到student 表中的是 B .A (‘1031’,’曾华’,男,23)B (‘1031’,’曾华’,NULL,NULL)C (NULL,’曾华’,’男’,’23’)D (‘1031’,NULL,’男’,23)提示:A 中性别SEX 属性值格式不正确,C 中NO 属性值不能为空,D 中NAME 属性值不能为空.22.假设学生关系是S(S#,SNAME,SEX,AGE),课程关系是C(C#,CNAME,TEACHER),学生选课关系是SC(S#,C#,GRADE).要查询选修”COMPUTER ”课程的”女”同学的姓名,将涉及关系 D .A SB SC,C C S,SCD S,SC,C 二.填空1.SQL 语言的数据定义功能包括 定义数据 、 定义基本表 、 定义视图 、 定义索引 。
数据库课后答案 第二章(数据库系统基本原理)
《数据库技术及应用基础教程》第二章参考答案--责任人:袁圆、董婧灵、娄振霞一、选择题1~5:CDCCD 6~10:BDCCA 11~15:AD,ABCA 16:B二、填空题:1.数据库、数据库系统软件、数据库系统用户2. 关系名(属性名1,属性名2,属性名3,…)3.列4. 能标识独一实体的属性或属性组5.一张或几张表(或视图),结构,数据6. 使关系中的每一个属性为不可再分的单纯形域(消除“表中表”),使关系中所有非主属性对任意一个侯选关键字不存在部分函数依赖(使关系中所有非主属性都完全函数依赖于任意一个侯选关键字),使关系中所有非主属性对任意一个侯选关键字不存在传递函数依赖7.需求分析阶段,概念结构设计阶段,逻辑结构设计阶段,数据库物理设计阶段,数据库实施阶段,数据库运行和维护阶段8.数据库应用系统(DBAS)9.安全性、完整性、并发控制和数据恢复10.发生故障后,故障前状态11.授权12.事务13.事务中包括的各个操作一旦开始执行,则一定要全部完成14.封锁,共享锁,排他锁15. 一致性,正确性16.系统自动完成三、简答题1、试述数据模型的概念、数据模型的作用和数据模型的三个要素。
答:数据模型是现实世界数据特征的一种抽象,一种表示实体类型及实体类型间联系的模型。
数据模型可以抽象、表示、处理现实中的数据和信息。
数据模型的三要素分别是:(1)数据结构:是所研究的对象类型的集合,是对系统静态特性的描述。
(2)数据操作:对数据库中各种对象(型)的实例(值)允许执行的操作的集合,操作及操作规则。
(3)数据的约束条件:是一组完整性规则的集合。
也就是说,对于具体的应用娄必须遵循特定的语义约束条件,以保证数据的正确、有效和相容。
2、试述网状、层次数据库的优缺点。
答:网状数据库的优点:(1)能更直接的描述现实世界;(2)具有良好的性能,存取效率更好。
网状数据库缺点:(1)结构复杂,应用系统越大数据库结构越复杂;(2)用法复杂,用户不易理解。
(完整版)数据库系统基础教程第二章答案
(Lena, Hand,805-333, 12345),
(Lena, Hand,805-333, 23456)
Exercise 2.2.1c
For relation Accounts and the first tuple, the components are:
idNo
firstName
lastName
account
805-333
Lena
Hand
23456
805-333
Lena
Hand
12345
901-222
Robbie
Banks
12345
Exercise 2.2.2
Examples of attributes that are created for primarily serving as keys in a relation:
Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry to identify vehicles.
Exercise 2.2.3a
We can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of 3! = 6 ways. Thus, the number of presentations is 6*6 = 36.
CREATE TABLE Outcomes (
ship CHAR(30), battle CHAR(30), result CHAR(10)
《数据库系统原理》习题-第二章关系数据模型
第二章 关系数据模型一、选择题1.常见的数据模型是A.层次模型、网状模型、关系模型B.概念模型、实体模型、关系模型C.对象模型、外部模型、内部模型D.逻辑模型、概念模型、关系模型答案:A2. 一个结点可以有多个双亲,结点之间可以有多种联系的模型是A.网状模型B.关系模型C.层次模型D.以上都有答案:A3.层次型、网状型和关系型数据库划分原则是A)记录长度B)文件的大小C)联系的复杂程度D)数据之间的联系答案:D4.层次模型不能直接表示A)1:1关系B)1:m关系C)m:n关系D)1:1和1:m关系答案:C5.层次数据模型的基本数据结构是A.树B.图C.索引D.关系答案:A6.层次模型实现数据之间联系的方法是A.连接B.指针C.公共属性D.关系答案:B7.用二维表结构表示实体以及实体间联系的数据模型称为A.网状模型B.层次模型C.关系模型D.面向对象模型答案:C8.关系数据模型的基本数据结构是A.树B.图C.索引D.关系答案:D9.下面关于关系性质的说法,错误的是A.表中的一行称为一个元组B.行与列交叉点不允许有多个值C.表中的一列称为一个属性D.表中任意两行可能相同答案:D10.下列所述数据模型概念,不正确的是A)不同记录型的集合B)各种记录型及其联系的集合C)E-R图表示的实体联系模型D)数据库的概念模型答案:A11.关系数据模型A)只能表示实体之间1:1联系B)只能表示实体之间1:m联系C)只能表示实体之间m:n联系D)可以表示实体间的任意联系答案:D12.存取路径对用户透明,从而具有更高的数据独立性、更好的安全保密性,简化程序员和数据库开发建立工作的模型是A.网状模型B.关系模型C.层次模型D.以上都有答案:B13.对关系模型叙述错误的是A)在严格的数学理论、集合论和谓词基础之上B)微机DBMS绝大部分采取关系数据模型C)用二维表表示关系模型是其一大特点D)不具有连接操作的DBMS也可以是关系数据库系统答案:D14.关系数据模型是目前最重要的一种数据模型,它的三个要素分别是A.实体完整性、参照完整性、用户自定义完整性B.数据结构、关系操作、完整性约束C.数据增加、数据修改、数据查询D.外模式、模式、内模式答案:B15.实体是信息世界中的术语,与之对应的数据库术语为A)文件B)数据库C)字段D)记录答案:D16.同一个关系模型的任两个元组值A)不能全同B)可全同C)必须全同D)以上都不是答案:A17.在通常情况下,下面关系中不可以作为关系数据库的关系是A)R1(学生号,学生名,性别)B)R2(学生号,学生名,班级号)C)R3(学生号,学生名,宿舍号)D)R4(学生号,学生名,简历)答案:D18.一个关系数据库文件中的各条记录A)前后顺序不能任意颠倒,一定要按照输入的顺序排列B)前后顺序可以任意颠倒,不影响库中的数据关系C)前后顺序可以任意颠倒,但排列顺序不同,统计处理的结果就可能不同 D)前后顺序不能任意颠倒,一定要按照关键字段值的顺序排列答案:B19.下面的选项不是关系数据库基本特征的是A. 不同的列应有不同的数据类型B. 不同的列应有不同的列名C. 与行的次序无关D. 与列的次序无关答案:A20.关系模式的任何属性A)不可再分B)可再分C)命名在该关系模式中可心不惟一D)以上都不对答案:D21.关系中任何一列的属性取值A)可以再分成更小的数据项,并可取自不同域中的数据B)可以再分成更小的数据项,不能取自不同域 中的数据C)不可再分的数据项,只能取自同一域 中的数据D)不可再分的数据项,可取自大在不同域中数据答案:C22.关系模型中,一个关键字是A)可由多个任意属性组成B)至多由一个属性组成C)可由一个或多个其值能唯一标识该关系模式中任何元组的属性组成D)以上都不是答案:C23.关系数据库中的关键字是指A)能惟一决定关系的字段B)不可改动的专用保留字C)关键的很重要的字段D)能惟一标识元组的属性或属性集合答案:D24.一个关系只有一个A. 候选关键字B.外关键字C.超关键字D.主关键字答案:D25.关系模型中,一个关键字是A. 可以由多个任意属性组成B. 至多由一个属性组成C. 由一个或多个属性组成,其值能够惟一标识关系中一个元组D. 以上都不是答案:C26.有一名为”销售”实体,含有:商品名、客户名、数量等属性,该实体主键A)商品名B)客户名C)商品名+客户名D)商品名+数量答案:C27.有殒为”列车运营”实体,含有:车次、日期、实际发车时间、实际抵达时间、情况摘要等属性,该实体主键是A)车次B)日期C)车次+日期D)车次+情况摘要答案:C28.在订单管理系统中,客户一次购物(一张订单)可以订购多种商品。
数据库系统基础教程第二章答案解析
Exercise 2.2.1aFor relation Accounts, the attributes are:acctNo, type, balanceFor relation Customers, the attributes are:firstName, lastName, idNo, accountExercise 2.2.1bFor relation Accounts, the tuples are:(12345, savings, 12000),(23456, checking, 1000),(34567, savings, 25)For relation Customers, the tuples are:(Robbie, Banks, 901-222, 12345),(Lena, Hand, 805-333, 12345),(Lena, Hand, 805-333, 23456)Exercise 2.2.1cFor relation Accounts and the first tuple, the components are:123456 → acctNosavings → type12000 → balanceFor relation Customers and the first tuple, the components are:Robbie → firstNameBanks → lastName901-222 → idNo12345 → accountExercise 2.2.1dFor relation Accounts, a relation schema is:Accounts(acctNo, type, balance)For relation Customers, a relation schema is:Customers(firstName, lastName, idNo, account)Exercise 2.2.1eAn example database schema is:Accounts (acctNo,type,balance)Customers (firstName,lastName,idNo,account)Exercise 2.2.1fA suitable domain for each attribute:acctNo → Integertype → Stringbalance → IntegerfirstName → StringlastName → StringidNo → String (because there is a hyphen we cannot use Integer) account → IntegerExercise 2.2.1gAnother equivalent way to present the Account relation:Another equivalent way to present the Customers relation:Exercise 2.2.2Examples of attributes that are created for primarily serving as keys in a relation:Universal Product Code (UPC) used widely in United States and Canada to track products in stores.Serial Numbers on a wide variety of products to allow the manufacturer to individually track each product.Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry to identify vehicles.Exercise 2.2.3aWe can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of 3! = 6 ways. Thus, the number of presentations is 6*6 = 36.Exercise 2.2.3bWe can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880Exercise 2.2.3cWe can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n! ways. Thus, the number of presentations is n!m!Exercise 2.3.1aCREATE TABLE Product (maker CHAR(30),model CHAR(10) PRIMARY KEY,type CHAR(15));Exercise 2.3.1bCREATE TABLE PC (model CHAR(30),speed DECIMAL(4,2),hd INTEGER,price DECIMAL(7,2));Exercise 2.3.1cCREATE TABLE Laptop (model CHAR(30),speed DECIMAL(4,2),ram INTEGER,hd INTEGER,screen DECIMAL(3,1),price DECIMAL(7,2));Exercise 2.3.1dCREATE TABLE Printer (model CHAR(30),color BOOLEAN,type CHAR (10),price DECIMAL(7,2));Exercise 2.3.1eALTER TABLE Printer DROP color;Exercise 2.3.1fALTER TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’; Exercise 2.3.2aCREATE TABLE Classes (class CHAR(20),type CHAR(5),country CHAR(20),numGuns INTEGER,bore DECIMAL(3,1),displacement INTEGER);Exercise 2.3.2bname CHAR(30),class CHAR(20),launched INTEGER);Exercise 2.3.2cCREATE TABLE Battles (name CHAR(30),date DATE);Exercise 2.3.2dCREATE TABLE Outcomes (ship CHAR(30),battle CHAR(30),result CHAR(10));Exercise 2.3.2eALTER TABLE Classes DROP bore; Exercise 2.3.2fALTER TABLE Ships ADD yard CHAR(30); Exercise 2.4.1aR1 := σspeed ≥ 3.00 (PC)R2 := πmodel(R1)model100510061013Exercise 2.4.1bR1 := σhd ≥ 100 (Laptop)R2 := Product (R1)R3 := πmaker (R2)makerEABFGExercise 2.4.1cR1 := σmaker=B (Product PC)R2 := σmaker=B (Product Laptop)R3 := σmaker=B (Product Printer)R4 := πmodel,price (R1)R5 := πmodel,price (R2)R6: = πmodel,price (R3)R7 := R4 R5 R6model price1004 6491005 6301006 10492007 1429 Exercise 2.4.1dR1 := σcolor = true AND type = laser (Printer)R2 := πmodel (R1)model30033007Exercise 2.4.1eR1 := σtype=laptop (Product)R2 := σtype=PC(Product)R3 := πmaker(R1)R4 := πmaker(R2)R5 := R3 – R4makerFGR1 := ρPC1(PC)R2 := ρPC2(PC)R3 := R1 (PC1.hd = PC2.hd AND PC1.model <> PC2.model) R2R4 := πhd(R3)hd25080160Exercise 2.4.1gR1 := ρPC1(PC)R2 := ρPC2(PC)R3 := R1 (PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model) R2 R4 := πPC1.model,PC2.model(R3)PC1.model PC2.model1004 1012Exercise 2.4.1hR1 := πmodel (σspeed ≥ 2.80(PC)) πmodel(σspeed ≥ 2.80(Laptop))R2 := πmaker,model(R1 Product)R3 := ρR3(maker2,model2)(R2)R4 := R2 (maker = maker2 AND model <> model2) R3R5 := πmaker(R4)makerBEExercise 2.4.1iR1 := πmodel,speed(PC)R2 := πmodel,speed (Laptop)R3 := R1 R2R4 := ρR4(model2,speed2)(R3)R5 := πmodel,speed (R3 (speed < speed2 ) R4)R6 := R3 – R5R7 := πmaker(R6 Product)makerBR1 := πmaker,speed(Product PC)R2 := ρR2(maker2,speed2)(R1)R3 := ρR3(maker3,speed3)(R1)R4 := R1 (maker = maker2 AND speed <> speed2) R2R5 := R4 (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3R6 := πmaker(R5)makerADEExercise 2.4.1kR1 := πmaker,model (Product PC)R2 := ρR2(maker2,model2)(R1)R3 := ρR3(maker3,model3)(R1)R4 := ρR4(maker4,model4)(R1)R5 := R1 (maker = maker2 AND model <> model2) R2R6 := R3 (maker3 = maker AND model3 <> model2 AND model3 <> model) R5R7 := R4 (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6 R8 := πmaker(R7)makerABDEExercise 2.4.2aπmodelσspeed≥3.00PCExercise 2.4.2bLaptopσhd ≥ 100ProductπmakerExercise 2.4.2cσmaker=Bπmodel,price σmaker=B πmodel,priceσmaker=B πmodel,priceProduct PC Laptop PrinterProductProductExercise 2.4.2dPrinterσcolor = true AND type = laserπmodelσtype=laptopσtype=PC πmakerπmaker–ProductProductExercise 2.4.2fρPC1ρPC2 (PC1.hd = PC2.hd AND PC1.model <> PC2.model)πhdPCPCExercise 2.4.2gρPC1ρPC2PCPC(PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model)πPC1.model,PC2.modelExercise 2.4.2hPC Laptop σspeed ≥ 2.80σspeed ≥ 2.80πmodelπmodel πmaker,modelρR3(maker2,model2)(maker = maker2 AND model <> model2)πmakerExercise 2.4.2iPCLaptopProductπmodel,speed πmodel,speed ρR4(model2,speed2)πmodel,speed(speed < speed2 )πmakerExercise 2.4.2jProduct PC πmaker,speed ρR3(maker3,speed3)ρR2(maker2,speed2)(maker = maker2 AND speed <> speed2)(maker3 = maker AND speed3 <> speed2 AND speed3 <> speed)πmakerExercise 2.4.2kπmaker(maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) (maker3 = maker AND model3 <> model2 AND model3 <> model)(maker = maker2 AND model <> model2)ρR2(maker2,model2)ρR3(maker3,model3)ρR4(maker4,model4)πmaker,modelProduct PCExercise 2.4.3aR1 := σbore ≥ 16 (Classes)R2 := πclass,country (R1)Exercise 2.4.3bR1 := σlaunched < 1921 (Ships)R2 := πname (R1)nameHarunaHieiKirishimaKongoRamilliesRenownRepulseResolutionRevengeRoyal OakRoyal SovereignTennesseeExercise 2.4.3cR1 := σbattle=Denmark Strait AND result=sunk(Outcomes) R2 := πship (R1)shipBismarckHoodExercise 2.4.3dR1 := Classes ShipsR2 := σlaunched > 1921 AND displacement > 35000 (R1)R3 := πname (R2)nameIowaMissouriMusashiNew JerseyNorth CarolinaWashingtonWisconsinYamatoExercise 2.4.3eR1 := σbattle=Guadalcanal(Outcomes)R2 := Ships (ship=name) R1R3 := Classes R2R4 := πname,displacement,numGuns(R3)name displacement numGuns Kirishima 32000 8Washington 37000 9Exercise 2.4.3fR1 := πname(Ships)R2 := πship(Outcomes)R3 := ρR3(name)(R2)R4 := R1 R3nameCaliforniaHarunaHieiIowaKirishimaKongoMissouriMusashiNew JerseyNorth CarolinaRamilliesRenownRepulseResolutionRevengeRoyal OakRoyal SovereignTennesseeWashingtonWisconsinYamatoArizonaBismarckDuke of YorkFusoHoodKing George VPrince of WalesRodneyScharnhorstSouth DakotaWest VirginiaYamashiroExercise 2.4.3gFrom 2.3.2, assuming that every class has one ship named after the class.R1 := πclass(Classes)R2 := πclass(σname <> class(Ships))R3 := R1 – R2classBismarckExercise 2.4.3hR1 := πcountry(σtype=bb(Classes))R2 := πcountry(σtype=bc(Classes))R3 := R1 ∩ R2countryJapanGt. BritainExercise 2.4.3iR1 := πship,result,date(Battles (battle=name) Outcomes)R2 := ρR2(ship2,result2,date2)(R1)R3 := R1 (ship=ship2 AND result=damaged AND date < date2) R2R4 := πship(R3)No results from sample data.Exercise 2.4.4aπclass,countryσbore ≥ 16ClassesExercise 2.4.4bπnameσlaunched < 1921ShipsExercise 2.4.4cπshipσbattle=Denmark Strait AND result=sunkOutcomesExercise 2.4.4dπnameσlaunched > 1921 AND displacement > 35000Classes Ships Exercise 2.4.4eσbattle=Guadalcanal Outcomes ShipsClasses(ship=name)πname,displacement,numGunsExercise 2.4.4fShips Outcomesπnameπship ρR3(name) Exercise 2.4.4gClasses Shipsπclass σname <> class πclass–Exercise 2.4.4hClasses Classesσtype=bb σtype=bcπcountry πcountry∩Exercise 2.4.4iBattlesOutcomes (battle=name)πship,result,dateρR2(ship2,result2,date2)(ship=ship2 AND result=damaged AND date < date2)πshipExercise 2.4.5The result of the natural join has only one attribute from each pair of equated attributes. On the other hand, the result of the theta-join has both columns of the attributes and their values are identical.Exercise 2.4.6UnionIf we add a tuple to the arguments of the union operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then the set behavior will eliminate that tuple. Thus the union operator is monotone.IntersectionIf we add a tuple to the arguments of the intersection operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple does not exist in the relation that it is added but does exist in the other relation, then the result set will include the added tuple. Thus the intersection operator is monotone.DifferenceIf we add a tuple to the arguments of the difference operator, we may not get all of the tuples of the original result. Suppose we have relations R and S and we are computing R – S. Suppose also that tuple t is in R but not in S. The result of R – S would include tuple t. However, if we add tuple t to S, then the new result will not have tuple t. Thus the difference operator is not monotone.ProjectionIf we add a tuple to the arguments of the projection operator, we will get all of the tuples of the original result and the projection of the added tuple. The projection operator only selects columns from the relation and does not affect the rows that are selected. Thus the projection operator is monotone.SelectionIf we add a tuple to the arguments of the selection operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple satisfies the select condition, then it will be added to the new result. The original tuples are included in the new result because they still satisfy the select condition. Thus the selection operator is monotone.Cartesian ProductIf we add a tuple to the arguments of the Cartesian product operator, we will get all of the tuples of the original result and possibly additional tuples. The Cartesian product pairs the tuples of one relation with the tuples of another relation. Suppose that we are calculating R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already in R, then we expect the result of R x S to have (m + 1) * n tuples. Thus the Cartesian product operator is monotone.Natural JoinsIf we add a tuple to the arguments of a natural join operator, we will get all of the tuples of the original result and possibly additional tuples. The new tuple can only create additional successful joins, not less. If, however, the added tuple cannot successfully join with any of the existing tuples, then we will have zero additional successful joins. Thus the natural join operator is monotone.Theta JoinsIf we add a tuple to the arguments of a theta join operator, we will get all of the tuples of the original result and possibly additional tuples. The theta join can be modeled by a Cartesian product followed by a selection on some condition. The new tuple can only create additional tuples in the result, not less. If, however, the added tuple does not satisfy the select condition, then no additional tuples will be added to the result. Thus the theta join operator is monotone.RenamingIf we add a tuple to the arguments of a renaming operator, we will get all of the tuples of the original result and the added tuple. The renaming operator does not have any effect on whether a tuple is selected or not. In fact, the renaming operator will always return as many tuples as its argument. Thus the renaming operator ismonotone.Exercise 2.4.7aIf all the tuples of R and S are different, then the union has n + m tuples, and this number is the maximum possible.The minimum number of tuples that can appear in the result occurs if every tuple of one relation also appears in the other. Then the union has max(m , n) tuples.Exercise 2.4.7bIf all the tuples in one relation can pair successfully with all the tuples in the other relation, then the natural join has n * m tuples. This number would be the maximum possible.The minimum number of tuples that can appear in the result occurs if none of the tuples of one relation can pair successfully with all the tuples in the other relation. Then the natural join has zero tuples.Exercise 2.4.7cIf the condition C brings back all the tuples of R, then the cross product will contain n * m tuples. This number would be the maximum possible.The minimum number of tuples that can appear in the result occurs if the condition C brings back none of the tuples of R. Then the cross product has zero tuples.Exercise 2.4.7dAssuming that the list of attributes L makes the resulting relation πL(R) and relation S schema compatible, then the maximum possible tuples is n. This happens when all of the tuples of πL(R) are not in S.The minimum number of tuples that can appear in the result occurs when all of the tuples in πL(R) appear in S. Then the difference has max(n–m , 0) tuples.Exercise 2.4.8Defining r as the schema of R and s as the schema of S:1.