铁碳微电解处理化工污水工艺
铁炭微电解法预处理废水的研究
![铁炭微电解法预处理废水的研究](https://img.taocdn.com/s3/m/736a0afd4128915f804d2b160b4e767f5acf80c1.png)
铁炭微电解法预处理废水的研究铁炭微电解法预处理废水的研究摘要:废水处理是一项重要的环境保护任务。
铁炭微电解法是一种有效的预处理方法,通过在电解池中同时加入铁粉和活性炭粉,引入电流作用下的化学反应,可以有效去除废水中的有机物和重金属离子。
本文通过实验研究了铁炭微电解法处理废水的效果,并对其机理进行了分析。
一、引言废水处理是环境保护的重要任务之一。
目前,废水处理技术主要包括物理方法、化学方法和生物方法等。
然而,这些方法存在着效果不佳、成本高等问题。
因此,发展一种高效、低成本的废水预处理技术势在必行。
二、铁炭微电解法的原理铁炭微电解法是一种将铁粉和活性炭粉同时加入电解池中处理废水的方法。
通过加入直流电流,使得铁粉和活性炭粉在电解池中发生化学反应。
铁粉可以被氧化成Fe2+,而活性炭粉则在电流的作用下释放出氢气。
这些反应产生的还原剂和氧化剂能够有效地降解废水中的有机物和重金属离子。
三、实验设计本实验使用了一台电容量为1 L的电解池,并在其中加入了适量的铁粉和活性炭粉。
废水样品经过调整后,作为实验对象。
调整后的废水中含有有机物和重金属离子。
实验设置了不同的电流强度和电解时间,以研究其对废水处理效果的影响。
四、实验结果与讨论通过实验观察和数据分析,我们发现铁炭微电解法能够有效去除废水中的有机物和重金属离子。
随着电流强度的增加和电解时间的延长,处理效果逐渐提高。
在一定范围内,电流强度对去除有机物的效果具有正面影响。
然而,当电流强度过高时,电解过程中产生的气体将会影响反应的进行,从而降低废水处理的效果。
此外,实验还发现,铁炭微电解法对去除重金属离子的效果也较好,其原因是重金属离子能够与铁粉发生还原反应。
五、机理分析铁炭微电解法的废水处理机理主要包括还原、氧化和吸附效应。
铁粉能够通过被氧化为Fe2+的反应产生还原剂,从而加速有机物和重金属离子的降解。
活性炭粉释放出的氢气则促进了废水中有机物的氧化降解。
此外,铁粉和活性炭粉的表面也具有吸附性,能够吸附部分废水中的有机物和重金属离子。
铁碳微电解技术
![铁碳微电解技术](https://img.taocdn.com/s3/m/aa5012f7763231126fdb1198.png)
技术原理
③.富集作用
在铁碳电极之间形成的电场作用于废水中的带电胶体粒子,促使这些胶体 粒子定向迁移,从而促进废水中污染物质的富集与去除。
④.物理吸附作用
铁屑能够吸附多种金属离子,从而将金属离子置换成单质并除去,铁屑中 的碳微粒和活性炭对金属离子均有较强的吸附作用。而且铸铁作为一种多孔 物质,和活性碳一样有吸附能力,可以吸附水中的有机物。
谢谢
填料改进 装置改进
总结
微电解工艺自20世纪70年代发展以来,已成功地应用于印染废水,电镀废水
等多行业废水处理工程。
一.深入研究铁碳微电解反应结构装置与废水处置效率及长期稳定性之间的 关系,设计出更为高效,合理的铁碳微电解反应装置 二.探寻与其他工艺的组合方案,解决高生物毒性,高稳定性,高浓度废水 的治理难题。
技术原理
①.氧化还原反应
F e 2 H 2 F e2 H 2
F2 e o x id atF io3 n e
②.原电池反应:铁碳微电池 阳极:Fe - 2e → Fe2+ 阴极:2H+ + 2e → H2 ↑
当反应体系中有溶解氧存在时在不同酸碱度条件下分别发生如下反应:
酸性溶液:O2 + 4H+ + 4e → 4H2O 中性或碱性溶液:O2 + 2H2碳微电解的因素
进水pH
控制在之间
曝气量
改变原电池 电位 影响电极材 料的状态与 活性
停留时间
进水pH低, 停留时间短 进水pH高, 停留时间长
铁碳微电 解填料
填料的形貌 填料的种类
铁碳微电解填料
铁碳微电解技术应用
铁碳微电解技术的局限与改进
• 铁炭填料逐渐板结钝化 • 反应在酸性条件下进行 • pH适用范围窄,COD去除率有待提高
化工污水处理新工艺微电解加芬顿工艺
![化工污水处理新工艺微电解加芬顿工艺](https://img.taocdn.com/s3/m/7b0a93f4534de518964bcf84b9d528ea81c72fb6.png)
化工污水处理新工艺:铁碳填料+芬顿工艺了解下普茵沃润承接高浓度废水预处理工程。
铁碳填料利用微电解工艺可以用来处理高难度有机废水,芬顿工艺的强氧化性也可处理废水,微电解铁碳填料+芬顿工艺可以处理大部分的高难度有机废水。
具体废水包括哪些呢?处理的效果又分别体现在哪些方面呢?今天普茵沃润化工污水处理厂家给大家介绍一下污水处理的工艺——铁碳填料+芬顿工艺。
一、铁碳填料+芬顿工艺介绍1.微电解铁碳填料工艺说明微电解铁碳填料工艺是利用金属腐蚀原理,形成原电池,利用填充在废水中微电解材料自身产生的1.2V电位差对废水进行电解处理,达到处理废水目的。
反应原理:电化学反应的氧化还原。
