第六章 食品中的超微粉碎技术
超微粉碎技术在食品加工中的应用
食品微粉碎和超微
超微粉碎的基本原理
• 一次粉碎就是在一台设备上同时完成粉碎、
筛选、分离、再粉碎的过程。 • 二次粉碎是先对物料进行粗粉碎,然后再 采用超细粉碎机完成超细粉碎加工,工艺 流程为:原料→筛选→清洗→干燥→粗粉 碎→超细粉碎→风选分级→超细粉体产品。
超微粉碎的方法
• 1、挤压粉碎
• 2、挤压—剪切粉碎
力学性能
• 不同的粉体都是大量微小固体颗粒的集合
体,通常具有以下共同的力学性能: • 1、比表面积大 • 2、可塑性强 • 3、流动性好
超微粉碎的作用
• 可以使食品具有独特的物理化学性能 • 可以改善食品的口感 • 使食品成分被充分利用 • 改进或创新食品 • 超微粉碎可以使有些食品加工过程或工艺
微粉的流动性
• 1、影响微粉流动性的因素 • 最重要的是微粉之间的作用力(如范德华
力,静电力)此外还与粒度,粒的形状, 含水量,表面摩擦力有关。 • 2、微粉流动性的测定方法 • 休止角 • 滑角 • 流出速度
主要超微粉碎设备
1、高速机械冲击式粉碎机
• 围绕高速旋转的回转体对
物料猛烈冲击,使其与固 体壁或颗粒直接冲击碰撞, 从而使物料粉碎。 特点:单位功率粉碎比大, 易于调整粉碎粒度,应用 范围广,机械安装占地面 积小,可连续闭路粉碎。 用于粉碎中等硬度物料
• 3、冲击粉碎
• 图a是高速运动的物料
向固定壁或靶的冲击 • 图b是高速运动粉碎体对 被粉碎物料的冲击 • 图c运动物料的相互冲击
图a
图b
• 4、研磨、磨削粉碎
图c
粉体的细度特征
• • • • • • •
A.粒径 1、粒径的表示方法:长径,短径,定方向径 2、粒度的测定方法:筛选法,激光测粒仪 B.比表面积 C.粉粒的密度及孔隙率 1、微粉的密度:真密度,粒密度,堆密度 2、孔隙率
超微粉碎技术在食品加工过程中的应用
《食品机械与设备》课程阅读资料系列(1)超微粉碎技术在食品加工过程中的应用资料整理:孔令明超微粉碎技术是国际上近几十年发展起来的一门新技术。
目前已成功的应用于化工、医药、机械等许多行业。
特别是采用振动方式生产的超微粉碎产品,具有粉碎粒度细,产品无分级,生产过程全密闭,无污染,营养成分无损失等优点,特别适合于对卫生质量、感官质量要求特别严格的食品行业。
以下就超微粉碎技术在食品行业中的应用做一简要介绍。
1、食物资源的充分利用小麦麸皮、燕麦皮、玉米皮、玉米胚芽渣、豆皮、米糠、甜菜渣和甘蔗渣等,含有丰富的维生素、微量元素等,具有很好的营养价值,但由于常规粉碎的纤维粒径大,影响食用的口感,从而使消费者难以接受。
通过对纤维的微粒化,能明显改善纤维食品的口感和吸收性,从而使食物资源得到了充分的利用,而且丰富了食品的营养。
果皮、果核经超微粉碎可以转变为食品。
蔬菜在低温下磨成微粉膏,既保存了全部的营养成分,纤维质也因微细化而增加了水溶性,口感更佳。
一些动植物体的不可食部分如骨、壳(蛋壳)、甲、虾皮等、也可以通过超微化而成为易被人体吸收利用的钙源和甲壳素。
各种畜、禽鲜骨中含有丰富的蛋白质和脂肪、磷脂质、磷蛋白,能促进儿童大脑神经的发育,有健脑增智之功效。
鲜骨中含有的骨胶原(氨基酸)、软骨素等,有滋润皮肤防衰老的作用。
鲜骨中还含有维生素A、B1、B2、B12等营养成分,钙、铁等在鲜骨中的含量也极高,如鲜猪骨中含有复合磷酸钙盐、脂质和蛋白质等主要成分。
一般是将鲜骨煮、熬之后食用,实际上鲜骨的营养成分绝大部分没有被人体吸收,造成了资源的浪费。
利用超微粉碎技术,将鲜骨多级粉碎加工成超细骨泥或经脱水制成骨粉,既能保持95%以上的营养成分,而且营养成分又易被人体吸收,吸收率可达90%以上。
鲜骨是肉类加工厂的大宗副产品,大多以低价处理出售。
因此,将鲜骨制成富钙产品,既具有营养意义,又具有经济效益。
另外,传统的饮茶方法是用开水冲泡茶叶,但人体并没有完全吸收茶叶的全部营养成分,一些不溶性或难溶的成分,诸如维生素A、K、E、以及绝大部分矿物质等,都大量留存于茶叶的渣中,大大影响了茶叶的营养及保健功能。
食品高新技术超微粉碎
五、在食品上应用
• • • • • 1、高水份高油脂的物质 2、高胶质高粘稠性物质 3、高活性高营养物质 4、热敏性物质 5、造粒或制成粉状产品
冷冻粉碎产品的处理参数
• 冷冻粉碎产品的处理参数.doc
设备
• 冷冻粉碎机.doc
第二章
食品超微粉碎与微胶囊造粒新技术
• 内容提要: • --微粉碎与超微粉碎 • --冷冻粉碎 • --微胶囊造粒技术
第一节
食品的超微粉碎
• 粉碎:利用机械或流体动力的方法克服固 体内部凝聚力使之破碎的单元操作 • 微粉碎:原料粒度5~10mm,成品粒度 100μm以下。 • 超微粉碎:原料粒度0.5~5mm,成品粒度 10~25μm以下。
2AB10型气流粉碎机
AB10型气流粉碎机
• 自20世纪40年代美国第一台工业气流粉 碎机诞生以来,现已有圆盘式、循环管 式、靶碎机, 比如
2AB10型气流粉碎机