πr(R S)2.R δ(πr∩s(S)) where δ is the duplicate-elimination operator in Section 5.2 pg. 2133.R – (R –πr(R S))Exercise 2.4.9Defining r as the schema of R1.R - πr(R S)Exercise 2.4.10πA1,A2…An(R S)Exercise 2.5.1aσspeed < 2.00 AND price > 500(PC) = øModel 1011 violates this constraint.Exercise 2.5.1bσscreen < 15.4 AND hd < 100 AND price ≥ 1000(Laptop) = øModel 2004 violates the constraint.Exercise 2.5.1cπmaker(σtype = laptop(Product)) ∩ πmaker(σtype = pc(Product)) = øManufacturers A,B,E violate the constraint.Exercise 2.5.1dThis complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R4 that stand for nodes of expression trees. Here is the sequence:R1(maker, model, speed) := πmaker,model,speed(Product PC)R2(maker, speed) := πmaker,speed(Product Laptop)R3(model) := πmodel(R1 R1.maker = R2.maker AND R1.speed ≤ R2.speed R2)R4(model) := πmodel(PC)The constraint is R4 ⊆ R3Manufacturers B,C,D violate the constraint.Exercise 2.5.1eπmodel(σLaptop.ram > PC.ram AND Laptop.price ≤ PC.price(PC × Laptop)) = øModels 2002,2006,2008 violate the constraint.Exercise 2.5.2aπclass(σbore > 16(Classes)) = øThe Yamato class violates the constraint.Exercise 2.5.2bπclass(σnumGuns > 9 AND bore > 14(Classes)) = øNo violations to the constraint.Exercise 2.5.2cThis complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:R1(class,name) := πclass,name(Classes Ships)R2(class2,name2) := ρR2(class2,name2)(R1)R3(class3,name3) := ρR3(class3,name3)(R1)R4(class,name,class2,name2) := R1 (class = class2 AND name <> name2) R2R5(class,name,class2,name2,class3,name3) := R4 (class=class3 AND name <> name3 AND name2 <> name3) R3The constraint is R5 = øThe Kongo, Iowa and Revenge classes violate the constraint.Exercise 2.5.2dπcountry(σtype = bb(Classes)) ∩ πcountry(σtype = bc(Classes)) = øJapan and Gt. Britain violate the constraint.Exercise 2.5.2eThis complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:R1(ship,battle,result,class) := πship,battle,result,class(Outcomes (ship = name) Ships)R2(ship,battle,result,numGuns) := πship,battle,result,numGuns(R1 Classes)R3(ship,battle) := πship,battle(σnumGuns < 9 AND result = sunk (R2))R4(ship2,battle2) := ρR4(ship2,battle2)(πship,battle(σnumGuns > 9(R2)))R5(ship2) := πship2(R3 (battle = battle2) R4)The constraint is R5 = øNo violations to the constraint. Since there are some ships in the Outcomes table that are not in the Ships table, we are unable to determine the number of guns on that ship.Exercise 2.5.3Defining r as the schema A1,A2,…,A n and s as the schema B1,B2,…,B n:πr(R) πs(S) = øwhere is the antisemijoinExercise 2.5.4The form of a constraint as E1 = E2 can be expressed as the other two constraints.Using the “equating an expression to the empty set” method, we can simply say:E1– E2= øAs a containment, we can simply say:E1⊆ E2 AND E2⊆ E1Thus, the form E1 = E2 of a constraint cannot express more than the two other forms discussed in this section.。
mysql数据库武洪萍版第二章习题与答案
第二章习题一、选择题1.E-R方法的三要素是(C)。
A)实体、属性、实体集B)实体、键、联系C)实体、属性、联系D)实体、域、候选键2.如果采用关系数据库实现应用,在数据库的逻辑设计阶段需将( A)转换为关系数据模型。
A)E-R模型B)层次模型C)关系模型D)网状模型。
3.概念设计的结果是(B)。
A)一个与DBMS相关的概念模式B)一个与DBMS无关的概念模式C)数据库系统的公用视图D)数据库系统的数据词典4.如果采用关系数据库来实现应用,在数据库设计的(C)阶段将关系模式进行规范化处理。
A)需求分析B)概念设计C)逻辑设计D)物理设计5.在数据库的物理结构中,将具有相同值的元组集中存放在连续的物理块称为( C)存储方法。
A)HASH B)B+树索引C)聚簇D)其它6.在数据库设计中,当合并局部E-R图时,学生在某一局部应用中被当作实体,而另一局部应用中被当作属性,那么被称之为(D)冲突。
A)属性冲突B)命名冲突C)联系冲突D)结构冲突7.在数据库设计中,E-R模型是进行(B )的一个主要工具。
A)需求分析B)概念设计C)逻辑设计D)物理设计8.在数据库设计中,学生的学号在某一局部应用中被定义为字符型,而另一局部应用中被定义为整型,那么被称之为(A)冲突。
A)属性冲突B)命名冲突C)联系冲突D)结构冲突9.下列关于数据库运行和维护的叙述中,(D )是正确的。
A)只要数据库正式投入运行,标志着数据库设计工作的结束B)数据库的维护工作就是维护数据库系统的正常运行C)数据库的维护工作就是发现错误,修改错误D)数据库正式投入运行标志着数据库运行和维护工作的开始10. 下面有关E-R模型向关系模型转换的叙述中,不正确的是(C )。
A)一个实体类型转换为一个关系模式B)一个1:1联系可以转换为一个独立的关系模式合并的关系模式,也可以与联系的任意一端实体所对应C)一个1:n联系可以转换为一个独立的关系模式合并的关系模式,也可以与联系的任意一端实体所对应D)一个m:n联系转换为一个关系模式模型转换为关系模型应遵循相应原则。
数据库原理与应用教程-(第二版)习题参考答案
第2章习题参考答案第6小题三简答题(1)查询T1老师所授课程的课程号和课程名。
(2)查询年龄大于18岁男同学的学号、姓名、系别。
(3)查询“李力”老师所授课程的课程号、课程名和课时。
(4)查询学号为S1的同学所选修课程的课程号、课程名和成绩。
(5)查询“钱尔”同学所选修课程的课程号、课程名和成绩。
(6)查询至少选修“刘伟”老师所授全部课程的学生姓名。
(7)查询“李思”同学未选修的课程的课程号和课程名。
(8)查询全部学生都选修了的课程的课程号和课程名。
(9)查询选修了课程号为C1和C2的学生的学号和姓名。
(10)查询选修全部课程的学生的学号和姓名。
(11)查询选修课程包含“程军”老师所授课程之一的学生学号。
(12)查询选修课程包含学号S2的学生所修课程的学生学号。
第3章习题参考答案一、选择题1. B2. A3. C4. B5. C6. C7. B8. D9. A 10. D二、填空题1. 结构化查询语言(Structured Query Language)2. 数据查询、数据定义、数据操纵、数据控制3. 外模式、模式、内模式4. 数据库、事务日志5. NULL/NOT NULL、UNIQUE约束、PRIMARY KEY约束、FOREIGN KEY约束、CHECK约束6. 聚集索引、非聚集索引7. 连接字段8. 行数9. 定义10. 系统权限、对象权限11. 基本表、视图12.(1)INSERT INTO S VALUES('990010','李国栋','男',19)(2)INSERT INTO S(No,Name) VALUES('990011', '王大友')(3)UPDATE S SET Name='陈平' WHERE No='990009'(4)DELETE FROM S WHERE No='990008'(5)DELETE FROM S WHERE Name LIKE '陈%'13.CHAR(8) NOT NULL14.o=o15.ALTER TABLE StudentADD SGrade CHAR(10)三、设计题1.(1) 查找在“高等教育出版社”出版,书名为“操作系统”的图书的作者名。
数据库第二章答案