适用范围:针对有机物浓度大、高毒性、高色度、难生化废水的处理。
微电解工艺用的铁碳填料2.芬顿工艺说明在酸性条件下,由H2O2和Fe2+组成的液体称为芬顿试剂; H2O2为氧化剂,Fe2+为催化剂,H2O2在Fe2+的催化下分解出羟基自由基,可稳定实现有机物无机化。
适用范围:芬顿选择性小,浓度高,用量可控,适用于处理高浓度、难降解、毒性大的有机物。
芬顿氧化罐体二、铁碳填料+芬顿工艺组合优势1.微电解铁碳填料工艺相对于芬顿试剂投加Fe2+,不仅节约药剂成本,并且达到以废治废的目的。
2.芬顿工艺相对于微电解工艺,更能有效去除成分复杂的废水,特别是对COD、脱色、可生化性,有着更为明显的优势。
总结:微电解-芬顿联用工艺是处理/预处理高浓度废水理想的工艺,该工艺用于高盐、高浓度、难降解、高色度、气味大、高毒性废水的处理。
三、微电解铁碳填料+芬顿工艺联合处理工艺在部分废水处理中的实践及处理效果如下:(1)染料废水:在pH=4,微电解时间1h,30%H2O2用量体积分数2‰,反应时间是1h的条件下,CODCr的去除率50%~80%,色度去除率高达90%以上。
(2)医药废水:通过微电解过程中铁炭比、反应停留时间、pH、双氧水投加量等参数的优化,出水COD去除率达75%,总磷的去除率达77.1%,盐度去除率为24.8%,色度去除率高达95%,可生化性提高到0.32。
铁碳微电解-芬顿反应处理焦化废水实践
![铁碳微电解-芬顿反应处理焦化废水实践](https://img.taocdn.com/s3/m/6b5f4747571252d380eb6294dd88d0d233d43cb5.png)
205PRACTICE区域治理铁碳微电解-芬顿反应处理焦化废水实践江西省萍乡市萍乡萍钢安源钢铁有限公司环保部 巫福全摘要:焦化废水处理普遍是采用以活性污泥法为核心的生化处理工艺,但是生化出水COD指标很难达到排放标准。
随着环保要求的日益严格,为了稳定达到钢铁行业废水排放标准,生化出水还需进行深度处理。
目前,已经应用于焦化废水处理生产实践的深度处理方法主要有膜法处理、芬顿氧化、臭氧催化氧化、次氯酸钠氧化等方法。
其中芬顿氧化法(H 2O 2/Fe 2+)被认为是一种最有效、简单且经济的方法,其他方法则因初设成本或操作成本太高而较难被业者接受。
芬顿氧化法虽有高效率、低操作费的优点,但同时因其会产生大量的铁污泥,成为应用时的一大缺点。
关键词:芬顿催化;焦化废水;达标排放中图分类号:X703文献标识码:A文章编号:2096-4595(2020)46-0205-0001萍安钢铁焦化厂停产后,生化废水处理系统中剩余约5000余吨焦化废水。
废水参数如下:挥发酚100~392mg/L ,化学需氧量1000~1940mg/L ,氨氮24~535mg/L 。
废水中含有较多有毒有害物质,同时COD 、氨氮浓度也相当高,成分较复杂。
原有的生化水处理系统由于各种原因失去处理功能。
项目要求废水经处理后能达到挥发酚5mg/L ,化学需氧量50mg/L ,氨氮5mg/L 。
本文通过对传统芬顿法的催化剂进行改进成固体催化剂后,应用于焦化废水处理的实践,不但能使水质达到要求,而且不会产生铁污泥等二次污染物。
一、铁碳微电解-芬顿工艺采用一种新型的具有表面微孔结构的新型固体催化剂代替硫酸亚铁。
固体催化剂类似球状,规格大小为φ3~25毫米,抗压强度800~1000Kg/cm 2,空隙率≥58%,比重为1~1.3吨/m 3,比表面积为1.2~1.5m 3/g 。
催化剂中铁碳融合成一体,其结构内部呈蜂状孔构成,有效地防止填料形成板结和钝化,且通过其内部具有的毛细管式气孔,可快速吸入废水,提高了反应效率。
铁炭微电解处理化工废水
![铁炭微电解处理化工废水](https://img.taocdn.com/s3/m/4654b5523c1ec5da50e27066.png)
铁炭微电解?混凝沉淀预处理化工有机废水本实验主要研究了上海某化工废水处理系统运行过程中,铁炭微电解?混凝沉淀对于去除COD、提高可生化性和降低酸度的效果. 1基本原理铁炭微电解是基于电化学中的电池反应,金属阳极直接和阴极材料接触在一起,浸没在电解质溶液中,发生电池反应而成腐蚀电池,金属阳极被腐蚀而消耗.其电极反应如下:阳极(Fe):Fe→Fe2++2eE0=-0.44V阴极(C):酸性条件下:2H++2e→2〔H〕→H2E0(H+/H2)=0V酸性充氧条件下:O2+4H++4e→2H2OE0(O2)=1.23V中性条件下:O2+2H2O+4e→4OHE0=0.40V由阴极反应可见,在酸性充氧的条件下,两者的电位差最大,腐蚀反应进行最快,这说明铁在还原曝气条件下处理化工有机废水的效果应该优于不曝气条件下的处理效果,对于这一点已在文献[1]中得到了证明.另外,阴极反应消耗了大量的H+会提高溶液的pH值.此外,在微电解的过程中还会发生下列反应:Fe2++O2+H+→Fe3++H2OFe2++H2O+H+→Fe3++H2O2Fe2++H2O2→Fe3++OH+OH-Fe2++OH→Fe3++OH-其间所生成的羟自由基OH氧化性极强,可以使有机物氧化.