溶解氧测定方法 国标

合集下载

水质检测指标国标法

水质检测指标国标法

24【硝基苯类】 还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)
25【苯胺类】 水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB/T11889-1989
26【游离氯】 水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-1989
10【总可滤残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年
11【总残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年
12【全盐量(溶解性固体)】 水质 全盐量的测定 重量法 HJ/T51-1质 钙和镁总量的测定 EDTA滴定法 GB/T7477-1987
36【铜】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
37【锌】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
38【铅】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987
水质各种项目检测国标方法综合版
关键字:水质监测,国标法,汇总
1 【pH值】 水质 pH值的测定 玻璃电极法GB/T6920-1986
2 【溶解氧】 水质 溶解氧的测定 电化学探头法 GB/T11913-1989
碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年
铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)
31【硫化物】 水质 硫化物的测定 亚甲基兰分光光度法 GB/T16489-1996
32【阴离子表面活性剂】 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T7494-1987

bod的测定国标法

bod的测定国标法

bod的测定国标法
BOD(生化需氧量)是指在一定温度和时间条件下,微生物需氧呼吸、生长分解有机物质所需的氧量。

BOD的测定是水质评价的重要指标之一,广泛应用于工业和生活废水排放控制、水处理过程监测等领域。

测定BOD的国标法是指按照国家标准GB 11914-89《水质-生化需
氧量的测定》规定的方法进行测定。

该方法采用生物法,即利用水中
的微生物活动进行有机物的氧化分解,测定反应前后水样中溶解氧含
量的差值即为BOD值。

具体操作步骤如下:
1.采样:在水样收集器中收集代表性水样,并将其送至实验室进
行测定。

注意保持水样的温度和氧气状态不变。

2.制备培养液:将适量的基础培养液按照比例配制成浓缩培养液,用生物柿子碱溶液稀释后即为培养液。

3.操作:将培养液加入接水瓶内,加入一定量的水样,根据温度
选取相应的培养时间。

放置于恒温箱内,培养完毕后取出样品,测定
反应前后水样中溶解氧含量的差值即为BOD值。

需要注意的是,在实验过程中需要控制温度、氧气含量、光照等
因素的影响,并排除其他可能干扰结果的因素。

同时需要记录实验过
程的数据和结果,以便进行后续分析和比对。

BOD的测定结果直接反应了水质中有机物的含量和微生物分解能力,可以为水质评价和水处理过程的调整提供参考。

因此,在实际操作中
需要严格按照国标法进行测定,并根据结果进行各种决策。

49种化学水处理水质项目检测国标方法汇总整理

49种化学水处理水质项目检测国标方法汇总整理

各类水处理水质项目检测方法汇总1 【pH 值】水质pH 值的测定玻璃电极法GB/T6920-19862 【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989碘量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年3 【臭和味】文字描述法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年4 【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年5 【酸度】酸度指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002年6 【碱度( 总碱度、重碳酸盐和碳酸盐) 】酸碱指示剂滴定法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年7 【色度】水质色度的测定GB/T11903-19898 【浊度】水质浊度的测定GB/T13200-19919 【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-198910【总可滤残渣】重量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年11【总残渣】重量法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年12【全盐量( 溶解性固体) 】水质全盐量的测定重量法HJ/T51-199913【总硬度( 钙和镁总量) 】水质钙和镁总量的测定EDTA 滴定法GB/T7477-198714【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-198915【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法GB/T11914—198916【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—198717【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987水杨酸-次氯酸盐光度法《水和废水监测分析方法》( 第四版) 国家环保总局2002 年18【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法》GB/T7480-1987水质硝酸盐氮的测定紫外分光光度法》HJ/T346-200719【亚硝酸盐氮】《水质亚硝酸盐氮的测定分光光度法》GB/T7493-1987 20【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》GB/T11894-198922【总磷】水质总磷的测定钼酸铵分光光度法》GB/T11893-198923【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002年)24【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002年)25【苯胺类】水质苯胺类化合物的测定N-(1-萘基) 乙二胺偶氮分光光度法GB/T11889-198926【游离氯】水质游离氯和总氯的测定N,N-二乙基-1 ,4-苯二胺滴定法GB/T11897-198927【总氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-198928【氟化物】水质氟化物的测定离子选择电极法GB/T7484-198729【氯化物】水质氯化物的测定硝酸银滴定法GB/T11896-1987930【硫酸盐】水质硫酸盐的测定重量法GB/T11899-89铬酸钡分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002 年)31【硫化物】水质硫化物的测定亚甲基兰分光光度法GB/T16489-199632【阴离子表面活性剂】水质阴离子表面活性剂的测定亚甲蓝分光光度法GB/T7494-198733【石油类】水质石油类和动植物油的测定红外光度法GB/T 16488-199634【动植物油】水质石油类和动植物油的测定红外光度法GB/T 16488-1996 35【总铬】水质总铬的测定高锰酸钾氧化-二苯碳酰二肼分光光度法GB/T7466-1987火焰原子吸收分光光度法《水和废水监测分析方法》( 第四版) 国家环保总局(2002 年)36【铜】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 37【锌】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 38【铅】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 39【镉】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987 40【镍】水质镍的测定火焰原子吸收分光光度法GB/T 11912-198941【钾】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-198942【钠】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-198943【钙】水质钙、镁的测定原子吸收分光光度法GB/T 11905-198944【镁】水质钙、镁的测定原子吸收分光光度法GB/T 11905-198945【铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-198946【锰】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-198947【溶解性铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-1989 48【银】水质银的测定火焰原子吸收分光光度法GB/T 11907-198949【甲醛】水质甲醛的测定乙酰丙酮分光光度法GB/T13197-1991。