Exercise relation Accounts, the attributes are:acctNo, type, balanceFor relation Customers, the attributes are:firstName, lastName, idNo, accountExercise relation Accounts, the tuples are:(12345, savings, 12000),(23456, checking, 1000),(34567, savings, 25)For relation Customers, the tuples are:(Robbie, Banks, 901-222, 12345),(Lena, Hand, 805-333, 12345),(Lena, Hand, 805-333, 23456)Exercise relation Accounts and the first tuple, the components are: 123456 → acctNosavings → type12000 → balanceFor relation Customers and the first tuple, the components are: Robbie → firstNameBanks → lastName901-222 → idNo12345 → accountExercise relation Accounts, a relation schema is:Accounts(acctNo, type, balance)For relation Customers, a relation schema is:Customers(firstName, lastName, idNo, account)Exercise example database schema is:Accounts (acctNo,type,balance)Customers (firstName,lastName,idNo,account)Exercise suitable domain for each attribute:acctNo → Integertype → Stringbalance → IntegerfirstName → StringlastName → StringidNo → String (because there is a hyphen we cannot use Integer)account → IntegerExercise equivalent way to present the Account relation:Another equivalent way to present the Customers relation:Exercise of attributes that are created for primarily serving as keys in a relation: Universal Product Code (UPC) used widely in United States and Canada to track products in stores.Serial Numbers on a wide variety of products to allow the manufacturer to individually track each product.Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry to identify vehicles.Exercise can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of 3! = 6 ways. Thus, the number of presentations is 6*6 = 36.Exercise can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880Exercise can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n! ways. Thus, the number of presentations is n!m!Exercise TABLE Product (maker CHAR(30),model CHAR(10) PRIMARY KEY,type CHAR(15));Exercise TABLE PC (model CHAR(30),speed DECIMAL(4,2),ram INTEGER,hd INTEGER,price DECIMAL(7,2));Exercise TABLE Laptop (model CHAR(30),speed DECIMAL(4,2),ram INTEGER,hd INTEGER,screen DECIMAL(3,1),price DECIMAL(7,2));Exercise TABLE Printer (model CHAR(30),color BOOLEAN,type CHAR (10),price DECIMAL(7,2));Exercise TABLE Printer DROP color;Exercise TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’;Exercise TABLE Classes (class CHAR(20),type CHAR(5),country CHAR(20),numGuns INTEGER,bore DECIMAL(3,1),displacement INTEGER);Exercise TABLE Ships (name CHAR(30),class CHAR(20),launched INTEGER);Exercise TABLE Battles (name CHAR(30),date DATE);Exercise TABLE Outcomes (ship CHAR(30),battle CHAR(30),result CHAR(10));Exercise TABLE Classes DROP bore; Exercise TABLE Ships ADD yard CHAR(30); ExerciseR1 := σspeed ≥ (PC)R2 := πmodel(R1)model100510061013Exercise R1 := σhd ≥ 100 (Laptop)R2 := Product (R1)R3 := πmaker (R2)makerEABFGExercise R1 := σmaker=B (Product PC)R2 := σmaker=B (Product Laptop)R3 := σmaker=B (Product Printer)R4 := πmodel,price (R1)R5 := πmodel,price (R2)R6: = πmodel,price (R3)R7 := R4 R5 R6model price1004 6491005 6301006 10492007 1429ExerciseR1 := σcolor = true AND type = laser (Printer)R2 := πmodel (R1)model30033007ExerciseR1 := σtype=laptop (Product)R2 := σtype=PC(Product)R3 := πmaker(R1)R4 := πmaker(R2)R5 := R3 – R4makerFGExercise R1 := ρPC1(PC)R2 := ρPC2(PC)R3 := R1 = AND <> R2R4 := πhd(R3)hd25080160Exercise R1 := ρPC1(PC)R2 := ρPC2(PC)R3 := R1 = AND = AND < R2R4 := π,(R3)1004 1012Exercise R1 := πmodel(σspeed ≥ (PC)) πmodel(σspeed ≥ (Laptop))R2 := πmaker,model (R1 Product)R3 := ρR3(maker2,model2)(R2)R4 := R2 (maker = maker2 AND model <> model2) R3R5 := πmaker(R4)makerBEExerciseR1 := πmodel,speed(PC)R2 := πmodel,speed(Laptop)R3 := R1 R2R4 := ρR4(model2,speed2)(R3)R5 := πmodel,speed (R3 (speed < speed2 ) R4)R6 := R3 – R5R7 := πmaker(R6 Product)makerBExercise R1 := πmaker,speed(Product PC)R2 := ρR2(maker2,speed2)(R1)R3 := ρR3(maker3,speed3)(R1)R4 := R1 (maker = maker2 AND speed <> speed2) R2R5 := R4 (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3R6 := πmaker(R5)makerADEExercise R1 := πmaker,model(Product PC)R2 := ρR2(maker2,model2)(R1)R3 := ρR3(maker3,model3)(R1)R4 := ρR4(maker4,model4)(R1)R5 := R1 (maker = maker2 AND model <> model2) R2R6 := R3 (maker3 = maker AND model3 <> model2 AND model3 <> model) R5R7 := R4 (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6 R8 := πmaker(R7)makerABDEExercise πmodelσspeed≥3.00PC Laptop σhd ≥ 100 Productπmakerσmaker=B πmodel,price σmaker=B πmodel,price σmaker=B πmodel,priceProduct PC Laptop Printer ProductProduct Printer σcolor = true AND type = laser πmodel σtype=laptop σtype=PC πmakerπmaker –Product ProductρPC1ρPC2 (PC1.hd = PC2.hd AND PC1.model <> PC2.model)πhd PC PC ρPC1ρPC2PC PC (PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model)πPC1.model,PC2.modelPC Laptop σspeed ≥ 2.80σspeed ≥ 2.80πmodelπmodel Productπmaker,modelρR3(maker2,model2)(maker = maker2 AND model <> model2)PC LaptopProduct πmodel,speed πmodel,speed ρR4(model2,speed2)πmodel,speed(speed < speed2 )–Product PC πmaker,speed ρR3(maker3,speed3)ρR2(maker2,speed2)(maker = maker2 AND speed <> speed2)(maker3 = maker AND speed3 <> speed2 AND speed3 <> speed)πmakerProduct PC πmaker,model ρR2(maker2,model2)ρR3(maker3,model3)ρR4(maker4,model4)(maker = maker2 AND model <> model2)(maker3 = maker AND model3 <> model2 AND model3 <> model)(maker4 = maker AND (model4=model OR model4=model2 OR model4=model3))πmakerR1 := σbore ≥ 16 (Classes) R2 := πclass,country (R1)Exercise R1 := σlaunched < 1921 (Ships)R2 := πname (R1)RenownRepulseResolutionRevengeRoyal OakRoyal SovereignTennesseeExercise R1 := σbattle=Denmark Strait AND result=sunk(Outcomes) R2 := πship (R1)shipBismarckHoodExercise R1 := Classes ShipsR2 := σlaunched > 1921 AND displacement > 35000 (R1)R3 := πname (R2)nameIowaMissouriMusashiNew JerseyNorth CarolinaWashingtonWisconsinYamatoExercise R1 := σbattle=Guadalcanal(Outcomes)R2 := Ships (ship=name) R1R3 := Classes R2R4 := πname,displacement,numGuns(R3)name displacement numGunsKirishima 32000 8Washington 37000 9Exercise R1 := πname(Ships)R2 := πship(Outcomes)R3 := ρR3(name)(R2)R4 := R1 R3nameCaliforniaHarunaHieiIowaKirishimaKongoExercise From assuming that every class has one ship named after the class. R1 := πclass (Classes) R2 := πclass (σname <> class (Ships)) R3 := R1 – R2 Exercise R1 := πcountry (σtype=bb (Classes)) R2 := πcountry (σtype=bc (Classes)) R3 := R1 ∩ R2 Exercise R1 := πship,result,date (Battles (battle=name) Outcomes) R2 := ρR2(ship2,result2,date2)(R1) R3 := R1 (ship=ship2 AND result=damaged AND date < date2) R2 R4 := πship (R3)No results from sample data.MissouriMusashiNew JerseyNorth CarolinaRamilliesRenownRepulseResolutionRevengeRoyal OakRoyal SovereignTennessee Washington WisconsinYamatoArizonaBismarckDuke of YorkFusoHoodKing George VPrince of WalesRodneyScharnhorstSouth DakotaWest VirginiaYamashiroclass Bismarck country Japan Gt. BritainExercise σbore ≥ 16 πclass,country Classes σlaunched < 1921πname ShipsOutcomes πship σbattle=Denmark Strait AND result=sunkClasses Ships σlaunched > 1921 AND displacement > 35000πnameσbattle=Guadalcanal Outcomes Ships (ship=name)πname,displacement,numGuns Ships Outcomes πnameπship ρR3(name)Classes Ships πclass σname <> class πclass –Classes Classes σtype=bb σtype=bcπcountry πcountry∩ Battles Outcomes (battle=name)πship,result,dateρR2(ship2,result2,date2)(ship=ship2 AND result=damaged AND date < date2)πship result of the natural join has onlyone attribute from each pair of equated attributes. On the other hand, the result of the theta-join has both columns of the attributes and their values are identical.Exercise Union we add a tuple to the arguments of the union operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then the set behavior will eliminate that tuple. Thus the union operator is monotone.IntersectionIf we add a tuple to the arguments of the intersection operator, we will get all of the tuples of the original result and maybe the added tuple. If the added tuple does not exist in the relation that it is added but does exist in the other relation, then the result set will include the added tuple. Thus the intersection operator is monotone.DifferenceIf we add a tuple to the arguments of the difference operator, we may not get all of the tuples of the original result. Suppose we have relations R and S andwe are computing R – S. Suppose also that tuple t is in R but not in S. Theresult of R – S would include tuple t. However, if we add tuple t to S, then the new result will not have tuple t. Thus the difference operator is not monotone. ProjectionIf we add a tuple to the arguments of the projection operator, we will get all of the tuples of the original result and the projection of the added tuple. Theprojection operator only selects columns from the relation and does not affectthe rows that are selected. Thus the projection operator is monotone. SelectionIf we add a tuple to the arguments of the selection operator, we will get all ofthe tuples of the original result and maybe the added tuple. If the added tuplesatisfies the select condition, then it will be added to the new result. Theoriginal tuples are included in the new result because they still satisfy theselect condition. Thus the selection operator is monotone.Cartesian ProductIf we add a tuple to the arguments of the Cartesian product operator, we willget all of the tuples of the original result and possibly additional tuples. TheCartesian product pairs the tuples of one relation with the tuples of anotherrelation. Suppose that we are calculating R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already in R, then we expect theresult of R x S to have (m + 1) * n tuples. Thus the Cartesian product operator is monotone.Natural JoinsIf we add a tuple to the arguments of a natural join operator, we will get all of the tuples of the original result and possibly additional tuples. The new tuplecan only create additional successful joins, not less. If, however, the addedtuple cannot successfully join with any of the existing tuples, then we willhave zero additional successful joins. Thus the natural join operator ismonotone.Theta JoinsIf we add a tuple to the arguments of a theta join operator, we will get all ofthe tuples of the original result and possibly additional tuples. The theta joincan be modeled by a Cartesian product followed by a selection on somecondition. The new tuple can only create additional tuples in the result, notless. If, however, the added tuple does not satisfy the select condition, then no additional tuples will be added to the result. Thus the theta join operator ismonotone.RenamingIf we add a tuple to the arguments of a renaming operator, we will get all ofthe tuples of the original result and the added tuple. The renaming operatordoes not have any effect on whether a tuple is selected or not. In fact, therenaming operator will always return as many tuples as its argument. Thus the renaming operator is monotone.Exercise all the tuples of R and S are different, then the union has n + m tuples, and this number is the maximum possible.The minimum number of tuples that can appear in the result occurs if every tuple of one relation also appears in the other. Then the union has max(m , n) tuples.Exercise all the tuples in one relation can pair successfully with all the tuples in the other relation, then the natural join has n * m tuples. This number would be the maximum possible.The minimum number of tuples that can appear in the result occurs if none of the tuples of one relation can pair successfully with all the tuples in the other relation. Then the natural join has zero tuples.Exercise the condition C brings back all the tuples of R, then the cross product will contain n * m tuples. This number would be the maximum possible.The minimum number of tuples that can appear in the result occurs if the condition C brings back none of the tuples of R. Then the cross product has zero tuples. Exercise that the list of attributes L makes the resulting relation πL(R) and relation S schema compatible, then the maximum possible tuples is n. This happens when all of the tuples of πL(R) are not in S.The minimum number of tuples that can appear in the result occurs when all of the tuples in πL(R) appear in S. Then the difference has max(n–m , 0) tuples. Exercise r as the schema of R and s as the schema of S:1.