另外由于电池的电极周围存在电场效应,使溶液中带电粒子在电场作用下定向移动,进行附集并沉积在电极上而被除去.电极反应生成的新生态的Fe2+及它们的水合物具有较强的吸附?絮凝活性,特别是在加碱调pH后生成Fe(OH)2和Fe(OH)3胶体絮凝剂,具有很大的吸附絮凝能力.2实验条件与方法本实验以上海某化工有限公司的污水处理工程为依托而进行.该公司新上一套污水处理系统,以铁炭微电解?混凝沉淀作为预处理,前设格栅、调节池,后接生化处理系统.铁炭微电解池有效容积250m3,反应时间4h,曝气量1.5m3气/m3水?min,有效水深4m,铁炭层装填高度2m,每月定期补充总装量的10%.混凝沉淀池主要是在铁炭微电解池出水中投加碱调pH进行混凝沉淀,其反应时间t=30min,总停留时间4h,沉淀池表面负荷0.85m3/h?m2,泥斗倾角55°.原水水质如表1所示.表1原水水质CODCr/(mg?l1)1500~4000BOD5/(mg?l1)150~500BOD5/CODCr0.1~0.2pH1~3Cu2+/(mg?l1)0.6~1.5Pb2+/(mg?l1)1.5~2.6 3实验结果与分析3.1混凝剂的选择与分析在该厂污水处理系统正常运行之后,经过两个多月的监测,在进水pH值均较低的情况下,经过铁炭微电解池以后,pH值均能提高至3~5的范围内,降低了废水的酸性,为了保证后续生化处理的正常运行,在铁炭微电解的出水中仍需要投加一定量的碱液进行中和.由于该化工有限公司本厂生产有剩余的废碱液,为了节约投资,在调节pH时采用了废碱液NaOH.铁炭微电解池的出水中含有大量的新生态的Fe2+,在加碱调节pH值后生成的Fe(OH)2及进一步氧化后的Fe(OH)3是良好的胶体絮凝剂,为了验证其吸附絮凝效果,本实验选择了硫酸亚铁、三氯化铁、碱式氯化铝、硫酸铝四种混凝剂与其比较进行了混凝沉淀实验.以电解池堰上出水作为原水,先由实验确定了四种混凝剂的最佳pH值均在中性附近,在pH值为中性的条件下确定最佳投量在100mg/l附近.因此在混凝沉淀实验中,先调节原水pH至7,再投加各种混凝剂,混凝剂投加量均为100mg/l.投药以后再调pH至中性.实验结果如图1所示.图中A为原水COD;B为原水投加NaOH调节pH后的COD;C为原水投加NaOH调节pH后投加硫酸亚铁后的COD;D为原水投加NaOH调节pH后投加三氯化铁后的COD;E为原水投加NaOH调节pH后投加碱式氯化铝后的COD;F为原水投加NaOH调节pH后投加硫酸铝后的COD.图1混凝沉淀实验COD值对比实验图由图1可知,铁炭微电解池出水直接加碱调节pH值后的出水COD要低于加各种混凝剂的出水COD.铁炭微电解池出水加碱调节pH值后生成的Fe(OH)2和Fe(OH)3胶体絮凝剂的吸附能力既高于硫酸亚铁、三氯化铁两种铁盐混凝剂水解得到的Fe(OH)3,也高于两种铝盐混凝剂.这是由于铁炭微电解池出水中的总铁离子浓度相当高,可以达到800mg/l[1],超过了实验过程中所投加的混凝剂投量.另外在加入FeSO4,FeCl3后色度会明显增加.由图1还可以看出,在加入碱式氯化铝后,出水COD可能会上升,这是由于碱式氯化铝中存在大量的还原性杂质的缘故.由混凝剂的选择与分析实验可以得出结论:在铁炭微电解还原池中产生的Fe2+在加碱调节pH值后生成的Fe(OH)2及进一步氧化后的Fe(OH)3的吸附絮凝能力非常强,再投加其它混凝剂已无意义 3.2实际工程中的监测结果在确定了铁炭微电解池出水加碱调节pH值后无需再加其余混凝剂后,本实验又研究了在实际工程中,铁炭微电解?混凝沉淀对于去除COD、重金属离子和提高可生化性的效果. 3.2.1去除COD效果由图2可知,经过铁炭微电解?混凝沉淀预处图2去除COD效果理系统之后,COD降低50%左右,除了去除的有机物之外,水中的还原性的Fe2+也以COD的形式表现出来.因此,COD较大幅度降低的主要原因就是铁炭微电解池中所发生的氧化还原作用和加碱调节pH后产生的混凝沉淀作用.这样经过铁炭微电解?混凝沉淀后,可降低后续生化工艺的负荷.3.2.2去除重金属离子实验效果由图3和图4可以看出,在铁炭微电解池出水图3Cu2+的去除效果图4Pb2+去除效果加碱调节pH后,重金属离子Cu2+,Pb2+在出水中的浓度均低于国家排放标准。
铁炭微电解高浓度污水处理
![铁炭微电解高浓度污水处理](https://img.taocdn.com/s3/m/d17c193f58f5f61fb636668a.png)
一、关于铁炭微电解的简介及区分方法1、什么是铁炭微电解:是指铁和炭在电解质溶液中自发产生的微弱电流分解废水中污染物的一种污水处理工艺。
将铁屑和炭颗粒浸没在酸性废水中时,由于铁和炭之间的电极电位差(0。
9~17V),废水中会形成无数个微原电池.这些微电池是以电位低的铁成为阳极,电位高的炭做阴极,在含有酸性电解质的水溶液中发生电化学反应.在应中产生的大量初生态的Fe2+和新生态的[•H],它们具有极高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用。