溶解氧测定方法-国标

溶解氧测定方法-国标

水质溶解氧得测定碘量法 GB 7489-87本方法等效采用国际标准ISO5813 1983本方法规定采用碘量法测定水中溶解氧由ﻫ于考虑到某些干扰而采用改进得温克勒(Winkler)法ﻫ1范围ﻫ碘量法就是测定水中溶解氧得基准方法在没有干扰得情况下此方法适用于各种溶解氧ﻫ浓度大于0、2mg/L与小于氧得饱与浓度两倍(约20mg/L)得水样易氧化得有机物如丹宁酸腐植酸与木质素等会对测定产生干扰可氧化得硫得化合物如硫化物硫脲也如同易于消ﻫ耗氧得呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法ﻫ亚硝酸盐浓度不高于15mg/L时就不会产生干扰因为它们会被加入得叠氮化钠破坏掉ﻫ如存在氧化物质或还原物质需改进测定方法见第8条、ﻫ如存在能固定或消耗碘得悬浮物本方法需按附录A 中叙述得方法改进后方可使用ﻫ2原理在样品中溶解氧与刚刚沉淀得二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰ﻫ中制得)反应酸化后生成得高价锰化合物将碘化物氧化游离出等当量得碘用硫代硫酸钠滴定法测定游离碘量3、1 硫酸溶液ﻫ小心3 试剂ﻫ分折中仅使用分析纯试剂与蒸馏水或纯度与之相当得水ﻫ地把500mL 浓硫酸(ρ= 1、84g/mL)在不停搅动下加入到500mL水ﻫ注:若怀疑有三价铁得存在则采用磷酸(H3PO4ρ=1、70g/mL)3、2 硫酸溶液c(1/2H2SO4)=2mol/L3、3碱性碘化物叠氮化物试剂ﻫ注:当试样中亚硝酸氮含量大于0、05mg/L而亚铁含量不超过1mg/L时为防止亚硝酸氮对测定结果得干涉需在试样中加叠氮化物叠氮化钠就是剧毒试剂若已知试样中得亚硝酸盐低于0、05mg/L 则可省去此试剂a、操作过程中严防中毒ﻫb、不要使碱性碘化物叠氮化物试剂(3、3)酸化因为可能产生有毒得叠氮酸雾ﻫ将35g得氢氧化钠(NaOH)[或50g得氢氧化钾(KOH)]与30g碘化钾(KI)[或27g 碘化钠(NaI)]溶解在大约50mL 水中,单独地将1g 得叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧得细口棕色瓶子里,经稀释与酸化后在有指示剂(3、7)存在下本试剂应无色、3、4无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)ﻫ可用450g/L 四水二价氯化锰溶液代替过滤不澄清得溶液3、5 碘酸钾c(1/6KIO3) 10mmol/L标准溶液在180℃干燥数克碘酸钾(KIO3) 称量3、567±0、003g 溶解在水中并稀释到1000mL。

溶解氧测定方法-国标

溶解氧测定方法-国标

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法1 范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8 条.如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用2 原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量3 试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水3.1 硫酸溶液小心地把500mL 浓硫酸(ρ= 1.84g/mL)在不停搅动下加入到500mL 水注:若怀疑有三价铁的存在则采用磷酸(H3PO4 ρ=1.70g/mL)3.2 硫酸溶液c(1/2H2SO4) =2mol/L3.3 碱性碘化物叠氮化物试剂注:当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去此试剂a. 操作过程中严防中毒b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或50g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)]溶解在大约50mL 水中,单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧的细口棕色瓶子里,经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色.3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在180℃干燥数克碘酸钾(KIO3) 称量3.567±0.003g 溶解在水中并稀释到1000mL。

bod国标检测方法

bod国标检测方法

bod国标检测方法【最新版2篇】目录(篇1)1.BOD 国标测定方法的背景和意义2.BOD 国标测定方法的具体步骤3.BOD 国标测定方法的优势和局限性4.BOD 国标测定方法的应用场景5.BOD 国标测定方法的未来发展趋势正文(篇1)BOD 国标测定方法是对水中有机物等需氧污染物质含量的一项综合指标的测定方法。

BOD(生化需氧量)表示水中有机物在微生物的生化作用下进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。

BOD 的测定方法包括标准稀释法、生物传感器法、活性污泥曝气降解法和测压法。

标准稀释法是最经典且最常用的 BOD 测定方法。

该方法在 201 温度下培养五天前后,测定溶液中的溶氧量的差值,求出来的 BOD 值称为五日生化需氧量(BOD5)。

生物传感器法利用微生物传感器接触水样,根据氧电极表面上的氧质量达到恒定时产生的恒定电流与水样中可生化降解的有机物的差值,计算出水样的生化需氧量。

活性污泥曝气降解法将水样与活性污泥强制曝气降解 2 小时,测定生物降解前后的化学计量需氧量,其差值即为 BOD。

测压法则通过测量密闭培养瓶中水样中溶解氧被微生物消耗后,微生物呼吸作用产生的 CO2 导致系统压力降低的压降,从而求得水样的 BOD 值。

BOD 国标测定方法的优势在于能够准确、快速地测定水中有机物的含量,为水环境监测和水质评价提供科学依据。

然而,该方法也存在局限性,例如操作过程较为繁琐、测定结果受水质条件和操作者技术水平影响较大等。

BOD 国标测定方法广泛应用于水环境监测、污水处理和水质评价等领域。

目录(篇2)1.BOD 国标测定方法的背景和意义2.BOD 国标测定方法的具体步骤3.BOD 国标测定方法的应用范围和优势4.BOD 国标测定方法的局限性和改进方向正文(篇2)BOD 国标测定方法是一种用于测量水中有机物等需氧污染物质含量的综合指标。