πr(R S)2.R δ(πr∩s(S)) where δ is the duplicate-elimination operator in Sectionpg. 2133.R – (R –πr(R S))Exercise r as the schema of R1.R - πr(R S)Exercise …An(R S)Exercise < AND price > 500(PC) = øModel 1011 violates this constraint.Exercise < AND hd < 100 AND price ≥ 1000(Laptop) = øModel 2004 violates the constraint.Exercise = laptop(Product)) ∩ πmaker(σtype = pc(Product)) = øManufacturers A,B,E violate the constraint.Exercise complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R4 that stand for nodes of expression trees. Here is the sequence:R1(maker, model, speed) := πmaker,model,speed(Product PC)R2(maker, speed) := πmaker,speed(Product Laptop)R3(model) := πmodel(R1 = AND ≤ R2)R4(model) := πmodel(PC)The constraint is R4 ⊆ R3Manufacturers B,C,D violate the constraint.Exercise > AND ≤ (PC × Laptop)) = øModels 2002,2006,2020 violate the constraint.Exercise > 16(Classes)) = øThe Yamato class violates the constraint.Exercise > 9 AND bore > 14(Classes)) = øNo violations to the constraint.Exercise complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:R1(class,name) := πclass,name(Classes Ships)R2(class2,name2) := ρR2(class2,name2)(R1)R3(class3,name3) := ρR3(class3,name3)(R1)R4(class,name,class2,name2) := R1 (class = class2 AND name <> name2) R2R5(class,name,class2,name2,class3,name3) := R4 (class=class3 AND name <> name3 AND name2 <> name3) R3 The constraint is R5 = øThe Kongo, Iowa and Revenge classes violate the constraint.Exercise = bb(Classes)) ∩ πcountry(σtype = bc(Classes)) = øJapan and Gt. Britain violate the constraint.Exercise complex expression is best seen as a sequence of steps in which we define temporary relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:R1(ship,battle,result,class) := πship,battle,result,class(Outcomes (ship = name) Ships)R2(ship,battle,result,numGuns) := πship,battle,result,numGuns(R1 Classes)R3(ship,battle) := πship,battle(σnumGuns < 9 AND result = sunk (R2))R4(ship2,battle2) := ρR4(ship2,battle2)(πship,battle(σnumGuns > 9(R2)))R5(ship2) := πship2(R3 (battle = battle2) R4)The constraint is R5 = øNo violations to the constraint. Since there are some ships in the Outcomes table that are not in the Ships table, we are unable to determine the number of guns on that ship. Exercise r as the schema A1,A2,…,A n and s as the schema B1,B2,…,B n:πr(R) πs(S) = øwhere is the antisemijoinExercise form of a constraint as E1 = E2 can be expressed as the other two constraints. Using the “equating an expression to the empty set” method, we can simply say:E1– E2 = øAs a containment, we can simply say:E1⊆ E2 AND E2⊆ E1Thus, the form E1 = E2 of a constraint cannot express more than the two other forms discussed in this section.。
数据库第二章课后习题解答
数据库第二章课后习题解答(共14页)-本页仅作为预览文档封面,使用时请删除本页-第3部分习题及其解答第一章的两道题23-2 习题2分别把习题、习题的ER图转换成关系模型数据结构。
【参考答案】1.习题的ER图可转换成如下的关系模型数据结构。
①程序员(编号,姓名,性别,年龄,单位,职称),其中编号是关键字;②程序(程序名称,版权,专利号,价格),其中程序名称是关键字;③设计(编号,程序名称,开始时间,结束时间),其中(编号,程序名称)是关键字。
2.习题的ER图可转换成如下的关系模型数据结构。
①工厂(工厂名称,厂址,联系电话),其中工厂名称是关键字;②产品(产品号,产品名,规格,单价),其中产品号是关键字;③工人(工人编号,姓名,性别,职称,工厂名称,雇用期,月薪),其中工人编号是关键字,工厂名称是外关键字,雇用期和月薪是联系属性;④生产(工厂名称,产品号,月产量),其中(工厂名称,产品号)是关键字,生产关系是表示联系的。
判断下列情况,分别指出它们具体遵循那一类完整性约束规则1.用户写一条语句明确指定月份数据在1~12之间有效。
2.关系数据库中不允许主键值为空的元组存在。
33.从A关系的外键出发去找B关系中的记录,必须能找到。
【解答】1.用户用语句指定月份数据在1~12之间有效,遵循用户定义的完整性约束规则。
2.关系数据库中不允许主键值为空的元组存在,遵循实体完整性约束规则;3.从A关系的外键出发去找B关系的记录,必须能找到,遵循引用完整性约束规则。
判断下列情况,分别指出他们是用DML还是用DDL来完成下列操作1.创建“学生”表结构。
2.对“学生”表中的学号属性,其数据类型由“整型”修改为“字符型”。
3.把“学生”表中学号“021”修改为“025”。
【解答】1.创建“学生”表结构,即定义一个关系模式,用DDL完成。
2.修改“学生”表中学号属性的数据类型,即修改关系模式的定义,用DDL 完成。
3.修改“学生”表中学号属性的数据值,即对表中的数据进行操作,用DML 完成。
数据库第二章练习题答案
数据库第二章练习题答案一、选择题1. 在关系数据库中,一个关系可以被视为一个()。
A. 表B. 列C. 行D. 视图答案:A2. 数据库管理系统(DBMS)的主要功能不包括()。
A. 数据存储B. 数据检索C. 数据加密D. 数据管理答案:C3. 以下哪个选项是SQL语言的基本组成部分?A. 存储过程B. 触发器C. 视图D. 所有选项答案:D4. 在关系数据库设计中,主键用于()。
A. 唯一标识表中的每条记录B. 存储数据C. 排序数据D. 索引数据答案:A5. 以下哪个是数据库规范化的目的?A. 提高查询速度B. 减少数据冗余C. 增加数据安全性D. 降低存储成本答案:B二、填空题6. 数据库的三大范式是第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。
答案:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)7. 在SQL中,用于创建新表的命令是____。
答案:CREATE TABLE8. 一个数据库表可以有多个索引,但只能有一个____。
答案:主键9. 在数据库中,外键用于维护表之间的____。
答案:参照完整性10. 数据库的事务具有四个重要的属性,通常被称为ACID属性,它们是原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)。
三、简答题11. 请简述数据库的三种基本操作。
答案:数据库的三种基本操作是插入(INSERT)、查询(SELECT)和更新(UPDATE)。
12. 解释什么是数据库的事务?答案:数据库的事务是一个操作序列,它们作为一个整体被执行,以确保数据的完整性。
事务要么完全成功,要么完全失败,不会留下中间状态。
四、应用题13. 假设你有一个学生信息表,包含学号、姓名、年龄和专业。
请编写一个SQL查询,列出所有20岁的学生名单。
答案:SELECT 姓名 FROM 学生信息表 WHERE 年龄 = 20;14. 如果需要删除一个表中的重复记录,你会使用哪个SQL命令?答案:可以使用DELETE命令结合GROUP BY和HAVING COUNT(*) > 1来删除重复记录。
数据库第2章习题(答案)
第二章习题一、单项选择题1、对关系模式的任何属性:A:不可再分B:可再分C:命名在该关系模式中可以不唯一D:以上都不是答案:A2、在关系R(R#,RN,S#)和S(S#,SN,SD)中,R的主键是R#,S的主键是S#,则S#在R中称为:A:外键B:候选键C:主键D:以上都不是答案:A3、取出关系的某些列,并取消重复元组的关系代数运算称为:A:取列运算B:投影运算C:连接运算D:选择运算答案:B4、关系数据库管理系统应能实现的专门关系运算包括:A:排序、索引、统计B:选择、投影、连接C:关联、更新、排序D:显示、打印、制表答案:B5、根据关系模式的实体完整性规则,一个关系的“主键”:A:不能有两个B:不能成为另一个关系的外键C:不允许为空D:可以取值答案:C6、参加差运算的两个关系:A:属性个数可以不相同B:属性个数必须相同C:一个关系包含另一个关系的属性D:属性名必须相同答案:B7、在基本的关系中,下列说法是正确的()。