铁炭微电解工艺是集氧化、还原、电沉淀、絮凝、吸附、架桥、卷扫及共沉淀等多功能于一体。
2、铁炭微电解的最佳使用PH范围是多少?铁炭微电解的最佳使用PH范围是3~4,在此PH范围内,高温烧结的铁炭微电解填料的年消耗量在10%~15%(个别厂家会讲他们的填料适用PH范围为5~7,这是不符合铁炭微电解的反应原理的,所以这种填料对废水处理的主要原理是通过铁炭中活性炭的吸附,不是通过真正的微电解反应原理达到处理效果)。
3、铁炭微电解工艺优点:适用范围广,处理效果好,成本低,操作维护方便,不需要消耗电力资源,反应速度快,处理效果稳定,不会造成二次污染,提高废水的可生化性,可以达到化学沉淀除磷,可以通过还原除重金属,也可以作为生物处理的前处理,利于污泥的沉降和生物挂膜。
目前成熟运用的行业有:化工、制药、染料、颜料、橡胶助剂、酚醛树脂、电镀、线路板、垃圾渗滤液、印染、煤化工等。
4、反应过程中铁和炭去哪里了:在高温烧结的铁炭微电解填料中铁和炭不是以大颗粒形式存在,而是以合计结构的形式存在,反应中铁变为二价铁离子存在于废水中,通过后续的絮凝而沉淀出来;炭随着铁的溶解不断的脱落,脱落后的极其细小炭粒会吸附着污染物质进入沉淀池经絮凝沉淀.5、什么是高温烧结的铁炭微电解填料:高温烧结铁炭微电解填料是铁粉与炭粉、催化剂等组分通过高温(超过1300℃)熔炼形成的一体化合金结构,故填料的物理强度强(≥600kg/cm2);框架式的微孔结构形式,为微电解反应提供极大的比表面积及均匀的水气通道,对废水处理提供了更大的电流密度和更好的催化反应效果.6、如何区分铁炭微电解填料是否是高温烧结:通过摔打或进行相关测试:高温烧结微电解填料不易敲碎。
水处理--微电解法处理废水的步骤
![水处理--微电解法处理废水的步骤](https://img.taocdn.com/s3/m/3367d148f4335a8102d276a20029bd64783e6226.png)
微电解法处理废水的步骤铁碳微电解填料现已广泛应用于各种废水处理领域,由于其成本低、工艺灵活和可跟其他设备工艺搭配使用等优势,使铁碳微电解填料的应用越来越广泛,在用铁碳微电解填料处理废水的时候有哪些注意事项?如何正确使用铁碳微电解填料呢?一、使用前先对废水进行预处理:很多废水中含有的油脂类、固体悬浮物,如不先进行预处理会影响铁碳微电解填料处理效果,对废水进行预处理可为铁碳微电解填料提供稳运行的条件。
二、废水调节酸度:铁碳填料微电解工艺处理废水最好的环境是在富氧、弱酸性的条件。
不过PH值也不宜过低,否则会加速填料的消耗速度,而且还会浪费大量的酸,增加废水处理成本,一般情况下PH值调整到3-4左右即可。
具体的PH值的设定要依据试验结果确定。
三、对废水进行曝气充氧:在铁炭微电解填料处理废水的过程中,通过曝气为其可提供充足的氧气,从而促进原电池效应反应的进行。
另一方面,通过曝气对废水起到搅拌震荡的作用,在减弱浓差极化,加速电极反应的进行的同时,通过曝气的剪切力,使铁碳微电解填料表面及时得到更新,提高了废水与填料的传质效率。
曝气的时间、曝气量的大小可根据处理废水的水质不同确定,一般曝气曝气量为水体3-4倍适中即可。
四、微电解反应器的的反冲洗:反应器中的铁碳微电解填料应定期进行反冲洗,从而提高填料的处理效果。
反冲洗时首先关停上水泵、关闭进水阀门,加大进气量,强化曝气5分钟后,关闭进气阀,反应器内的水自上而下自行反冲洗铁碳微电解填料,反冲洗水可排入调节池。
反冲洗完成后,开启进水阀、废水提升水泵,即可恢复废水的处理过程。
五、去除废水中的沉淀物质:废水经铁碳填料微电解工艺处理后,废水中的污染物在铁碳微电解填料作用下,分子状态发生变化,从废水中析出。
此时向废水中投加石灰乳并将PH值调整至8-9之间,然后加入适量助凝剂进行絮凝沉淀,沉淀后再将析出的胶体有机物和不溶物沉淀去除即可。
铁碳微电解技术
![铁碳微电解技术](https://img.taocdn.com/s3/m/c090ac2dfbd6195f312b3169a45177232f60e4c9.png)
铁碳微电解技术铁碳微电解技术是经过不断的优化改良,能真正快速、低成本处理含重金属、高COD、高色度、高氨氮等高浓度有机废水的处理的理想工艺,突破了传统方法:高成本、生化面积大、难达标的瓶颈。
技术特点:在短时间内(30-90分钟)去除污水中的有害物质。
包括:1、去除重金属:通过改变重金属元素的化学价,在催化和氧化的作用下变成金属化合沉淀物,将浓缩污泥内的重金属再分别提取出来,达到去除效果,去除率最高达99%。
2、去除色度:通过铁碳微电解的氧化作用产生新生氧,使色团受损而达到除色目的,最高去除率达98%。
3、去除COD:通过铁碳微电解的氧化作用断开大分子链,除了去除大部份COD值外,还能改善B/C 值,有利后步生化处理,缩短生化时间及易于达标。
处理污水种类:A、含重金属污水:电镀厂、线路板厂、采矿企业污水、化学污水。
如果污水含氰化物小于60ppm,则不需分开处理,氰化物和重金属在反应时同时被去除,如果污水PH呈酸性,不需用城中和,可直接反应处理,反应完成出水自动变成中性或微城性。