AB10型气流粉碎机
• 气流粉碎机 .doc
气流式超微粉碎的特点
• 粉品细度可达2~40微米 • 粒度分布范围更窄,即粒度更均匀。
与物料的“低温脆性”与玻璃化转变现象密 切相关 先使物料低温冷冻到玻璃化转变温度或脆化 温度以下,再用粉碎机将其粉碎。 在食品和农产品快速降温过程中,会造成内 部各部位不均匀的收缩而产生内应力,在 内应力的作用下,物料内部薄弱部位微裂 纹,并导致内部的结合力降低。 在外部较小作用力就使内部裂纹迅速扩大而 破碎。
第二节
冷冻粉碎
一、定义: 系冷冻和粉碎相结合的技术,是在低温状 态下对易碎产品进行粉碎。 利用物料在低温状态下的“低温脆性”, 即物料随温度的降低,其硬度和脆性增 加,而塑性和韧性降低。在一定温度下 用一个很小的力就能将其粉碎。
超微粉碎技术在粮油加工中的应用
超微粉碎技术在粮油加工中的应用1. 介绍超微粉碎技术超微粉碎技术是一种在微米级甚至纳米级范围内对物料进行粉碎和分散的技术。
它是传统粉碎技术的升级和突破,能够将物料粉碎到更细的颗粒度,使得物料具有更大的表面积和更好的活性。
2. 超微粉碎技术在粮油加工中的应用在粮油加工领域,超微粉碎技术可以应用在多个方面,例如提高油料的浸出率、改善油脂的品质、增加植物蛋白的提取率等。
其中,超微粉碎技术在粮油加工中的应用已经取得了一些积极成果。
3. 超微粉碎技术提高油料的浸出率通过超微粉碎技术,可以将油料中的油脂更充分地暴露在溶剂中,从而提高油料的浸出率。
可以利用超微粉碎技术对油料进行细致的破碎和分散,使得油料中的油脂更容易与溶剂接触,从而提高了浸出率,降低了生产成本。
4. 超微粉碎技术改善油脂的品质超微粉碎技术可以使油脂颗粒更加细小均匀,有利于油脂的氧化稳定性和贮存稳定性的提高。
超微粉碎技术还能够破坏油料中的细胞壁,释放出更多的油脂,改善了油脂的提取率和品质。
5. 超微粉碎技术增加植物蛋白的提取率在植物蛋白的提取过程中,超微粉碎技术可以将植物细胞壁破碎,释放出更多的蛋白质,提高了植物蛋白的提取率。
与传统的机械破碎相比,超微粉碎技术可以使植物蛋白颗粒更加细小,更易溶解和吸收。
6. 总结回顾通过上述介绍可见,超微粉碎技术在粮油加工中的应用已经取得了丰硕的成果。
它不仅提高了油料的浸出率和油脂的品质,还增加了植物蛋白的提取率,为粮油加工行业的发展带来了新的机遇和挑战。
7. 个人观点和理解我个人认为,超微粉碎技术在粮油加工中的应用将会更加广泛,带来更多的技术创新和产业发展。
我们也需要关注超微粉碎技术可能带来的环境和安全等方面的影响,做好全面评估,推动超微粉碎技术在粮油加工中的可持续发展。
在撰写这篇文章的过程中,我对超微粉碎技术在粮油加工中的应用有了更深入的理解,也加深了对这一领域的兴趣。
希望这篇文章对您有所帮助,谢谢阅读。
超微粉碎技术在粮油加工中的应用已经取得了一系列的积极成果,但同时也面临着一些挑战和未来发展的机遇。
超微粉碎新技术在食品加工中的应用
超微粉碎新技术在食品加工中的应用农业是国民经济的基础。
随着我国自然资源的约束力不断增强,以及粮食等主要农产品的需求呈刚性增长率,农业增产、农民增收和农产品竞争力增强的压力将长期存在。
农业产品结构不合理、产业化发展水平及农产品附加值低,生态与环境状况依然严峻,生态安全问题依然突出。
我国的基本国情及面临的严峻挑战,决定了必须把科技进步作为解决“三农”问题的一项根本措施,大力提高农业科技水平,加大先进适用技术推广力度。
从而提高农业综合生产能力,加快建设现代农业的步伐。
食品超微加工的意义民以食为天,“吃”是关系到国民生计的大事。
随着土地资源的减少,食品将成为本世纪的紧缩物资,开发新的食品资源是人类面临的重大问题。
国际食品业公认,超微粉体加工技术是21世纪十大食品科学技术之一。
食品超微加工新技术是有效提升农产品利用率的技术措施之一,是解决农业增产、农民增收和农副产品深度加工的重要技术保障。
目前世界发达国家食品加工技术发展日新月异,采用高新技术深加工的食品层出不穷。
这为企业带来了丰厚的利润和国际市场的强劲竞争力。
我国食品加工业起步较晚,高新技术在食品工业和农副产品的深加工尚未得到有效的推广和应用。
为提升我国农业深加工技术装备的创新,拓展农民增收空间。
“国家中长期(2006~2020年)科学和技术发展规划纲要”,实施决定中对农业科学技术发展提出:延长农业产业链、带动农业产业化水平和农业综合效益的全面提高。
要重点发展农产品的精深加工,开发农产品加工先进技术装备,发展以健康食品为主导的农产品加工业,拓展农民增收空间。
我国是一个农业大国,可用于食品加工的植物资源非常丰富。
然而不少富含营养的植物茎秆和果实因加工技术手段的限制而难于直接食用并被人体消化,造成可食性低的结果。
提高可食性生物的利用率是开发精深加工技术的目的所在。
超微粉碎是有效解决植物细胞破壁,改善食用口感和增加人体消化吸收的关键技术。
在保健食品方面超微粉碎技术的意义更为突出。
粮食工程技术《超微粉碎技术》