它反映了水中有机物在微生物的生化作用下进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。

bod的测定国标法

bod的测定国标法

bod的测定国标法BOD是指生物需氧量(Biochemical Oxygen Demand),是测定水体中微生物氧化有机物质所需的氧量,可用来评估水体中的有机污染物含量。

国标法是国际上通用的一种测定BOD的方法,下面是相关参考内容。

一、BOD测定的原理和目的:BOD测定是通过测量给定时间内水体中微生物降解有机物所消耗的溶解氧来进行。

其原理是将取样水与微生物接触一段时间后,通过测定水样中溶解氧的差值,来计算出BOD的含量。

BOD测定的目的是评估水体中的有机污染物含量,以及判断废水处理系统的效果。

二、BOD测定国标法的步骤:1. 准备实验设备和试剂:包括容量瓶、比色皿、PH试纸、溶解氧仪、硝酸钠、硫酸钾、硝酸亚铁等。

2. 取样:用容量瓶采集水样,保持容器内无气泡,容量瓶前后保持恒温,并尽快进行下一步操作。

3. 加入试剂:加入适量的硝酸亚铁试剂和硫酸钾试剂,用氧气去除试剂中的空气。

4. 静置:将试剂充分混合后,将容器封闭并静置于20℃的恒温箱中。

5. 测定溶解氧:在不同时间点(通常为5天和7天)测定水样中的溶解氧,可使用溶解氧仪进行测定。

6. 计算BOD值:根据测得的溶解氧值,使用特定的公式计算样本的BOD含量。

三、注意事项:1. 选择合适的容器:BOD测定需要使用密闭容器,以防止水样中的氧气损失。

2. 控制恒温条件:BOD测定的准确性与恒温条件密切相关,应尽量保持20℃的恒温。

3. 控制试剂的用量:试剂的使用量需要根据水样的具体情况进行调整,以保证测定结果的准确性。

四、结果解读:BOD值的大小反映了水体中有机物的多少,数值越大表示有机物的含量越高,水质越差。

根据不同国家或地区的水质标准,可以判断水体是否符合相关要求。

总之,BOD测定国标法是测定水体中有机污染物含量的一种有效方法,其原理简单易行,步骤清晰明确。

通过该方法可以快速、准确地评估水体质量,并为环境保护和废水处理提供科学依据。

养殖用水国标

养殖用水国标

养殖用水国标一、引言水是养殖业中不可或缺的资源,水质的好坏直接影响到养殖动物的生长、发育和健康。

随着养殖业的不断发展,对养殖用水的要求也越来越高。

为了规范养殖用水的管理和保障养殖动物的安全,我国制定了养殖用水国标。

本文将对养殖用水国标的概述、水质指标、限量标准、检测方法以及意义与作用进行详细阐述。

二、养殖用水国标概述养殖用水国标是指国家对养殖业用水的标准规定,包括水质指标、限量标准、检测方法等方面的内容。

我国现行的养殖用水国标为《淡水养殖用水水质》(GB 11607-89)和《海水养殖水质》(GB 11608-89)。

这些标准规定了养殖用水中各项指标的限量值,以确保养殖动物的安全和健康。

三、养殖用水水质指标养殖用水的水质指标主要包括理化指标和卫生指标两大类。

理化指标包括pH值、溶解氧、浊度、总硬度等;卫生指标包括氨氮、亚硝酸盐、硫化物、重金属等。

这些指标的具体限量值在养殖用水国标中均有明确规定。

四、养殖用水限量标准根据养殖用水国标,各项水质指标的限量值都有明确的标准。

这些限量标准是根据养殖动物的生长需求和安全健康要求制定的,以确保养殖用水的水质符合要求。

以下是部分主要水质指标的限量标准:项目限值pH值 6.5~8.5溶解氧≥4.0mg/L浊度≤10NTU总硬度≤450mg/L (以CaCO3计)氨氮≤0.5mg/L亚硝酸盐≤0.1mg/L硫化物≤0.2mg/L重金属≤0.1mg/L (如Cu、Zn等)五、养殖用水检测方法为了确保养殖用水的质量,需要对水质进行定期检测。