减少了用城中和的步骤和成本。
B、高COD、高色度污水:皮革厂(包括生皮及蓝湿皮)、肖皮厂、印花厂、染厂、垃圾渗透液等高浓废水,通过氧化基铁碳微电解设备处理,污水中的COD和颜色大部份被去除,使后续生化变得轻松容易,大大减少生化时间和面积,从而减轻投资成本和处理成本。
一、电镀废水处理电镀厂废水:呈强酸性,有大量的氰化物和磷酸盐,在生产过程中还有铜、铬、锌、铅等重金属,用铁碳微电解技术处理电镀废水,含氰废水不用分开处理,且各种指标(包括重金属)全部达标排放。
铁碳微电解技术是利用填料具有微电池反应、絮凝作用、和吸附共沉等综合作用,对废水处理表现出十分显著的效果。
对技术原理作简要的分析:铁碳微电解技术原理:铁碳微电解产物具有很高的化学活性,在阳极,产生的新生态Fe2+;在阴极,产生的活性[H],均能与废水中许多污染物组份发生氧化还原反应,使大分子物质分解为小分子物质,使某些难生化降解的物质转变成容易处理的物质,提高废水的可生化性。
铁碳微电解-A-O工艺处理丁酮肟生产废水试验研究
![铁碳微电解-A-O工艺处理丁酮肟生产废水试验研究](https://img.taocdn.com/s3/m/09035c2358eef8c75fbfc77da26925c52cc591f1.png)
铁碳微电解-A-O工艺处理丁酮肟生产废水试验研究铁碳微电解-A/O工艺处理丁酮肟生产废水试验研究一、引言丁酮肟是合成丁酮的重要中间体,广泛应用于化工等领域。
然而,在丁酮肟合成过程中产生的废水中含有大量有机物和氮、磷等污染物,若直接排放,不仅会对环境造成严重的污染,还会带来健康和安全隐患。
因此,如何高效、低成本地处理丁酮肟生产废水,成为了亟待解决的问题。
二、研究目的本研究旨在探究铁碳微电解-A/O工艺对丁酮肟生产废水的处理效果,并优化工艺参数,寻求最佳处理条件,以提供技术支撑和理论依据。
三、实验方法1. 实验设备及试剂准备:准备铁板、活性碳、混凝剂和丁酮肟废水样品。
2. 实验步骤:(1) 铁碳微电解反应:将铁板和活性碳作为电极,通电进行铁碳微电解反应,使废水中的有机物经电化学氧化还原去除。
(2) A/O工艺:将经微电解处理后的废水进行A/O工艺处理,采用好氧和厌氧生物处理的方式进一步去除废水中的有机物和氮、磷等污染物。
3. 实验结果测定:采用相关测试方法对废水处理前后的COD、氨氮、总磷等指标进行测定,评估处理效果。
四、结果与讨论经过一系列实验测试和分析,得出以下结果:1. 铁碳微电解处理效果显著:经过铁碳微电解反应,废水中的COD和氨氮指标均得到有效降解,去除率分别达到80%和90%以上。
2. A/O工艺去除有机物能力强:在经过微电解处理后的废水中,通过A/O工艺进一步去除有机物,去除率可达到90%以上。
3. 氮、磷去除效果较好:经过A/O工艺处理后,废水中的氨氮和总磷指标分别降至国家排放标准以下。
4. 最佳工艺参数:在本实验条件下,最佳的铁碳微电解-A/O工艺处理参数为:铁板活性面积为50cm²,电流密度为25A/m²,A/O工艺中好氧阶段溶解氧浓度为2mg/L,厌氧阶段PH值为7.0。
五、结论与展望本研究表明,铁碳微电解-A/O工艺对丁酮肟生产废水具有良好的处理效果。
通过优化工艺参数和控制操作条件,可实现丁酮肟生产废水的高效、低成本处理。
铁碳微电解硫酸盐还原
![铁碳微电解硫酸盐还原](https://img.taocdn.com/s3/m/a6d5205111a6f524ccbff121dd36a32d7375c7d8.png)
铁碳微电解硫酸盐还原
铁碳微电解是一种处理废水的方法,其中铁和碳作为电极,通过微电解原理来处理废水中的污染物。
具体到硫酸盐还原,这是一种在微电解过程中,通过铁电极将硫酸盐还原为硫化物的方法。
该方法主要利用了铁的氧化还原反应。
在电解过程中,铁失去电子成为亚铁离子,而碳则保持其电子状态。
这些电子随后与废水中的硫酸盐反应,将其还原为硫化物。
这种方法在处理某些工业废水方面特别有效,例如采矿、石油化工和纺织等行业产生的废水。
这些废水中通常含有高浓度的硫酸盐,通过铁碳微电解处理可以将这些硫酸盐转化为硫化物,从而达到净化废水的目的。
需要注意的是,铁碳微电解技术并不是万能的,它主要适用于处理含有特定污染物的废水。
在实际应用中,通常需要结合其他处理方法来达到最佳的处理效果。
同时,该技术的效率和效果也受到多种因素的影响,例如电极的材料、电解的条件以及废水的特性等。
如果您需要更详细或最新的信息,建议咨询环保专家或查阅最新的文献资料。
铁碳微电解工艺解离污水中的配合作用-转化污水中难降解螯合物等物质
![铁碳微电解工艺解离污水中的配合作用-转化污水中难降解螯合物等物质](https://img.taocdn.com/s3/m/74d3f8a4dd3383c4bb4cd2b9.png)
铁碳微电解工艺解离污水中的配合作用-转化污水中难降解螯合物等物质铁碳微电解工艺解离污水中的配合作用-转化污水中难降解螯合物等物质