A:行列顺序有关B:属性名允许重名C:任意两个元组不允许重复D:列是非同质的答案:C8、σ4<‘4’(S)表示()。
A.从S关系中挑选4的值小于第4个分量的元组B.从S关系中挑选第4个分量值小于4的元组C.从S关系中挑选第4个分量值小于第4个分量的元组D.σ4<‘4’(S)是向关系垂直方向运算答案:B9、在连接运算中如果两个关系中进行比较的分量必须是相同的属性组,那么这个连接是:A:有条件的连接B:等值连接C:自然连接D:完全连接答案:C10、关系R与S做连接运算,选取R中A的属性值和S中B的属性值相等的那些元组,则R与S的连接是:A:有条件的连接B:等值连接C:自然连接D:完全连接答案:B11、关系a1的象集是:A:{(b1), (c1), (d1) } B:{(b1, c1), (b2, c3) }C:{(b1, c1, d1), (b2, c3, d4) } D:{(a1, b1, c1, d1), (a1, b2, c3, d4) }答案:C12、关系(a3,b1)的象集是:A:{(d2), (d4) } B:{(c2), (c3) }C:{(c2, d2), (c3, d4) } D:{(b1, c2, d2), (b1, c3, d4) }答案:C13、在通常情况下,下面的关系中不可以作为关系数据库的关系是:A:R1(学生号,学生名,性别) B:R2(学生号,学生名,班级号)C:R3(学生号,学生名,宿舍名) D:R4(学生号,学生名,简历)答案:D14、“年龄在15至30岁之间”这种约束属于DBS的()功能。
大学数据库-第2章习题解答
第2章习题解答〖2.1〗定义并解释术语:实体实体型实体集属性码实体联系图(E-R图)数据模型答:①实体:现实世界中存在的可以相互区分的事物或概念称为实体。
②实体型:现实世界中,对具有相同性质、服从相同规则的一类事物(或概念,即实体)的抽象称为实体型。
③实体集:具有相同特征或能用同样特征描述的实体的集合称为实体集。
④属性:属性为实体的某一方面特征的抽象表示。
⑤码:也称为关键字,能够唯一标识一个实体。
⑥实体联系图(E-R图):实体联系方法(E-R图法)是用来描述现实世界中概念模型的一种著名方法,提供了表示实体集、属性和联系的方法。
⑦数据模型:一组严格定义的概念集合。
这些概念精确地描述了系统的数据结构、数据操作和数据完整性约束条件。
〖2.2〗试述数据模型的概念、数据模型的作用和数据模型的三个要素。
答:①数据模型是一组严格定义的概念集合,这些概念精确地描述了系统的数据结构、数据操作和数据完整性约束条件。
数据模型是通过概念模型数据化处理得到的。
②数据库是根据数据模型建立的,因而数据模型是数据库系统的基础。
③数据模型的三要素是数据结构、数据操作和完整性约束条件。
数据结构是所研究的对象类型的集合;数据操作是指对数据库中各种数据对象允许执行的操作集合;数据约束条件是一组数据完整性规则的集合。
〖2.3〗试述信息模型的作用。
答:信息模型是对信息世界的管理对象、属性及联系等信息的描述形式。
信息模型不依赖于计算机及DBMS,它是现实世界的真实而全面的反映。
信息模型数据化处理后可得到数据模型。
〖2.4〗试给出三个实际部门的E-R图,要求实体型之间具有一对一、一对多、多对多各种不同的联系。
答:见图。
题2.4 E-R图图中:部门和负责人间的联系是一对一的联系;一个学生可以借阅多本书,一本书只能一个人借,学生和借阅间的联系为一对多的联系;一个学生可以参加多个社会团体,一个社会团体有多个学生参加,学生和社会团体间的联系为多对多的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解答】
1.检索学习课程号为C06的学生学号与成绩。
sno, grade(cno='C06'(elective)) 或1,3(2='C06'(elective))
2.检索学习课程号为C06的学生学号与姓名。
sno, sname(cno='C06'(student elective))
3.ρ保持依赖吗
【解答】
1.(AB)(F)={A→B};(AC)(F)={A→C};(AD)(F)={A→D};
2.ρ相对于F是无损连接分解,见图。
图 分解ρ={AB,AC,AD}相对于F是无损连接分解
3.因为(AB)(F)∪(AC)(F)∪(AD)(F)={A→B,A→C,A→D},与F比较,丢失了B→C和D→C,所以分解ρ不保持依赖。
已知关系模式R(A,B,C,D)和函数依赖集F={A→C,D→C,BD→A},ρ={AB,ACD,BCD}是R的一个分解。试证明ρ相对于F不是无损联接分解。
【解答】
ρ相对于F不是无损连接分解,见图。
图 分解ρ={AB,ACD,BCD}相对于F不是无损连接分解
已知关系模式R(A,B,C,D)和函数依赖集F={A→B,B→C,D→B},
3.1,3(2='数学'(B));姓名(成绩>'75'(A B));姓名(课程名='数学'∨课程名='英语'(A-B))。
4. ; 。
5.A B;A B;A B。
【解答】
1.结果关系见表(a)~表(e)。
2.结果关系见表(f)~表(i)。
3.结果关系见表(j)~表(l)。
4.结果关系见表(m)~表(n)。
(11) 第五次扫描F,找不到其左部BGCEAPH的函数依赖,转(12);
(12) 因A=A*,转(13);
(13) 输出A*,即(BG)+=BGCEAPH。
运行算法的VB程序,输入相应数据后,可验证(BG)+=BGCEAPH,如图所示。
图 运行算法的VB程序,求(BG)+。
已知关系模式R(A,B,C,D,E)和函数依赖集F={A→D,E→D,D→B,BC→D,DC→A},问分解ρ={R1(A,B),R2(A,E),R3(E,C),R4(D,B,C),R5(A,C)}是否为R的无损联接分解。
因为{AC}(F5)∪{BC}(F5)=C→A≠F5;所以分解ρ5不具有保持函数依赖特性。
图(e) 分解ρ5具有无损连接性
已知关系模式R(A,B,C,D)和函数依赖集F={A→B,B→C,A→D,D→C},ρ={AB,AC,AD}是R的一个分解。
1.求出F在ρ的每个模式上的投影。
2.ρ相对于F是无损连接分解吗
2. 对R1(ACD)和R2(BD)做如下分析。
※ 在R1(ACD)中,有A→C,D→C,(AD)+=ACD;(AD)是键,C是非主属性。
(1) 置初始值A=ф,A*=BG;
(2) 因A≠A*,置A=BG;
(3) 第一次扫描F,找到B→CE,其左部BG,故置A*=BGCE。搜索完,转(4);
(4) 因A≠A*,置A=BGCE;
(5) 第二次扫描F,找到GC→A,其左部BGCE,故置A*=BGCEA。搜索完,转(6);
(6) 因A≠A*,置A=BGCEA;
2.习题的ER图可转换成如下的关系模型数据结构。
① 工厂(工厂名称,厂址,联系电话),其中工厂名称是关键字;
② 产品(产品号,产品名,规格,单价),其中产品号是关键字;
③ 工人(工名称是外关键字,雇用期和月薪是联系属性;
④生产(工厂名称,产品号,月产量),其中(工厂名称,产品号)是关键字,生产关系是表示联系的。
【解答】
1.根据“测试一个分解ρ是否为无损连接分解”的算法,首先建立习题的初始Rρ表,如表(1)所示。
2.反复检查F的每一个函数依赖,修改Rρ表中的元素,一直到表格不能修改为止。
① 对A→D,第1,2,5行的A同为a1,把这三行的D均改为b14;
② 对E→D,第2,3行的E同为a5,把这两行的D均改为b14;
判断下列情况,分别指出它们具体遵循那一类完整性约束规则
1.用户写一条语句明确指定月份数据在1~12之间有效。
2.关系数据库中不允许主键值为空的元组存在。
3.从A关系的外键出发去找B关系中的记录,必须能找到。
【解答】
1.用户用语句指定月份数据在1~12之间有效,遵循用户定义的完整性约束规则。
2.关系数据库中不允许主键值为空的元组存在,遵循实体完整性约束规则;
因为{AB}(F1)∪{AC}(F1)=A→B=F1;所以分解ρ1是保持函数依赖集F1的。
图(a)分解ρ1具有无损连接性
2.因为AB∩AC=A,AC-AB=C,A→C成立,所以分解ρ2具有无损连接性。运行算法的VB程序如图(b)所示,验证结果正确。
因为{AB}(F2)∪{AC}(F2)=A→C≠F2;所以分解ρ2不具有保持函数依赖特性。
(9) 输出A*,即(AC)+=ACEBD。
因为BE(AC)+,所以AC→BE能够从F中导出。
方法三:运行算法的VB程序,输入相应数据后,得出(AC)+=ACEBD,如图所示。因为BE(AC)+,所以AC→BE能够从F中导出。
图 运行算法的VB程序,求(AC)+。
2.求属性集BG关于F的闭包(BG)+,其算法步骤如下:
3.从A关系的外键出发去找B关系的记录,必须能找到,遵循引用完整性约束规则。
判断下列情况,分别指出他们是用DML还是用DDL来完成下列操作
1.创建“学生”表结构。
2.对“学生”表中的学号属性,其数据类型由“整型”修改为“字符型”。
3.把“学生”表中学号“021”修改为“025”。
【解答】
1.创建“学生”表结构,即定义一个关系模式,用DDL完成。
sno(1=4∧2='C02'∧5='C06'(electiveelective))
6.检索没有选修C06课程的学生姓名及其所在班级。
sname, class(student) -sname, class(cno='C06'(student elective))
7.检索学习全部课程的学生姓名。
sname(student (sno, cno(elective)cno(course)))
3.设R3(ABC),F3={A→B},ρ3={AB,BC}。
4.设R4(ABC),F4={A→B,B→C},ρ4={AC,BC}。
5.设R5(ABC),F5={AB→C,C→A},ρ5={AC,BC}。
【解答】
1.因为AB∩AC=A,AB-AC=B,A→B成立,所以分解ρ1具有无损连接性。运行算法的VB程序如图(a)所示,验证结果正确。
图(b) 分解ρ2具有无损连接性
3.因为(AB∩BC)↛(AB-BC),而且(AB∩BC)↛(BC-AB),所以分解ρ3不具有无损连接特性。运行算法的VB程序如图(c)所示,验证结果正确。
因为{AB}(F3)∪{BC}(F3)=A→B=F3;所以分解ρ3是保持函数依赖集F3的。
图(c) 分解ρ3不具有无损连接特性
对已知的AC→B和B→D,根据Å3传递律,AC→D成立;
对已证的AC→D和已知的D→BE,根据Å3传递律,AC→BE成立;即AC→BE能从F中导出。
方法二:按算法(求属性集合X关于函数依赖集F的闭包X+),求(AC)+。
(1) 置初始值A=ф,A*=AC;
(2) 因A≠A*,置A=AC;
(3) 第一次扫描F,找到C→E和AC→B,其左部AC,故置A*=ACEB。搜索完,转(4);
1.把R分解成{ACD,BD},试求F在这两个模式上的投影。
2.R1(ACD)和R2(BD)是BCNF吗如果不是,请作进一步分解。
【解答】
1.(ACD)(F)={A→C,D→C};(BD)(F)={D→B}。分解{ACD,BD}丢失了函数依赖集F中的A→B和B→C,所以该分解不具有保持函数依赖特性。
2.修改“学生”表中学号属性的数据类型,即修改关系模式的定义,用DDL完成。
3.修改“学生”表中学号属性的数据值,即对表中的数据进行操作,用DML完成。
给出两个学生选修课程关系A和B,属性为姓名、课程名、成绩。分别写出后列各关系代数运算的结果关系。
1.A和B的并、交、差、乘积、自然联接。
2.成绩>'80'(A);2='数学'∧3<'90'(B);1,3(A);课程名(B)。
5.结果关系见表(o)~表(q)。
假设教学数据库中已建立三个关系:
学生关系 student(sno,sname,sex,birth,height,class,address)
课程关系 course(cno,cname,credit)
选修关系 elective(sno,cno,grade)
用关系代数表达式表达下列查询:
1.检索学习课程号为C06的学生学号与成绩。
2.检索学习课程号为C06的学生学号与姓名。
3.检索学习课程名为ENGLISH的学生学号与姓名。
4.检索选修课程号为C02或C06的学生学号。
5.检索至少选修课程号为C02和C06的学生学号。
6.检索没有选修C06课程的学生姓名及其所在班级。
7.检索学习全部课程的学生姓名。
(7) 第三次扫描F,找到AC→PE,A→P,GA→B和AE→GB,其左部BGCEA,故置A*=BGCEAP。搜索完,转(8);
(8) 因A≠A*,置A=BGCEAP;