根据养殖用水国标,不同的水质指标可以采用不同的检测方法。

以下是一些常用检测方法的简介:1.pH值:采用酸度计或试纸进行检测。

2.溶解氧:采用溶解氧仪进行检测。

3.浊度:采用浊度计进行检测。

4.总硬度:采用滴定法或硬度计进行检测。

5.氨氮:采用纳氏试剂法或次氯酸盐氧化法进行检测。

6.亚硝酸盐:采用分光光度法或离子色谱法进行检测。

7.硫化物:采用亚甲基蓝法或碘量法进行检测。

bod5测定方法国标

bod5测定方法国标

bod5测定方法国标BOD5(Biochemical Oxygen Demand 5)是一种测定水体有机物降解的方法,用于评估水体的污染程度。

国标中对BOD5测定的方法有详细的规定,下面将以1200字以上介绍国标中的BOD5测定方法。

BOD5测定方法是根据水中有机物的微生物降解过程中消耗的溶解氧来评估水体中有机物的数量。

其原理是将待测水样与一定数量的微生物悬浮液进行接种,然后通过测定接种前后溶液内溶解氧的差值来计量有机物的降解。

首先,国标规定了BOD5测定的样品采集要求。

样品应在采样后4小时内进行分析,如果无法及时测定,则需要在低温下保存,并在24小时内进行处理。

国标还对样品的水温、水深等参数进行了规定,以确保测定结果的准确性。

国标规定了BOD5测定的步骤和操作要点。

首先,限定了样品的初始溶解氧浓度,以确保降解过程中有足够的溶解氧供微生物消耗。

其次,明确了悬浮液的用量和接种时间,以及试验的温度和PH值。

这些步骤和要点的规定有助于提高测定结果的准确性和可比性。

国标还对BOD5测定的测量方法进行了规定。

BOD5测定通常采用溶解氧电极法进行,即测量样品溶液中的溶解氧含量。

国标对仪器的选用、校准和操作进行了详细的规定,以确保测定结果的准确性和可重复性。

最后,国标对实验数据的处理和结果的表示进行了规定。

国标规定了计算BOD5的公式和单位,并对数据处理的步骤进行了说明。

国标还规定了结果的报告要求,包括数据的精确度和测量误差的估算等,以提高测定结果的可靠性和准确性。

总之,国标对BOD5的测定方法进行了详细的规定,包括样品采集、实验条件、步骤和操作要点、测量方法、数据处理和结果表示等方面。

这些规定都有助于提高BOD5测定结果的准确性和可比性,为评估水体的污染程度提供有力的科学依据。

溶解氧总结

溶解氧总结

溶解氧总结溶解氧及其浓度测量一,溶解氧的概述溶氧的简称,是表征水溶液中氧的浓度的参数,是溶解在水中的分子太氧气。

溶解氧的单位为mg/L,用每升水里氧气的毫克数表示。

水中溶解氧的多少是表征水体自净能力的一个指标。

溶解氧高有利于对水体中各类污染物的降解,从而使水体较快得以净化;反之,溶解氧低,水体中污染物降解较缓慢。

二,影响溶解氧的因素水中溶解氧含量受到两种作用的影响:一种是使DO下降的耗氧作用,包括好氧有机物降解的耗氧,生物呼吸耗氧;另一种是使DO增加的复氧作用,主要有空气中氧的溶解,水生植物的光合作用等。

这两种作用的相互消长,使水中溶解氧含量呈现出时空变化。

在自然条件下,水在流动时,复氧过程比较迅速,较易补充水中氧的消耗,使水体中溶解氧保持一定的水平,反之,在静水条件下,复氧过程缓慢,水中含氧得不到及时补充,处于嫌气状态。

当工业废水和生活污水携带大量有机物质进入水体时,水体脱氧严重,这时即使在流动的河水中,于复氧过程弥补不了这样大幅度的脱氧,也会出现溶解氧迅速下降,造成鱼类和需氧生物死亡及水质恶化。

水体受有机物及还原物质污染,可使溶解氧降低。

天然水体中DO的含量,除与水体中的生物数量和有机物的数量有关外,还与水温和水层有关。

在正常情况下地表水中溶解氧量为5-10mg/L,在有风浪时,海水中溶解氧可达14 mg/L,在水藻繁生的水体中,于光合作用使放氧量增加,也可能使水中的氧达到过饱和状态,地下水中一般溶解氧较少,深层水中甚至完全无氧。

水中溶解氧的含量与水温,氧分压,盐度,水深深度,水生生物的活动和耗氧有机物浓度等因素有关。

水温:在氧气分压,含盐量一定时,溶解氧的饱和含量随着水温的升高而降低。

低温下溶解氧的饱和含量随温度的变化更加显著。

含盐量:在水温,氧分压一定时,水的含盐量越高,水中溶解氧的饱和含量越小海水的含盐量比淡水的含盐量高的多,在相同条件下,溶解氧在海水中的饱和含量比在淡水中要低得多。

天然淡水水体内含盐量的变化幅度很小,所以含盐量对溶解氧的饱和含量影响不大,可以近似以纯水中的饱和含量计算。

水中溶解氧的含量标准

水中溶解氧的含量标准

水中溶解氧的含量标准水是生命之源,而溶解在水中的氧气更是维持水生生物生存的重要因素。

溶解氧的含量对水环境质量起着至关重要的作用。

合理的溶解氧含量标准不仅关乎水生生物的生存,也直接影响着人类的生活和生产。

因此,对水中溶解氧含量的标准有着严格的要求和监测。

首先,根据《地表水环境质量标准》(GB3838-2002)的规定,对不同水域的水质标准有着明确的要求。

在一般水域中,溶解氧的标准值应不低于5mg/L。

对于鱼类的繁殖水域,溶解氧的标准值更应高于一般水域,达到8mg/L以上。

而对于饮用水源地,则要求溶解氧的标准值更高,一般应在7mg/L以上。

这些标准的制定是为了保证水体中的溶解氧含量能够满足不同水生生物的生存需求,同时保障人类的饮用水安全。

其次,水中溶解氧含量的标准还受到水温、水体流动性、水中富营养化程度等因素的影响。

一般来说,水温越高,溶解氧含量就会降低;水体流动性越强,溶解氧含量就会增加;而水体富营养化程度高的水域,溶解氧含量通常较低。

因此,在实际监测中,需要根据水域的特点和环境因素进行综合考虑,对溶解氧含量进行动态监测和调控。

另外,水中溶解氧含量的不足会导致水体富营养化、腐败产物的积累、水生生物的死亡等问题。

这些问题不仅影响着水生生物的生存,也会直接影响水的利用价值和生态环境的健康。

因此,保持水体中溶解氧的标准含量,对于维护水环境的生态平衡和人类的生活质量具有着重要的意义。

综上所述,水中溶解氧的含量标准是保障水环境质量和生态平衡的重要指标。

合理的溶解氧含量标准能够有效维护水生生物的生存,保障人类的饮用水安全,促进水资源的可持续利用。

因此,我们应该加强对水体溶解氧含量的监测和管理,保持水体中溶解氧的标准含量,共同维护好我们生存的水环境。

溶解氧的测定方法

溶解氧的测定方法

1、当水样中含有亚硝酸盐时会干扰测定,可加入叠氮化钠使水中的亚硝酸盐分解而消除干扰。

其加入方法是预先将叠氮化钠加入碱性碘化钾溶液中。

2、如水样中含Fe3+达100—200mg/L 时,可加入1mL40%氟化钾溶液消除干扰。

3、如水样中含氧化性物质(如游离氯等),应预先加入相当量的硫代硫酸钠去除。

4.6硫代硫酸钠标准溶液c (Na 2S 2O 3)=0.1mol/l (0.1N )4.6.1配制称取26g 硫代硫酸钠(Na 2S 2O 3 .5H 2O)(或16g 无水硫代硫酸钠),注入1000ml 水中,缓缓煮沸10min ,冷却,放置2周后过滤备用。