一超微粉碎与超微粉体简介超微粉碎技术是一种超微粉体的重要制备与应用技术,其研究内容包括:粉体的粉碎制备与分级,别离与枯燥技术,粉体测量与表征技术,粉体分散与外表改性技术,混合、均化、包装、贮运技术,以及制备和贮运中的平安问题。
超微粉碎技术是202160年代末70年代初随着现代化工、电子材料及矿产冶金等行业的开展而诞生的一项跨学科、跨行业的高新技术。
材料经物理或化学方法制成超微粉体后,由于颗粒的比外表积增大,外表能提高,外表活性增强,外表与界面性质将发生很大变化而且随着物质的超微化,材料外表的分子排列乃至电子排布、晶体结构等也都发生了变化,这将使超微粉体显示出与本体材料极为不同的物理、化学性质,并在应用中表现出独特的功能特性。
目前,制备超微粉体采用较多的物理方法有:辊压、撞击、离心、搅拌和球磨等机械粉碎法,利用高速气流、超声波、微波等流能、声能、热能的能量粉碎法,以及通过物质物理状态的变化(如气体蒸发、等离子体合成)而生成超微颗粒的构筑法。
化学制备方法包括:沉淀、水解、喷雾、氧化复原、激光合成、冻结枯燥和火花放电等。
由于超微粉体具有易团聚、分散性差、相溶性差等特点,给其制备与应用带来了诸多困难,科研人员为此开展了大量针对性研究,特别是在超微粉体颗粒外表改性方面,不仅建立了较完整的理论,而且研制出多种外表改性方法,如包覆、沉积(淀)、微胶囊技术、外表化学反响、机械化改性等多种方法,极大地拓展了超微粉体的应用领域,提高了粉体的使用价值,也使超微粉碎技术在石油、化工、冶金、电子、医药、生物和轻工等诸多领域,以及食品、保健品、日用化学品、化装品、农产品、饲料、涂料、陶瓷等大量产品的制造中得到了广泛应用。
超微粉体按大小可分为微米级、亚微米级和纳米级。
国际上通常将粒径为1-100um的粉体称为微米材料;粒径为0.1-10um的粉体称为亚微米材料;粒径为0.001-0.100um的粉体称为纳米材料。
广义的纳米材料是指三维尺寸中至少一维处于纳米量级,如薄膜、纤维微粒等,也包括纳米结晶材料。
食品微粉碎和超微粉碎技术
食品微粉碎和超微粉碎技术1.搅拌磨在分散器高速旋转产生旳离心力作用下,研磨介质和液体浆料颗粒冲向容器内壁,产生强烈旳剪切、摩擦、冲击和挤压等作用力(重要是剪切力)使浆料颗粒得以粉碎。
高功率密度(高转速)搅拌磨机可用于最大粒度不大于微米如下产品,在颜料、陶瓷、造纸、涂料、化工产品中已获得成功,但大规模工业应用和磨损成本高成为两大难题。
粉碎:是用机械力旳措施来克服固体物料内部凝聚力,使之破碎旳单元操作。
超微粉碎:运用机械或流体动力旳措施克服固体内部凝聚力使之破碎,能把原材料加工成微米甚至纳米级旳微粉。
微粉碎和超微粉碎旳技术特点:(1)速度快、可低温粉碎(2)粒径细,分布均匀(3)节省原料,提高运用率(4)污染轻(5)提高发酵、酶解过程旳化学反应速度(6)利于机体对食品营养成分旳吸取粉碎措施:1.磨介式粉碎借助于运动旳研磨介质(磨介)所产生旳冲击力,以及非冲击式旳弯折,挤压和剪切等作用力,到达物料颗粒粉碎旳过程。
磨介式粉碎过程重要为研磨和摩擦,及挤压和剪切。
效果取决于磨介旳大小、形状、配比、运动方式、物料旳填充率、物料旳粉碎力学特性等。
经典设备有球磨机、搅拌磨和振动磨3种。
球磨机产品粒度20-40μm,粒度再小则效率低、耗能大、加工时间长搅拌磨球磨机基础上产生旳,粒径可达微米级振动磨平均粒度2-3μm如下,处理量是球磨机10倍以上2.气流式超微粉碎以压缩气体或过热蒸汽,通过喷嘴产生旳超音速高湍流气流作为颗粒旳载体,颗粒与颗粒之间或颗粒与固定板之间发生冲击性挤压、摩擦和剪切等作用,从而到达粉碎旳目旳。
粉品细度2-40 μm,粒度均匀,粉碎过程没有伴生热量,温升很低,粉碎能耗大,能量运用率只有2%,高出其他粉碎措施数倍。
3.机械剪切式超微粉碎冲击性粉碎措施,对于脆性大、韧性小旳物料行之有效,但基于农产品深加工旳发展,尤其是新鲜或含水较高旳高纤维物料旳粉碎,气流冲击粉碎效果并不好,产品往往粒度大、能耗高,此类物质旳粉碎用剪切式比较合适。
超微粉碎技术在食品工业中的应用及发展现状
《食品加工技术》课程论文超微粉碎技术在食品工业中的应用及发展现状学生姓名:学号:任课教师:所在学院:食品学院专业:食品质量与安全2013年11月超微粉碎技术在食品工业中的应用及发展现状摘要:超微粉碎是近20年迅速发展起来的一项高新技术,能把原材料加工成微米甚至纳米级的微粉,已经在各行各业得到了广泛的应用。
鉴于粉碎是中药生产及应用中的基本加工技术,本文简要介绍了超微粉碎的定义、分类、理论、以及超微粉体的特性,阐述了超微粉碎技术的主要应用领域及其在各个领域的应用情况,并列举了国内外常用或新型的超微粉碎设备,最后提出了超微粉碎技术的发展趋势及需要着重解决的问题。
超微粉碎技术作为一种新型的食品加工方法,已受到普遍关注。
本文对超微粉碎加工的基本原理及其技术特点进行了概述,同时重点介绍了超微粉碎技术在食品工业中的应用情况,其发展前景广阔[1]。