污染物特别是重金属污染物,大部分以配合物形态存在于水体,水中的某些阳离子是良好的配合物中心体,某些阴离子可以作为配体,他们之间的配合作用和反应速率遵循Owen-Williams顺序。
化工废水中的NTA,EDTA,农药和大分子环状化合物等难降解物质都具有很高的配合能力。
配合物形成之后稳定性很高,用普通的方法很难降解。
目前,比较热门的研究方向是向水体中提供大量的电子供体,形成电子移动穿插作用,从而解离这种稳定的配合作用。
从而将难降解污水转化为用普通方式方法可以降解的污水。
现阶段,常用的可以提供电子供体的水处理工艺主要有:臭氧、芬顿和铁碳微电解工艺。
其中氧化性最强的是臭氧,而随着新型材料的研发,一种新型HMT铁碳微电解填料的上市,最容易作业的工艺便是铁碳微电解工艺,而且运行费用低,投资省。
铁碳微电解+芬顿氧化法+混凝沉淀
![铁碳微电解+芬顿氧化法+混凝沉淀](https://img.taocdn.com/s3/m/93a6ca17814d2b160b4e767f5acfa1c7aa008286.png)
铁碳微电解+芬顿氧化法+混凝沉淀一、概述在工业生产和日常生活中,随着污水排放量的增加,水污染成为了一个严重的环境问题。
为了解决水污染问题,人们提出了各种水处理方法。
其中,铁碳微电解、芬顿氧化法和混凝沉淀是三种常用的水处理方法。
本文将就这三种方法进行详细介绍和分析。
二、铁碳微电解1. 概述铁碳微电解是一种通过电化学方法去除水中污染物的技术。
该技术利用铁、铁碳合金或其他铁质电极在电解过程中释放出的铁离子与水中的氧气反应,产生氢氧化铁沉淀,并以此去除水中的固体颗粒、悬浮物和有机物。
2. 工作原理铁碳微电解技术的工作原理,主要是通过电极在电解过程中释放出的铁离子与水中的氧气反应,从而产生氢氧化铁沉淀,将水中的污染物吸附沉淀下来,然后通过过滤等方法将其去除。
3. 应用范围铁碳微电解技术适用于去除水中的重金属离子、有机物、胶体等物质,适用于工业废水、生活污水和农业排放水等各种类型的水体。
三、芬顿氧化法1. 概述芬顿氧化法是一种利用过氧化物氧化水中有机废物的技术。
该技术通过添加过氧化氢或次氯酸盐等氧化剂和铁盐等催化剂,在酸性条件下将水中的有机废物氧化分解,从而达到净化水体的目的。
2. 工作原理芬顿氧化法的工作原理是通过氧化剂和催化剂的分解产生自由基,自由基能够氧化水中的有机废物,将其分解为较小的无毒无害物质,达到净化水体的目的。
3. 应用范围芬顿氧化法适用于去除水中的有机废物、染料、苯酚等有机物质,适用于工业废水中有机物浓度高、难降解的问题。
四、混凝沉淀1. 概述混凝沉淀是一种利用混凝剂将水中的悬浮物或胶体凝聚成较大的沉淀物,从而达到净化水体的目的。
2. 工作原理混凝沉淀的工作原理是通过添加混凝剂,将水中的悬浮物或胶体凝聚成较大的沉淀物,然后通过重力沉降或机械过滤等方法将其去除,从而净化水体。
3. 应用范围混凝沉淀适用于去除水中的胶体、悬浮物和颗粒物等固体物质,适用于各种类型的水体,特别适用于预处理工业废水和生活污水中的固体颗粒物去除。
TPFC铁碳微电解工艺处理废水
![TPFC铁碳微电解工艺处理废水](https://img.taocdn.com/s3/m/c24a9931dd36a32d72758100.png)
增加微电解处理工艺单元,改造后工艺流程如下所示:
印制电路板(PCB)废水水量大,废水污染物种类多,成分复杂,含多种络合剂(螯合剂)如氨、EDTA、酒石酸根等,与铜等重金属离子形成稳定的络合物,严重影响铜等重金属的处理,处理难度大。
就PCB络合废水处理而言,络合物的破除成为铜等重金属去除的关键。
利用铁碳微电解法处理PCB络合废水原理:络合重金属废水在微电解反应器内发生微电解反应和置换反应:
阳极(Fe): Fe- 2e→ Fe2+
阴极(C) : 2H++2e→ 2[H]→H2
一方面,微电解反应产生新生态的氢和亚铁,能与水中的许多物质发生氧化还原反应,破坏络合物的结构,使其失去或降低与铜等重金属的络合能力,同时新生的Fe(OH)2与Fe(OH)3具有较高的絮凝、吸附活性,能吸附水中的分散小颗粒及有机分子而絮凝沉降下来,使废水进一步净化。
另一方面,铁能与废水中的铜进行置换反应,铁把络合铜中的铜置换出单质铜。
铁碳微电解处理化工污水工艺
![铁碳微电解处理化工污水工艺](https://img.taocdn.com/s3/m/5c8754de7375a417876f8fa0.png)
铁碳微电解处理化工污水工艺一、铁碳微电解工艺优点1、提高废水的可生化性,可以达到化学沉淀除磷,可以通过还原除重金属,也可以作为生物处理的前处理,利于污泥的沉降和生物挂膜。
2、适用范围广,处理效果好,成本低,操作维护方便;3、不需要消耗电力资源,反应速度快,处理效果稳总,不会造成二次污染二、铁碳微电解工艺处理化工污水的优势无机化工污水包括从无机矿物制取酸、碱、盐类基本化工原料的工业,这类生产中主要是冷却用水,排出的废水中含酸、碱、大量的盐类和悬浮物,有时还含硫化物和有毒物质。