4.6.2标定4.6.2.1测定方法称取0.15g 于120℃烘至恒重的基准重铬酸钾,称准至0.0001g ,置于碘量瓶中,溶于25ml 水中,加2g 碘化钾及20ml 硫酸液(20%),摇匀,于暗处放置10min ,加入150ml 水,用硫代硫酸钠标准溶液[c (Na 2S 2O 3)=0.1mol/l]滴定,近终点时加入3ml 淀粉指示剂(5g/l ),继续滴定至溶液有蓝色变为亮绿色,同时作空白试验。

4.6.2.2 计算硫代硫酸钠标准溶液浓度按式(9)计算c (21Na 2S 2O 3)=04903.0*)21(v v m (9) 式中:c (Na 2S 2O 3)—硫代硫酸钠标准溶液之物质的量浓度 mol/lM —重铬酸钾之质量gV1—硫代硫酸钠溶液之用量,mlV2—空白试验硫代硫酸钠溶液之用量,ml0.04903—与1.00ml 硫代硫酸钠标准溶液[c (Na 2S 2O 3)=1.000mol/l]相当的以克表示的重铬酸钾的质量4.6.3比较4.6.3.1、测定方法准确量取用配30.00~35.00ml 碘标准溶液[c (21I 2)=0.1mol/l]加水150ml ,用配置好的硫代硫酸钠溶液[c (21Na 2S 2O 3)=0.1mol/l]滴定,近终点时加3ml 淀粉指示剂(5g/l ),继续滴定至溶液蓝色消失。

溶解氧检测方法介绍

溶解氧检测方法介绍

溶解氧检测方法介绍溶解氧(Dissolved Oxygen, DO)是指溶于水中的氧气分子的含量。

水体中的溶解氧对水生生物的生存和生长至关重要,因此准确监测和测量溶解氧的含量对于环境保护、水质监测和生态学研究等方面都具有重要意义。

溶解氧的检测方法主要有以下几种:1.传统的氧电极法:氧电极法是测量溶解氧最常用的方法之一、该方法使用氧化还原电极测量水样中的氧气分压,然后根据氧气分压和温度关系,计算出溶解氧的含量。

该方法的优点是操作简单,测量范围广,但需要校准和维护氧电极。

2. Winkler法:Winkler法是一种经典的溶解氧测量方法。

该方法使用亚硝酸铵将水样中的溶解氧气氧化为氧化亚铁离子,然后使用亚硫酸钠标准溶液滴定来测定氧化亚铁的含量,从而计算出溶解氧的含量。

该方法的优点是准确可靠,但需要较多的试剂和时间。

3.光电法:光电法使用溶解氧的强吸收特性来测量溶解氧的含量。

通过测量透过一个光阑后的入射光的强度,可以计算出溶解氧的含量。

光电法的优点是测量范围广,灵敏度高,响应快,适用性广泛,但需要光电设备和校准。

4.荧光法:荧光法是近年来发展起来的一种溶解氧测量方法。

该方法使用荧光物质和溶解氧之间的荧光猝灭现象来测定溶解氧的含量。

荧光法的优点是测量范围广,灵敏度高,响应快,可在线连续测量,但需要荧光物质和荧光测量设备。

在实际应用中,选择合适的溶解氧检测方法需考虑多个因素,如测量范围、准确度要求、响应速度、设备可用性、成本等。

此外,还需注意对水样的取样和处理,避免因采样和处理过程中的误差对测量结果产生影响。

总之,溶解氧的检测方法多种多样,每种方法都存在一定的适用范围和优缺点。

在实际应用中,需要根据具体需求选择合适的方法,并进行校准和质控,以确保测量结果的准确性和可靠性。

溶解氧检测方法介绍

溶解氧检测方法介绍

溶解氧的检测方法介绍一、碘量法(GB7489-87)(Iodometric)碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。

其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。

此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)2Mn(OH)2+O2 = 2H2MnO3↓ (2)2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:4KI+2H2SO4 = 4HI+2K2SO4 (4)2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:2Na2S2O3+I2 = Na2S4O6+4NaI (6)设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:DO(mol/L)= (7)在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。

当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。

具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。

碘量法适用于水源水,地面水等清洁水。

碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。

但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。

同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。

溶解氧测定方法范文

溶解氧测定方法范文

溶解氧测定方法范文溶解氧(Dissolved Oxygen,简称DO)是水体中溶解在水中的氧气的含量。

溶解氧浓度在水环境中是一个非常重要的指标,对于水生生物生存和水体供氧能力的评估具有重要意义。

因此,了解和测定水体中的溶解氧浓度是水环境监测和评价的基础。

下面将介绍几种常用的溶解氧测定方法。

1. 万氏法(Winkler method)万氏法是一种经典的溶解氧测定方法。

它基于溶解氧在碱性溶液中与亚硝酸盐的反应生成碘,然后碘与含有碘化钾和淀粉的滴定液中的碘化汞反应生成三碘化汞,在滴定过程中使用亚硫酸钠还原三碘化汞,再滴定剩余的亚硫酸钠,根据亚硫酸钠的用量计算溶解氧含量。