关键词:超微粉碎;食品加工;应用:发展趋势超微粉碎技术是粉体工程中的一项重要内容,包括对粉体原料的超微粉碎,高精度的分级和表面活性改变等内容。
据原料和成品颗粒的大小或粒度,粉碎可分为粗粉碎,细粉碎,微粉碎和超微粉碎,这是一个大概的分类。
值得注意的是,各国各行业由于超微粉体的用途,制备方法和技术水平的差别,对超微粉体的粒度有不同的划分[2]。
超微粉碎机一般为无筛式粉碎机,粉碎物料粒度由气流速度控制,粉碎粒度要求95%通过0.15mm(100目),一般用于特种水产饵料或水产开口饵料,超微粉碎通常由超微粉碎机、气力输送、分级机配套来完成。
原料的粉碎粒度非常细,可能显示出意想不到的特性,但也带来了比较多的问题,如静电吸附,物料的流动性差,粉碎消耗的能量大,提高了生产成本,对加工操作的影响比较大,这些不利影响可以采取不同的方法加以克服(如改变饲料加工工艺)。
超微粉碎通过对物料的冲击,碰撞,剪切,研磨,分散等手段而实现。
传统粉碎中的挤压粉碎方法不能用于超微粉碎,否则会产生造粒效果。
超微粉碎技术及其在食品加工中的应用
超微粉碎技术及其在食品加工中的应用超微粉碎技术是一种通过高速旋转的锤子、刮板或者磨盘等微观荷载对物料进行多次撞击、剪切和象牙塔等力学作用,使其达到纳米或亚微米级的粉碎效果的一种技术。
该技术具有高效、低能耗、无污染等优点,被广泛应用于化工、能源、环保、材料等领域。
近年来,随着食品工业的不断发展,超微粉碎技术也开始在食品加工行业中得到越来越广泛的应用。
超微粉碎技术在食品加工中的应用主要体现在以下方面:
1.首先,超微粉碎技术可以对食品原料进行细致的分解和粉碎,获得高质量、高效率的原料粉末。
这种粉末具有高度均匀性、高度活性和更好的口感和感官性质,可以用于制作各种食品、保健品和药品等。
2.其次,超微粉碎技术还可以帮助食品加工企业提高生产效率和降低生产成本。
由于使用超微粉碎技术可以快速并有效地处理大量的原料,从而节省了生产时间和成本,提高了生产效率和经济效益。
3.最后,超微粉碎技术还可以为食品加工企业提供更多的创新机会和产品差异化优势。
由于使用该技术可以精确地控制产品的粒度和活性,因此可以生产出更多的高品质、高价值的特殊食品和中间体,以满足不同消费者的需求和市场需求。
总之,超微粉碎技术在食品加工行业中的应用给企业带来了很多机会和创新空间,未来有望成为食品工业中的一项重要技术,相信它将在未来的发展中有着更广泛的应用前景。
超微粉碎技术及在肉制品中的应用
发展前景
超微粉碎加工技术适用范围广,操作工艺简单,产品附加值 高,经济效益显著,是食品加工业的新技术、新手段,对于传统 食品加工工艺和配方的改进及新产品的开发,尤其是保健食品 (功能食品)的开发将产生巨大的推动作用.超微粉碎技术已经 成为食品加工领域研究的热点,与传统的加工技术相交叉衍生 出许多新的学科。 促进了相关领域的发展.在食品工业中,超微粉碎技术 与超高压灭菌技术、膜分离技术、微胶囊技术、辐射技术、微 波技术、冷冻干燥技术以及食品生物技术共同被列为国际性食 品加工新技术.因此,随着超微粉碎技术的成熟和发展,必将成 为食品和药品行业占重要位置的新型加工技术。
谢谢聆听!
超微粉碎技术优点
速度快、时间短、 可低温粉碎
粒径细、 分布均匀
节省原料、 提高利用率
速度快、时间短、 可低温粉碎
利于机体对食品 提高发酵、酶解过 营养成分的吸收 程的化学反应速度
减少污染
超微粉碎在食品中的应用
超微粉碎技术对食品加工业发展的作用
有利于食物资源 的充分利用
改变传统工艺、 推动新型功能食 品及添加剂的开发 改变食品品质、 降低生产成本
超微粉碎在肉类加工中的应用现状
鲜骨粉、骨泥
乳鸽冻干超微粉 等动物汤料
动物内脏制品
鲜骨泥粉
鲜骨泥
各种畜、禽鲜骨含有丰富的蛋白质和磷脂质,能促进 各种畜、禽鲜骨含有丰富的蛋白质和磷脂质,能促进儿 儿童大脑神经的发育,有健脑增智的功效,其中的骨胶原、 童大脑神经的发育,有健脑增智的功效,其中的骨胶原、 软骨素等有滋润皮肤、延缓衰老的作用.另外,鲜骨中富 软骨素等有滋润皮肤、延缓衰老的作用.另外,鲜骨中富 含钙、铁及VA,VB1,VB2等营养成分.人们一般将鲜骨煮熬 含钙、铁及VA,VB1,VB2等营养成分.人们一般将鲜骨煮熬 之后食用,营养并未被充分利用,造成资源浪费.若用气流 之后食用,营养并未被充分利用,造成资源浪费.若用气流 式超微粉碎技术将鲜骨多级粉碎加工制成超微骨泥或经 式超微粉碎技术将鲜骨多级粉碎加工制成超微骨泥或经 脱水制成骨粉,既能保持95%以上的营养素,又能提高吸收 脱水制成骨粉,既能保持95%以上的营养素,又能提高吸收 率.骨髓粉(泥)还可作为添加剂,制成高钙高铁的骨粉(泥) 率.骨髓粉(泥)还可作为添加剂,制成高钙高铁的骨粉(泥) 系列食品,具有独到的保健功能,被誉为“21世纪的功能 系列食品,具有独到的保健功能,被誉为“21世纪的功能 性食品” 性食品”.超微粉碎技术改变了人们长期以来通过长时间 煲汤而利用鲜骨的传统,使得鲜骨的开发成为可能.