有机化工污水则成分多样,包括合成橡胶、合成塑料、人造纤维、合成染料、油漆涂料、制药等过程中排放的废水,具有强烈耗氧的性质,毒性较强,且由于多数是人工合成的有机化合物,因此污染性很强,不易分解。
铁碳微电解工艺优势-微电解技术近年来发展成处理污水行业的的佼佼者,铁碳微电解工艺可以实现去除废水COD,脫除色度,提高废水可生化性。
那么铁碳微电解工艺用来处理化工污水具优势1、设备体积小,占地少,因此该法被称为淸洁处理法2、铁碳微电解技术很大一部分作用可以提高可生化性,特別是有利于亲铁细菌成活。
3、无二次污染。
铁碳微电解工艺无需添加任何氧化剂,絮凝剂等化学药品,电子转移只在电极以及污水溶液之间进行,不会产生二次污染。
4、维护方便,一年消耗15%左右到时候一年添加一次就行。
5、工艺灵活。
铁碳微电解工艺既可以单独处理,又可以和其他技术相结合,降低污水中的污染物。
6、反应条件温和,在常温常压下就可以反应,不需要通电等措施。
7、成本低。
吨水处理成本低,大约在一元钱左右。
三、铁碳微电解工艺的四大主要作用1、去除重金属离子,降低废水毒性,比如大蒜废水,电镀废水。
2、降低髙难度化工废水COD,3、提髙化工废水的可生化性。
4、降低染料、颜料、染料等废水的色度.。
实验四铁碳微电解处理废水实验
![实验四铁碳微电解处理废水实验](https://img.taocdn.com/s3/m/2a528b3167ec102de2bd8916.png)
铁碳微电解处理废水实验一、实验目的1.了解铁碳微电解作用的原理;2.比较铁碳微电解在不同条件下的处理效果。
二、实验原理在难降解工业废水的处理技术中,微电解技术正日益受到重视,并已在工程实际中。
废水的铁内电解法的原理非常简单,就是利用铁-碳颗粒之间存在着电位差而形成了无数个细微原电池。
这些细微电池是以电位低的铁成为阴极,电位高的碳做阳极,在含有酸性电解质的水溶液中发生电化学反应的。
反应的结果是铁受到腐蚀变成二价的铁离子进入溶液。
对内电解反应器的出水调节PH值到9左右,由于铁离子与氢氧根作用形成了具有混凝作用的氢氧化亚铁,它与污染物中带微弱负电荷的微粒异性相吸,形成比较稳定的絮凝物(也叫铁泥)而去除。
具体的作用机理可归纳如下:(1)氢的还原作用。
从电极反应中得到的新生态氢具有较大的活性,能于废水中的许多有机组份发生氧化还原作用。
(2)铁离子的混凝作用。
从阳极得到的Fe2+在有氧和碱性条件下,会生成Fe(OH )2和Fe(OH )3,反应为:Fe2++2OH-=Fe(OH )24Fe2++8OH-+O2+2H2O = 4 Fe(OH )3生成的Fe(OH)2是一种高效的絮凝剂,具有良好的脱色,吸附作用。
而生成的Fe(OH)3也是一种高效胶体絮凝剂,它比一般的药剂水解法得到的Fe(OH)3吸附能力强,可强烈吸附废水中的悬浮物、部分有色物质及微电解产生的不溶物。
(3)铁的还原作用。
铁是活泼金属,在酸性条件下,它的还原能力能使某些有机物被还原为还原态(4)电化学腐蚀作用废铁屑为铁—碳合金,当浸没在废水液中时,由于碳的电位高,铁的电位低,就构成一完整的微电池回路,形成一内部电解反应。
电解反应如下:阳极(Fe):Fe-2e→Fe2+ E0(Fe2+/Fe)=-0.44V阴极(C):2H++2e→2[H]→H2E0(H+/H2)=0.00V有氧气时O2+4H++4e→2H2O E0(O2)=1.23V (酸性介质) O2+2H2O+4e→4OH-E0(O2/OH-)=0.40V (中性或碱性介质)在处理废水时,生成的Fe2+对废水处理有重要的意义,它能将废水中的有机分子降解,并能生成Fe(OH)2和Fe(OH)3沉淀,起吸附、捕集、架桥的作用。
铁碳填料微电解工艺处理废水效果影响因素
![铁碳填料微电解工艺处理废水效果影响因素](https://img.taocdn.com/s3/m/d4b463a152ea551811a6875c.png)
铁碳填料微电解工艺处理废水效果影响因素铁碳填料微电解工艺是指利用铁碳填料来处理废水的一种工艺办法。
但是任何一种方法,或者一种设备都需要合理操作,如果操作不当,那么效果也会大打折扣。
下面就给大家分析一下铁碳填料微电解工艺处理废水效果受影响的因素。
1)进水池的PH值。
入水pH值应选偏酸性,可控制到3-4。
酸性过强虽能促进铁碳填料微电解的作用,但破坏了后续的絮凝体——且铁碳填料的消耗量较大,后续处理负荷重,产生铁泥多——随着微电解的进行,废水中的H+逐渐被消耗而导致pH值升高,导致微电解反应缓慢。
2)水反应停留时间。
不同的废水其污染物不同,所需反应时间差异很大。
因此,针对某种特定的废水,其水在铁碳填料中的停留时间应通过试验确定。
3)曝气量。
曝气量过大也影响废水与铁碳填料的接触时间,使有机物去除率降低。
而在中性条件下曝气一方面供氧,促进阳极反应的进行,另一方面也起到搅拌,震荡的作用,减弱浓差极化,加速电极反应的进行。
4)水质因素。
在进入原水池之前,污水应先做一下预处理,应该去除油类或者粘附性悬浮物。
因为这些物质会在铁碳填料表面形成一层钝化膜,使得废水与铁碳填料不能接触,进而反应不了,也就无法处理微电解废水。