2. 电化学法(Electrochemical method)电化学法是一种常见的实时在线溶解氧测定方法。

它基于电化学传感器原理,通过测量电极之间的电位差来确定溶解氧浓度。

最常用的电化学传感器是氧化银/银电极(Ag/AgCl)传感器,它在一定电势下催化溶解氧的还原反应,根据电流的大小推算溶解氧浓度。

3. 荧光法(Fluorescence method)荧光法是一种现代化的溶解氧测定方法。

它利用荧光化学性质,通过测量被激发的荧光发射强度来确定溶解氧浓度。

常用的荧光法仪器是溶解氧电极,它由发射光源、滤光片、荧光探头和光电传感器组成。

荧光法具有高灵敏度、快速响应和准确性等优点。

4. 亚硫酸盐氧化法(Sulfite Oxidation method)亚硫酸盐氧化法是一种简便快速的溶解氧测定方法。

它基于溶解氧氧化亚硫酸钠生成硫酸的反应,然后通过滴定一定浓度的碘溶液来测定亚硫酸钠的余量,根据亚硫酸钠的用量计算溶解氧浓度。

这种方法操作简单,但需要注意反应条件的控制。

这些方法在实际应用中根据需要选用。

当需要高精度和准确测量时,万氏法是最常用的方法;而在需要实时监测水体中溶解氧浓度的情况下,电化学法和荧光法是更好的选择。

同时,针对不同的水体类型和测定需求,还可以结合多种方法进行测定,以提高测量结果的可靠性。

溶解氧的测定标准

溶解氧的测定标准

溶解氧的测定标准
溶解氧的测定标准:
1.国家标准GB/T 5750-2018《水质标准》规定了水中溶解氧的标准限值。

其中,一类水体的溶解氧标准限值为6mg/L,二类水体的溶解氧标准限值为5mg/L,三类水体的溶解氧标准限值为4mg/L。

这些标准限值是根据水体的用途和水生生物的需求而制定的,不同的水体类型有不同的标准限值。

2.国家标准GB/T 11914-2012《水质-溶解氧的测定》规定了溶解氧的测定方法。

该标准规定了两种测定方法:氧电极法和亚硝酸盐还原法。

其中,氧电极法是目前应用最广泛的测定方法,它的原理是利用氧电极测定水中溶解氧的浓度。

亚硝酸盐还原法则是通过还原亚硝酸盐来消耗水中的溶解氧,从而测定水中溶解氧的浓度。

水质检测指标国标法综合版

水质检测指标国标法综合版

水质各种项目检测国标方法综合版关键字:水质监测,国标法,汇总1 【pH值】 水质 pH值的测定 玻璃电极法GB/T6920-19862 【溶解氧】 水质 溶解氧的测定 电化学探头法 GB/T11913-1989碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年3 【臭和味】 文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年4 【侵蚀性二氧化碳】 甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年5 【酸度】 酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年6 【碱度(总碱度、重碳酸盐和碳酸盐)】 酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年7 【色 度】 水质 色度的测定GB/T11903-19898 【浊 度】 水质 浊度的测定GB/T13200-19919 【悬浮物(SS)】 水质 悬浮物的测定 重量法GB/T11901-198910【总可滤残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年11【总残渣】 重量法《水和废水监测分析方法》(第四版)国家环保总局2002年12【全盐量(溶解性固体)】 水质 全盐量的测定 重量法 HJ/T51-199913【总硬度(钙和镁总量)】 水质 钙和镁总量的测定 EDTA滴定法 GB/T7477-198714【高锰酸盐指数】 水质 高锰酸盐指数的测定 GB/T11892-198915【化学需氧量(COD)】 水质 化学需氧量的测定 重铬酸盐法 GB/T11914—198916【生物需氧量】 水质 生物需氧量的测定 稀释与接种法 GB/T7488—198717【氨 氮】 水质 铵的测定 纳氏试剂比色法 GB/T7479-1987水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年18【硝酸盐氮】 水质 硝酸盐氮的测定 酚二磺酸分光光度法》GB/T7480-1987水质 硝酸盐氮的测定 紫外分光光度法》HJ/T346-200719【亚硝酸盐氮】 《水质 亚硝酸盐氮的测定 分光光度法》GB/T7493-198720【六价铬】 水质 六价铬的测定 二苯碳酸二肼分光光度法 GB/T7467-198721【总氮】 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》 GB/T11894-198922【总磷】 水质 总磷的测定 钼酸铵分光光度法》 GB/T11893-198923【磷酸盐】 钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)24【硝基苯类】 还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)25【苯胺类】 水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB/T11889-198926【游离氯】 水质游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-198927【总氯】 水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB/T11897-198928【氟化物】 水质 氟化物的测定 离子选择电极法GB/T7484-198729【氯化物】 水质 氯化物的测定 硝酸银滴定法 GB/T11896-1987930【硫酸盐】 水质 硫酸盐的测定 重量法 GB/T11899-89铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)31【硫化物】 水质 硫化物的测定 亚甲基兰分光光度法 GB/T16489-199632【阴离子表面活性剂】 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T7494-198733【石油类】水质 石油类和动植物油的测定 红外光度法 GB/T 16488-199634【动植物油】水质 石油类和动植物油的测定 红外光度法 GB/T 16488-199635【总铬】 水质 总铬的测定 高锰酸钾氧化-二苯碳酰二肼分光光度法 GB/T7466-1987 火焰原子吸收分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 36【铜】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198737【锌】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198738【铅】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198739【镉】 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-198740【镍】 水质 镍的测定 火焰原子吸收分光光度法 GB/T 11912-198941【钾】 水质 钾、钠的测定 火焰原子吸收分光光度法 GB/T 11904-198942【钠】 水质 钾、钠的测定 火焰原子吸收分光光度法 GB/T 11904-198943【钙】 水质 钙、镁的测定 原子吸收分光光度法 GB/T 11905-198944【镁】 水质 钙、镁的测定 原子吸收分光光度法 GB/T 11905-198945【铁】 水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-198946【锰】 水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-198947【溶解性铁】 水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-198948【银】 水质 银的测定 火焰原子吸收分光光度法 GB/T 11907-198949【甲 醛】 水质 甲醛的测定 乙酰丙酮分光光度法GB/T13197-1991。