超微粉碎及其在食品中的应用-食品论文.doc
超微粉碎及其在食品中的应用前言超微粉碎技术是近年来随着现代化工、电子、生物、材料及矿产开发等高新技术的不断发展而兴起的,是国内外食品加工的高科技尖端技术。
在国外,美国、日本市售的果味凉茶、冻干水果粉、超低温速冻龟鳖粉、海带粉、花粉和胎盘粉等,多是采用超微粉碎技术加工而成;而我国也于20世纪90年代将此技术应用于花粉破壁,随后一些口感好、营养配比合理、易消化吸收的功能性食品(如山楂粉、魔芋粉、香菇粉等)应运而生。
超微粉碎的前景应用广阔,并且对于科学、实际生产都具有指导意义,随着技术越来越成熟,应用的就会越来越广阔。
1 超微粉碎的原理超微粉碎的原理与普通粉碎相同,只是细度要求更高,它利用外加机械力, 使机械力转变成自由能,部分地破坏物质分子间的内聚力,来达到粉碎的目的。
超微粉碎技术是利用特殊的粉碎设备,通过一定的加工工艺流程,对物料进行碾磨、冲击、剪切等,将粒径3mm以上的物料粉碎至粒径10~ 25μm以下的微细颗粒,从而使产品具有界面活性,呈现出特殊的功能。
与传统的粉碎、破碎、碾碎等加工技术相比,超微粉碎产品的粒度更加微小。
超微粉碎技术是基于微米技术原理的.随着物质的超微化,其表面分子排列、电子分布结构及晶体结构均发生变化,产生块(粒)材料所不具备的表面小尺寸效应、量子效应和宏观量子隧道效应,从而使得超微粉碎产品与宏观颗粒相比具有优异的物理、化学及表界面性质。
2 超微粉碎技术的优点2.1 速度快,可低温粉碎超微粉碎技术采用超音速气流粉碎、冷浆粉碎等方法,在粉碎过程不会产生局部过热现象, 甚至可在低温状态下进行,粉碎瞬时即可完成,因而能最大限度地保留粉体的生物活性成分,有利于制成所需的高质量产品。
2.2 粒径细,分布均匀由于采用了气流超音速粉碎,使得原料外力的分布非常均匀。
分级系统的设置既严格限制了大颗粒,又避免了过碎, 能得到粒径分布均匀的超细粉,很大程度上增加了微粉的比表面积,使吸附性、溶解性等亦相应增大。
食品加工新技术食品超微粉碎技术
食品加工新技术食品超微粉碎技术Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】第一章食品超威粉碎技术粉碎操作的主要作用:1、迎合某些消费和生产的需要。
如面粉以粉末形式使用;巧克力生产时需将各种配料粉碎到足够小的细度,才能使物料混合均匀,以保证产品品质。
2、增加物料的表面积,以利加工。
如喷雾干燥前,需将物料充分粉碎。
3、功能性食品生产的需要。
各种功能性配料的用量非常小,只有充分粉碎,才能混合均匀。
如硒是微量活性物质,用量很小,如果混合不均,还会导致严重副作用的产生。
第一节粉碎理论一、有关粉碎的基本概念1、粉碎:粉碎是用机械力的方法来克服固体物料内部凝聚力,使之破碎的单元操作。
┌> 破碎:将大块物料分裂成小块物料的操作粉碎──┤└> 磨碎或研磨:将小块物料分裂成细粉的操作2、粒度:物料颗粒的大小3、粉碎操作的种类(按细度分)①粗粉碎:原料粒度在40~1500mm范围内,成品粒度若5~50mm②中粉碎:10~100,5~10mm③微粉碎:5~10,100μm以下④超威粉碎:原料粒度0.5~5mm,成品粒度10~25μm以下。
4、粉碎的方法(按物料所处介质分)(1)干法粉碎:原料直接粉碎,而不是悬浮于载体液流中进行粉碎。
①开路粉碎:物料经粉碎后而被直接卸出,不经筛分。
②自由粉碎:物料经筛分后,将较粗的物料进行粉碎。
③滞塞进料粉碎:在粉碎机出口插入筛网,以限制物料的卸出,以使物料粉碎得更细。
④闭路粉碎:将粉碎出来的物料经过筛分,分出过粗的物料重新回入粉碎机进行粉碎。
(2)湿法粉碎:将原料悬浮于载体液流中进行粉碎。
此法可避免粉尘飞扬,减少浪费。
5、粉碎的基本方法(根据物料受力的种类分):(1)压碎:物料置于两个粉碎面之间,施加压力后,物料因压应力达到其抗压强度极限而被粉碎。
(2)劈碎:用一个平面和一个带尖棱的工作表面挤压物料时,物料沿压力作用线的方向劈裂。
第六章食品中的超微粉碎技术
新型功能食品或添加剂
2、补钙食品。动物骨、壳、皮等通过超微粉 碎后得到的微粉属有机钙,比无机钙容易被 人体吸收、利用。这些有机钙可以作为添加 剂,制成高钙高铁的骨粉(泥)系列食品, 具有独到的营养保健功能,因此被誉为"21世 纪功能性食品"。当这些有机钙粉(包括珍珠 粉)的粒度小于5微米时,可用于某些缺钙食 品如豆奶等的富钙。
本课程在此对食品工业中的超微粉碎技术的原理、分类、 方法、生产设备及其在食品工业中的应用进行阐述。
超微粉碎技术是近20年来国际间发展起来的 新技术。所谓超微粉碎,是指利用机械或流 体动力的方法克服固体内部凝聚力使之破碎, 从而将3毫米以上的物料颗粒粉碎至10-25微 米,操作技术,是20世纪70年代以后,为适 应现代高新技术的发展而产生的一种物料加 工高新技术。
超微粉碎技术的应用