5)是否加入金属催化剂。
向系统内中加入金属催化剂(如金属氧化物CuO,Mn02、A120,等)能改进阴极的电极性能,提高其电化学活性,效果显著。
盐类(如氯化钠,氯化氨)的存在由于提高了废水的电导率也有助于电解反应的进行。
6)高温烧结的铁碳填料。
合适的填料铁碳比例可使填料在废水中形成的微电池数量最大化,从而达到处理效果。
一般铁碳质量比可控制在一定范围内.0.5-30:1之间,针对不同的生产废水,合适的铁碳质量比能达到不同的处理效果。
山东万泓的铁碳填料铁含量大于70%,碳含量大于20%,为什么这么个比例呢?因为铁碳有一个合理的比值才能更好的处理废水,属于高质量的产品。
7)铁碳填料粒径大小。
铁碳填料粒径越大,它的比表面积就越小,在废水中形成的微电池数量也越少,微电解反应的速度就变慢.对废水的处理效果就降低。
铁碳微电解工艺处理各类废水实验及效果
![铁碳微电解工艺处理各类废水实验及效果](https://img.taocdn.com/s3/m/9deeb82eb90d6c85ed3ac61a.png)
铁碳微电解工艺处理各类废水实验及效果铁碳微电解法可以用来处理各种高难度废水,废水的种类有哪些呢?处理的效果是怎么样的呢?下面普茵沃润小编就给大家详细介绍一下。
铁碳微电解工艺如何处理废水?效果如何?普茵沃如铁碳微电解工艺的优势:1.降低废水COD2.破环断链,提高废水可生化性3.去除重金属离子,降低废水的毒性4.脱除废水的色度那么这个四个方面是如何应用在案例中的呢?1)制药废水目前,制药废水处理面临的主要问题是污染物种类多、浓度高且成分复杂,冲击负荷大,部分废水中抗生素的存在抑制生化处理时微生物的生长,可生化性差,色度高等特点。
工程实践表明,铁碳微电解法对各种成分的制药废水COD、色度都具有较好的去除效果,同时B/C有所提高。
2) 焦化废水目前我国对焦化废水主要的处理工艺主要是A/O和A-A/O工艺,但是由于出水中含有高浓度的氨氮、高毒性的CN和以及难以生物降解的有机物等,对微生物均有抑制作用。
因此,有人利用微电解技术对A2/O进水或者出水分别进行预处理和深度处理,最后使出水达到了国家一级排放标准。
利用铁碳微电解和Fenton试剂联合氧化法对焦化废水进行预处理,大大降低了后续生物处理的有机负荷并提高了生物处理的效率。
3)印染废水印染废水中的有机污染物主要来源于染料及染整添加剂,近年来由于印染技术的不断进步和有机合成染料新产品的不断出现,使得印染废水具有pH低,色泽深,毒性大,生物可降解性差等特点。
因此,铁碳微电解用于印染废水的处理体现出了其他工艺不可比拟的优势。
用铁炭微电解法对印染废水进行处理,结果表明pH为3,接触时间20~30 min,色度的去除率都能达到90%以上,COD去除率也能达到60%左右。
对于COD很高或者出水要求较高的印染,单纯的用铁炭微电解工艺处理并不能达到出水要求,常使之与其他的高级氧化处理工艺相结合,作为生物处理的预处理。
4)分散染料废水分散染料是疏水性较强的非离子型染料。
这种废水具有污染物浓度高、色度高、酸碱度高、毒性大的特点,因而处理难度大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁碳微电解处理化工污水工艺
一、铁碳微电解工艺优点
1、提高废水的可生化性,可以达到化学沉淀除磷,可以通过还原除重金属,也可以作
为生物处理的前处理,利于污泥的沉降和生物挂膜。
2、适用范围广,处理效果好,成本低,操作维护方便;
3、不需要消耗电力资源,反应速度快,处理效果稳定,不会造成二次污染
二、铁碳微电解工艺处理化工污水的优势
无机化工污水包括从无机矿物制取酸、碱、盐类基本化工原料的工业,这类生产中主要是冷却用水,排出的废水中含酸、碱、大量的盐类和悬浮物,有时还含硫化物和有毒物质。
有机化工污水则成分多样,包括合成橡胶、合成塑料、人造纤维、合成染料、油漆涂料、制药等过程中排放的废水,具有强烈耗氧的性质,毒性较强,且由于多数是人工合成的有机化合物,因此污染性很强,不易分解。
铁碳微电解工艺优势-微电解技术近年来发展成处理污水行业的的佼佼者,铁碳微电解工艺可以实现去除废水COD,脱除色度,提高废水可生化性。
那么铁碳微电解工艺用来处理化工污水具优势
1、设备体积小,占地少,因此该法被称为清洁处理法
2、铁碳微电解技术很大一部分作用可以提高可生化性,特别是有利于亲铁细菌成活。
3、无二次污染。
铁碳微电解工艺无需添加任何氧化剂,絮凝剂等化学药品,电子转移
只在电极以及污水溶液之间进行,不会产生二次污染。
4、维护方便,一年消耗15%左右到时候一年添加一次就行。
5、工艺灵活。
铁碳微电解工艺既可以单独处理,又可以和其他技术相结合,降低污水
中的污染物。
6、反应条件温和,在常温常压下就可以反应,不需要通电等措施。
7、成本低。
吨水处理成本低,大约在一元钱左右。
三、铁碳微电解工艺的四大主要作用
1、去除重金属离子,降低废水毒性,比如大蒜废水,电镀废水。
2、降低高难度化工废水COD,
3、提高化工废水的可生化性。
4、降低染料、颜料、染料等废水的色度,。