DO测定(碘量法)

DO测定(碘量法)

碘量法测定‎溶解氧碘量法(国标GB/T 7489-87)测定水中溶‎解氧(DO)一、原理水样中加入‎硫酸锰和碱‎性碘化钾,水中溶解氧‎将低价锰氧‎化成高价锰‎,生成四价锰‎的氢氧化物‎棕色沉淀。

加酸后,氢氧化物沉‎淀溶解,并与碘离子‎反应而释放‎出游离碘。

以淀粉为指‎示剂,用硫代硫酸‎钠标准溶液‎滴定释放出‎的碘,据滴定溶液‎消耗量计算‎溶解氧含量‎。

二、实验用品1、仪器:溶解氧瓶(250ml‎)、锥形瓶(250ml‎)、酸式滴定管‎(25ml)、移液管(50ml)、吸耳球、1000m‎l容量瓶、100ml‎容量瓶、棕色容量瓶‎、电子天平2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠‎三、试剂的配置‎1、硫酸锰溶液‎:称取48g‎分析纯硫酸‎锰(MnSO4‎•H2O)溶于蒸馏水‎,过滤后用水‎稀释至10‎0mL于透‎明玻璃瓶中‎保存。

此溶液加至‎酸化过的碘‎化钾溶液中‎,遇淀粉不得‎产生蓝色。

2、碱性碘化钾‎溶液:称取50g‎分析纯氢氧‎化钠溶解于‎30—40mL蒸‎馏水中;另称取15‎g碘化钾溶‎于20mL‎蒸馏水中;待氢氧化钠‎溶液冷却后‎,将上述两溶‎液合并,混匀,加蒸馏水稀‎释至100‎m L。

如有沉淀(如氢氧化钠‎溶液表面吸‎收二氧化碳‎生成碳酸钠‎),则放置过夜‎后,倾出上层清‎液,贮于棕色瓶‎中,用橡皮塞塞‎紧,避光保存。

此溶液酸化‎后,遇淀粉应不‎呈蓝色。

3、1+5硫酸溶液‎。

4、1%(m/V)淀粉溶液:称取1g可‎溶性淀粉,用少量水调‎成糊状,再用刚煮沸‎的水稀释至‎100mL‎。

现用现配,或者冷却后‎加入0.1g水杨酸‎或0.4g氯化锌‎防腐。

5、0.0250m‎o l/L(1/6K2Cr‎2O7)重铬酸钾标‎准溶液:称取于10‎5—110℃烘干2h,并冷却的分‎析纯重铬酸‎钾1.2258g‎,溶于水,移入100‎0mL容量‎瓶中,用水稀释至‎标线,摇匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法1 范围碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉如存在氧化物质或还原物质需改进测定方法见第8 条如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用2 原理在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠滴定法测定游离碘量3 试剂分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水3.1 硫酸溶液小心地把500mL 浓硫酸(ñ 1.84g/mL)在不停搅动下加入到500mL 水注若怀疑有三价铁的存在则采用磷酸(H3PO4 ñ 1.70g/mL)3.2 硫酸溶液c(1/2H2SO4) 2mol/L3.3 碱性碘化物叠氮化物试剂注当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去此试剂a. 操作过程中严防中毒b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾将35g的氢氧化钠(NaOH)[或59g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)]溶解在大约50mL 水中单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中将上述二种溶液混合并稀释至100mL溶液贮存在塞紧的细口棕色瓶子里经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液在180 干燥数克碘酸钾(KIO3) 称量3.567 0.003g 溶解在水中并稀释到1000mL将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线3.6 硫代硫酸钠标准滴定液c(Na2S2O3) 10mmol/L3.6.1 配制将 2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000mL溶液贮存于深色玻璃瓶中3.6.2 标定在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色硫代硫酸钠浓度(c mmol/L)由式(1)求出= 6´20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼1Vc式中V 硫代硫酸钠溶液滴定量mL每日标定一次溶液3.7 淀粉新配制10g/L 溶液注也可用其他适合的指示剂3.8 酚酞1g/L 乙醇溶液3.9 碘约0.005mol/L 溶液溶解4~5g 的碘化钾或碘化钠于少量水中加约130mg 的碘待碘溶解后稀释至100mL3.10 碘化钾或碘化钠4 仪器除常用试验室设备外还有4.1 细口玻璃瓶容量在250~300mL 之间校准至1mL 具塞温克勒瓶或任何其他适合的细口瓶瓶肩最好是直的每一个瓶和盖要有相同的号码用称量法来测定每个细口瓶的体积5 操作步骤5.1 当存在能固定或消耗碘的悬浮物或者怀疑有这类物质存在时按附录A 叙述的方法测定或最好采用电化学探头法测定溶解氧5.2 检验氧化或还原物质是否存在如果预计氧化或还原剂可能干扰结果时取50mL 待测水加2 滴酚酞溶液(3.8)后中和水样加0.5mL 硫酸溶液(3.2) 几粒碘化钾或碘化钠(3.10)(质量约0.5g)和几滴指示剂溶液(3.7)如果溶液呈蓝色则有氧化物质存在如果溶液保持无色加0.2mL 碘溶液(3.9) 振荡放置30s 如果没有呈蓝色则存在还原物质进一步加碘溶液可以估计8.2.3 中次氯酸钠溶液的加入量有氧化物质存在时按照8.1 中规定处理有还原物质存在时按照8.2 中规定处理没有氧化或还原物时按照5.3 5.4 5.5 中规定处理5.3 样品的采集除非还要作其他处理样品应采集在细口瓶中(4.1) 测定就在瓶内进行试样充满全部细口瓶注在有氧化或还原物的情况下需取二个试样(见8.1.2.1 和8.2.3.1).5.3.1 取地表水样充满细口瓶至溢流小心避免溶解氧浓度的改变对浅水用电化学探头法更好些在消除附着在玻璃瓶上的气泡之后立即固定溶解氧(见5.4)5.3. 2 从配水系统管路中取水样将一惰性材料管的入口与管道连接将管子出口插入细口瓶的底部(4.1)用溢流冲洗的方式充入大约10 倍细口瓶体积的水最后注满瓶子在消除附着在玻璃瓶上的空气泡之后立即固定溶解氧(见5.4)5.3.3 不同深度取水样用一种特别的取样器内盛细口瓶(4.1) 瓶上装有橡胶入口管并插入到细口瓶的底部(4.1)当溶液充满细口瓶时将瓶中空气排出避免溢流某些类型的取样器可以同时充满几个细口瓶5.4 溶解氧的固定取样之后最好在现场立即向盛有样品的细口瓶中加1mL 二价硫酸锰溶液(3.4)和2mL碱性试剂(3.3) 使用细尖头的移液管将试剂加到液面以下小心盖上塞子避免把空气泡带入若用其他装置必须小心保证样品氧含量不变将细口瓶上下颠倒转动几次使瓶内的成分充分混合静置沉淀最少5min 然后再重新颠倒混合保证混合均匀这时可以将细口瓶运送至实验室若避光保存样品最长贮藏24h5.5 游离碘确保所形成的沉淀物已沉降在细口瓶下三分之一部分慢速加入 1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 盖上细口瓶盖然后摇动瓶子要求瓶中沉淀物完全溶解并且碘已均匀分布注若直接在细口瓶内进行滴定小心地虹吸出上部分相应于所加酸溶液容积的澄清液而不扰动底部沉淀物5.6 滴定将细口瓶内的组分或其部分体积(V1)转移到锥形瓶内用硫代硫酸钠(3.6)滴定在接近滴定终点时加淀粉溶液(3.7)或者加其他合适的指示剂6 结果计算溶解氧含量c1(mg/L)由式(2)求出:C1=Mr*V2*C*f1/(4V1)式中Mr——氧的分子量Mr=32V1 ——滴定时样品的体积mL 一般取V1 100mL 若滴定细口瓶内试样则V1=V0c ——硫代硫酸钠溶液(3.6)的实际浓度mol/Lf1=V0/(V0-V')式中V0——细口瓶(4.1)的体积mLV' ——二价硫酸锰溶液(3.4)(1mL)和碱性试剂(3.3)(2mL)体积的总和结果取一位小数。