人们的生活水平不断提高,对食品的要求也 愈来愈重视。这就对食品的加工技术提出了 更高的要求,既要保证食品良好的口感,又 要保证营养成分不被破坏,而且还要更有利 于人体的吸收。超微粉碎技术根据其特点, 应用于食品加工领域,恰恰可以达到上述的 一些效果。对食品进行微粒超微化处理,可 以使其比表面积成倍增长,提高某些成分的 活性、吸收率,并使食品的表面电荷、粘力 发生奇妙的变化。
粉碎方法
球磨机是用于超微粉碎的传统设备,产品粒度可达 20-40微米。当要求产品粒度在20微米以下,则效 率低、耗能大、加工时间长。搅拌磨是在球磨机的 基础上发展起来,主要由研磨容器搅拌器、分散器、 分离器和输料泵等组成。工作时在分散器高速旋转 产生的离心力作用下,研磨介质和颗粒浆料;中向 乏器内壁,产生中击性的剪切、摩擦和挤压等作用, 将颗粒粉碎。搅拌磨能达到产品颗粒的超微化和均 匀化,成品的平均粒度最小可达到数微米。振动磨 是利用磨介高频振动产生的;中击性剪切、摩擦和 挤压等作用将颗粒粉碎的,所得到的成品平均粒度 可达2-3微米以下而且粉碎效率比球磨机高得多, 处理量是同容量球磨机的下10倍以上。
第六章 食品工艺学 食品工业新技术
1.定义
超微粉碎是在20世纪70年代以后诞生的一种
物料加工新技术,通常是将物料粉碎到10um 以下,而一般的粉碎技术只能使物料粒径达 到45um左右。当物料被加工到10umm以下 后,微粉体就具有巨大的比表面积、空隙率 和表面能,从而使物料具有高溶解性、高吸 附性、高流动性等多方面的活性和物理化学 方面的新特性。
(4)黄原胶 黄原胶与其他胶体具有协同作用,能稳定悬浮
液和乳状液,具有良好的冻融稳定性。在粉末油脂 微胶囊制备时,壁材中添加黄原胶,无论是对微胶 囊化的产率及效率、产品抗氧化性、芯材的保留率 及乳状液稳定性,还是对产品的微观结构,都起到 了非常有利的作用。 (5)卡拉胶 卡拉胶能与酪蛋白、大豆蛋白、乳清蛋白、明 胶等发生协同作用,有利于提高微胶囊壁材的稳定 性和致密性。
3.界面聚合法 界面缩聚反应是将 两种含有双(多)官能 团的单体分别溶解在不 相混溶的两种液体中, 在两相界面上两种单体 接触后发生缩聚反应。
4.原位聚合法 原位聚合的单体是可溶的,而聚合物是 不可溶的。聚合反应同样在芯材液滴表面上 发生,生成的聚合物薄膜可覆盖住芯材液滴 的全表面。 当芯材为固体时,单体和催化剂应处于 微胶囊化介质中。当芯材为液体时,单体和 催化剂可处于芯材液滴或介质中,但芯材为 疏水性液体时,单体一般处于芯材中。
5.水相分离法 原理:在分散有囊芯材料的连续相(a)中,利 用改变温度、在溶液中加入无机盐、成膜材料的凝 聚剂,或其他诱导两种成膜材料间相互结合的方法, 使壁材溶液产生相分离,形成两个新相,使原来的 两相体系转变成三相体系(b),凝聚胶体相可以自 由流动,并能够稳定地逐步环绕在囊芯微粒周围 (c),最后形成微胶囊的壁膜(d)。壁膜形成后还 需要通过加热、交联或去除溶剂来进一步固化( e), 收集的产品用适当的溶剂洗涤,再通过喷雾干燥或 流化床等干燥方法,使之成为可以自由流动的颗粒 状产品。
超微粉碎技术及其在食品工业中的应用
超微粉碎技术及其在食品工业中的应用一、引言超微粉碎技术是一种高效的物料粉碎方法,通过超声波、高压气流等方式将物料粉碎至纳米级别,具有粒度小、颗粒分布均匀、表面活性高等特点。
在食品工业中,超微粉碎技术已经得到广泛的应用,可以用于制备纳米级食品添加剂、改善食品质地和口感等方面。
二、超微粉碎技术的原理与分类1. 原理超微粉碎技术是指将物料通过机械力或者其他能量形式使其破裂成为纳米级别的颗粒。
这种方法主要利用了材料在小尺寸下所具有的特性,如提高比表面积和表面能量密度等。
2. 分类超微粉碎技术主要分为机械法和非机械法两种。
机械法包括球磨法、研磨法、切割法等;非机械法包括超声波法、高压气流法等。
三、超微粉碎技术在食品工业中的应用1. 制备纳米级食品添加剂利用超微粉碎技术可以制备出纳米级的食品添加剂,如纳米级的硅酸钙、氧化锌等。
这些添加剂具有高比表面积和表面能量密度,可以提高食品的稳定性和保鲜期。
2. 改善食品质地和口感超微粉碎技术可以改变食品中的颗粒大小和分布,从而改善食品的质地和口感。
例如,在制作巧克力时,通过超微粉碎技术将可可颗粒破碎成为纳米级别的颗粒,可以增加巧克力的细腻度和口感。
3. 提高食品营养价值利用超微粉碎技术可以将一些难以被人体吸收的营养成分破碎成为纳米级别的颗粒,从而提高其生物利用率。
例如,在制备奶粉时,通过超微粉碎技术将蛋白质分子破裂成为纳米级别的颗粒,可以提高其消化吸收率。
四、超微粉碎技术在实际应用中存在的问题1. 能耗较大由于超微粉碎技术需要消耗大量的能量,因此其能耗较大,需要考虑如何降低成本。
2. 难以控制颗粒大小和分布超微粉碎技术在实际应用中难以控制颗粒大小和分布,需要通过优化工艺参数和控制设备条件等方式来解决这个问题。
3. 对设备的要求较高超微粉碎技术对设备的要求较高,在实际应用中需要选择合适的设备来进行粉碎。
五、结论超微粉碎技术是一种高效的物料粉碎方法,在食品工业中具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型功能食品能使脂肪明显细化。若98% 的脂肪球直径在2微米以下,则可达到优良的均质效果,口 感好,易于消化。植物蛋白饮料是以富含蛋白质的植物种子 和各种果核为原料,经浸泡、磨浆、均质等操作单元制成的 乳状制品。磨浆时用胶体磨磨至粒径5-8微米,再均质至1~2 微米。可使蛋白质固体颗粒、脂肪颗粒变小,从而防止蛋白 质下沉和脂肪上浮。调味品加工微粉食品的巨大孔隙造成集 合孔腔,可吸收并容纳香气经久不散,这是重要的固香方法 之一,因此作为调味品使用的超微粉,其香味和滋味更浓郁、 突出。超微粉碎技术作为一种新型的食品加工方法,可以使 传统调味料(主要是香辛料)细碎成粒度均一、分散性好的 优良超微颗粒。由于香辛料微粒粒径的不断减小,其流动性、 溶解速度和吸收率均有所增大,入味效果也得到改善。
超微粉碎技术的应用
人们的生活水平不断提高,对食品的要求也 愈来愈重视。这就对食品的加工技术提出了 更高的要求,既要保证食品良好的口感,又 要保证营养成分不被破坏,而且还要更有利 于人体的吸收。超微粉碎技术根据其特点, 应用于食品加工领域,恰恰可以达到上述的 一些效果。对食品进行微粒超微化处理,可 以使其比表面积成倍增长,提高某些成分的 活性、吸收率,并使食品的表面电荷、粘力 发生奇妙的变化。
表1 粉碎的类型
粉碎类型 粗粉碎 细粉碎 微粉碎 超微粉碎 原料粒度 10-100 mm 5-50 mm 5-10 mm 0.5-5 mm 成品粒度 5-10 mm 0.1-5 mm <100 um <10-20 um
粉碎前后的粒度比称为粉碎比或粉碎度,它主要
指粉碎前后的粒度变化,同时近似反映出粉碎设备
粉碎方法
值得指出的是,一般认为产品粒度与喂料速度成正 比,即喂料速度愈大,产品粒度也愈大这种理解不 全面。当喂料速度或粉碎机内颗粒浓度达到一定值 后,这个说法是合理的。喂料速度增大,粉碎机内 颗粒浓度也增加,发生颗粒拥挤现象,甚至颗粒流 动像柱塞一样,只有在"柱塞"前沿的颗粒,才有发 生有效碰撞的可能,在后面的颗粒只有相互之间低 速的碰撞和摩擦、发热。这并不是说颗粒浓度愈小, 产品粒度愈小,或者粉碎效率愈高。恰恰相反,当 颗粒浓度低到一定程度,颗粒之间将缺少碰撞机会 而降低粉碎效率。
新型功能食品或添加剂
1、纤维食品膳贪。纤维素被现代营养学界称 为"第七营养素" ,它可作为食物填充剂或生 理活性物质,是防治现代"文明病"和平衡膳 食结构的重要功能性基料食品。因此,增加 膳食纤维的摄入是提高人体健康的重要措施。 借助现代超微粉碎技术,使食物纤维微粒 化, 能明显改善纤维食品的口感和吸收性。
超微粉碎技术是近20年来国际间发展起来的 新技术。所谓超微粉碎,是指利用机械或流 体动力的方法克服固体内部凝聚力使之破碎, 从而将3毫米以上的物料颗粒粉碎至10-25微 米,操作技术,是20世纪70年代以后,为适 应现代高新技术的发展而产生的一种物料加 工高新技术。
1 超微粉碎技术的定义
超微粉碎技术是指利用机械力的方法克服
技术特点
速度快可低温粉碎 超微粉碎技术是采用超音速气流粉碎、冷浆 粉碎等方法,与以往的纯机械粉碎方法完全 不同。在粉碎过程中不会产生局部过热现象, 甚至可在低温状态下进行粉碎,速度快,瞬 间即可完成,因而最大限度地保留粉体的生 物活性成分,以利于制成所需的高质量产品。
技术特点
粒径细且分布均匀 由于采用超音速气流粉碎,其在原料上力的 分布相当均匀。分级系统的设置,既严格限 制了大颗粒,有避免出现过碎,得到粒径分 布均匀的超细粉,同时很大程度上增加了微 粉的比表面积,使吸附性、溶解性等亦相应 增大。
的工作情况。一般粉碎设备的粉碎比为3-30,而
超微粉碎设备粉碎比大于300。对于一定性质的物
料来说,粉碎比主要与确定粉碎作业程度、选择设
备类型和尺寸等方面有关。
超微细粉末的应用
超微细粉末是超微粉碎的最终产品,具有一 般颗粒所没有的特殊理化性质,如良好的溶 解性、分散性、吸附性、化学反应活性等。 因此超微细粉末已广泛应用于食品、化工、 医药、化妆品农药、染料、涂料、电子及航 空航天等许多领域上。
新型功能食品或添加剂
3、甲壳素。蟹壳、虾壳、蛆、蛹等的超微粉
末可用作保鲜剂、持水剂、抗氧化剂等,改 性后还有其他许多功能性。
改变传统工艺
改善食品品质、降低生产成本超微粉碎,可以使部 分食品加工过程或工艺产生革命性的变化。如速溶 茶生产,传统的方法是通过萃取,将茶叶中的有效 成分提取出来,然后浓缩、干燥制得粉状速溶茶。 现在采用超微粉碎仅需一步工序便得到粉茶产品, 既大大简化生产工艺,又大大降低生产成本。再者 是豆粉的生产,传统的工艺是先将大豆浸泡,然后 破碎、去皮、细磨脱水、干燥,如果采用干法超微 粉碎技术,大豆毋须加水浸泡,便可直接破碎、超 微得到豆粉产品。这样,既保留了豆皮的营养,又 节省了能量,因为传统方法先加水,最后再脱水干 燥,浪费很多能量。
粉碎方法