7 精密度分别在四个实验室内自由度为10 对空气饱合的水(范围在8.5~9mg/L)进行了重复测定得到溶解氧的批内标准差在0.03~0.05mg/L 之间8 特殊情况8.1 存在氧化性物质8.1.1 原理通过滴定第二个试验样品来测定除溶解氧以外的氧化性物质的含量以修正第6 条中得到的结果8.1.2 步骤8.1.2.1 按照5.3 中规定取二个试验样品8.1.2.2 按照5.4 5.5 5.6 中规定的步骤测定第一个试样中的溶解氧。

8.1.2.3 将第二个试样定量转移至大小适宜的锥形瓶内加1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 然后再加2mL 碱性试剂(3.3)和1mL 二价硫酸锰溶液(3.4) 放置5min 用硫代硫酸钠(3.6)滴定在滴定快到终点时加淀粉(3.7)或其他合适的指示剂8.1.3 结果计算溶解氧含量c2(mg/L)由式(4)给出:C2=MrV2*C*f/(4v1)-MrV4C/(4V3)式中Mr V1 V2 c 和f1 与第6 条中含义相同V3 ——盛第二个试样的细口瓶体积mLV4 ——滴定第二个试样用去的硫代硫酸钠的溶液(3.6)的体积mL8.2 存在还原性物质8.2.1 原理加入过量次氯酸钠溶液氧化第一和第二个试样中的还原性物质测定一个试样中的溶解氧含量测定另一个试样中过剩的次氯酸钠量8.2.2 试剂在第三条中规定的试剂和8.2.2.1 次氯酸钠溶液约含游离氯4g/L 用稀释市售浓次氯酸钠溶液的办法制备用碘量法测定溶液的浓度8.2.3 操作步骤8.2.3.1 按照5.3 中规定取二个试样8.2.3.2 向这二个试样中各加入1.00mL(若需要可加入更多的准确体积)的次氯酸钠溶液(8.2.2.1)(见5.2 注) 盖好细口瓶盖混合均匀一个试样按 5.4 5.5 和5.6 中的规定进行处理另一个按照8.1.2.3 的规定进行8.2.4 结果计算溶解氧的含量c3(mg/L)由式(5)给出C3=Mr*V2*C*f2/(4*V1)-Mr*V4*C/[4(V3-V5)]式中Mr V1 V2 和c 与第6 条含义相同V3 和V4 与8.1.3 含义相同V5 加入到试样中次氯酸钠溶液的体积mL(通常V5 1.00mL);f2=V0/(V0-V5-V')式中V'与第6 条含义相同V0 ——盛第一个试验样品的细口瓶的体积mL9 试验报告试验报告包括下列内容a. 参考了本国家标准b. 对样品的精确鉴别c. 结果和所用的表示方法d. 环境温度和大气压力e. 测定期间注意到的特殊细节f. 本方法没有规定的或考虑可任选的操作细节。

相关文档
最新文档