球磨机是用于超微粉碎的传统设备,产品粒度可达 20-40微米。当要求产品粒度在20微米以下,则效 率低、耗能大、加工时间长。搅拌磨是在球磨机的 基础上发展起来,主要由研磨容器搅拌器、分散器、 分离器和输料泵等组成。工作时在分散器高速旋转 产生的离心力作用下,研磨介质和颗粒浆料;中向 乏器内壁,产生中击性的剪切、摩擦和挤压等作用, 将颗粒粉碎。搅拌磨能达到产品颗粒的超微化和均 匀化,成品的平均粒度最小可达到数微米。振动磨 是利用磨介高频振动产生的;中击性剪切、摩擦和 挤压等作用将颗粒粉碎的,所得到的成品平均粒度 可达2-3微米以下而且粉碎效率比球磨机高得多, 处理量是同容量球磨机的下10倍以上。
软饮料加工
利用气流微粉碎技术,可开发出的软饮料有 粉茶、豆类固体饮料、超细骨粉配制富钙饮 料和速溶绿豆精等。如果将茶叶在常温、干 燥状态下制成茶粉、使粉体的粒径小于5微米, 则茶叶的全部营养成分易被人体肠胃直接吸 收,可以即冲即饮。乌龙茶、红茶、绿茶、 的茶粉还可加入到各种食品中,从而加工出 一种全新的茶制品。
食品工业中的超微粉碎 技术
主讲人:林向阳 生物科学与工程学院
引 言
随着中国加入WTO, 同时进入第十个五年计划时期, 我国的食品工业正面临着前所未有的机遇与挑战,加强各项 现代高新技术在食品的研究、开发、生产过程中的应用,以 促进食品的升级换代,提高产品技术含量是当务之急。 粉碎技术是指利用机械力的方法来克服固体物料内部凝 聚力,以达到使之破碎的操作技术。
超微粉碎技术的应用
各种畜、禽鲜骨中含有丰富的蛋白质和脂肪、 磷脂质、磷蛋白,能促进儿童大脑神经的发 育,有健脑增智之功效。鲜骨中含有的骨胶 原(氨基酸)、软骨素等,有滋润皮肤防衰老 的作用鲜骨中还含有维生素A、B,、B2、 B12等营养成分。钙、铁等在鲜骨中的含量 也极高,如猪骨中含有复合磷酸钙盐、脂质 和蛋白质等主要成分。
新型功能食品或添加剂
2、补钙食品。动物骨、壳、皮等通过超微粉 碎后得到的微粉属有机钙,比无机钙容易被 人体吸收、利用。这些有机钙可以作为添加 剂,制成高钙高铁的骨粉(泥)系列食品, 具有独到的营养保健功能,因此被誉为"21世 纪功能性食品"。当这些有机钙粉(包括珍珠 粉)的粒度小于5微米时,可用于某些缺钙食 品如豆奶等的富钙。
的表面积和孔隙率,很好的溶解性,很强的吸附性、流动性。
由于加工条件的优化,加工出来的产品在短时(甚至是瞬间)、 低温、干燥、密封的条件下获得,因而避免了营养成分的流失
和变化,避免了污染,同时可对物料进行最大限度的利用,也
给制造新型食品提供了极为方便的工艺条件。 本课程在此对食品工业中的超微粉碎技术的原理、分类、 方法、生产设备及其在食品工业中的应用进行阐述。
粉碎技术是食品工业中一项重要的单元操作,既可满足 某些食品消费和生产的需要,又可增加固体表面积,以利于 后道处理程序的顺利进行。但随着现代食品工业的不断发展, 普通的粉碎手段已开始不能适应现代工业生产的需要,这就 使得超微粉碎技术得到了迅猛的发展。
超微粉碎是将各种物质粉碎成直径<20μm的微粒,其微粒具有 微粉的特征,这是七十年代以后为适应现代高新技术的发展而 派生的一种物料加工新技术。经过超微粉碎的物质,具有巨大
超微粉碎技术的应用
传统的饮茶方法是用开水冲泡茶叶,但是人体并没 有完全吸收茶叶的全部营养成分,一些不溶性或难 溶的成分,诸如维生素A、K、E及绝大部分蛋白质、 碳水化合物、胡罗卜素以及部分矿物质等,都大量 留存于茶渣中大大影响了茶叶的营养及保健功能。 如果将茶叶在常温、干燥状态下制成粉茶,使粉体 的粒径小于5微米,则茶叶的全部营养成分易被人 体肠胃直接吸收,用水冲饮时成为溶液状,无沉淀。
固体物料(通常是粒度为0.5—5mm的原料) 的内部凝聚力,达到使之粉碎(成品粒度在
10-20um以下)的操作技术。
2 超微粉碎技术的原理
2.1 粉碎的分级要求
物料的微细化过程即是物料的粉碎过程。根据 原料和成品颗粒的大小或粒度,粉碎大概可分为粗 粉碎、细粉碎、微粉碎(超细粉碎)和超微粉碎4 种类型(见表1)。
粉碎方法
机械剪切是超微粉碎 现有大部分粉碎方法多为冲击式。对于脆性大、韧性 小的物料,这些方法是恒之有效。 基于农产品深加工的发展,特别是新鲜或含水最高的 高纤维物料(多为韧性物料和柔性物料)的粉碎,气 流冲击粉碎反而效果不好,反映在产品粒度大、能耗 高、这类物质的粉碎用剪切式比较合适。 超微粉碎的方法很多,但是目前在食品加工中应用较 多的是气流式中的超音速式超微粉碎方法。
超微粉碎技术的应用
小麦麸皮、燕麦皮、玉米皮、玉米胚芽渣、豆皮、米糠、甜 菜渣和甘蔗渣等,含有丰富维生素、微量元素等,具有很好 的营养价值, 常规粉碎的纤维粒度大,影响食品的口感,而使消费者难于 接受。 通过对纤维的微粒化,能明显改善纤维食品的口感和吸收性, 从而使食物资源得到了充分的利用,而且丰富了食品的营养。 果皮、果核经超微粉碎可转变为食品。蔬菜在低温下磨成微 膏粉,既保存全部的营养素,纤维质也因微细化而增加了水 溶性,口感更佳。 一些动植物体的不可食部分如骨、壳(如蛋壳)、虾皮等,也 可通过超微化而 成为易被人体吸收利用的钙源和甲壳素。