人教版数学必修四

合集下载

高中人教版数学必修4课件:第1章-1.3-第1课时-公式二、公式三和公式四-

高中人教版数学必修4课件:第1章-1.3-第1课时-公式二、公式三和公式四-

α+cos 2
α2-1=m22-1.]
(2)[解] ∵cos(α-75°)=-13<0,且 α 为第四象限角,
∴sin(α-75°)=- 1-cos2α-75°
=-
1--132=-2 3 2,
∴sin(105°+α)=sin[180°+(α-75°)]
=-sin(α-75°)=2
2 3.
1.例 3(2)条件不变,求 cos(255°-α)的值.
sin2α-75°+cos2α-75°=1,
由csoinsαα--7755°°=-5,
解得sinα-75°=-52626, 或
cosα-75°=
26 26
sinα-75°=5 2626,
(舍)
cosα-75°=-
26 26 .
所以sin(105°+α)=sin[180°+(α-75°)]
=-sin(α-75°)=5
(1)1 [cos-siαntπa-nα7π+α=cos αstainnαπ+α=cossαin·tαan α=ssiinn αα= 1.]
(2)[解] 原式=[-sinα+-1c8o0s°α]·c·soisn1α80°+α =sinα+1s8in0°αccoossα180°+α =-ssininααc-oscαos α=1.
[探究问题] 1.利用诱导公式化简 sin(kπ+α)(其中 k∈Z)时,化简结果与 k 是否有关? 提示:有关.因为k是奇数还是偶数不确定. 当k是奇数时,即k=2n+1(n∈Z),sin(kπ+α)=sin(π+α)=-sin α; 当k是偶数时,即k=2n(n∈Z),sin(kπ+α)=sin α.
明确三角函数式化简的原则和方向 1切化弦,统一名. 2用诱导公式,统一角. 3用因式分解将式子变形,化为最简.

人教版高二数学必修四复习课件(48ppt)

人教版高二数学必修四复习课件(48ppt)

ymin
1.
x
2k
时,
ymin
1.
无对称轴
(k , 0)
2
无最值
二、函数 y Asin(x ) ( A 0, 0)的图像和性质.
A:振幅 (运动的物体离开平衡位置的最大距离) T:周期T= 2
(运动的物体往复运动一 次所需要的时间 )
f:频率f 1 = T 2
(运动的物体在单位时间 内往复运动的次数 )
sina
y
++
cos a
y
–+
tan a
y

+
o
x
––
o
x
–+
o +
–x
例:
1、如果角a的终边经过点P0(-3,-4),
求sin a, cos a, tan a
解:r (3)2 (4)2 5
sin a y 4 r5
cos a x 3 r5
tan a y 4 4 x 3 3
如果 e1, e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a,有且只有一对实数1, 2 ,使 a 1e1 2 e2
三、向量的坐标表示
y
1.以原点O为起点的 OA a ,
a
A(x, y)
a j
a xi y j 向量的正交分解O i
x
a (x, y)
A(x1, y1)
tan( ) tan tan
1 tan tan
tan( ) tan tan
1 tan tan
(2)二倍角的正余弦公式
sin2 2sin cos
cos2 cos2 sin 2

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
明目标、知重点
(3)sin
1π2-
3cos
π 12.

方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β

.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β

最新人教版高中数学必修4第三章《二倍角的正弦、余弦、正切公式》

最新人教版高中数学必修4第三章《二倍角的正弦、余弦、正切公式》

3.1.3 二倍角的正弦、余弦、正切公式1.会推导二倍角的正弦、余弦、正切公式.2.灵活应用二倍角的正弦、余弦、正切公式解决有关的求值、化简、证明等问题.对倍角公式的理解:(1)成立的条件:在公式S 2α,C 2α中,角α可以为任意角,T 2α则只有当α≠k π2+π4(k ∈Z )时才成立.(2)倍角公式不仅限于2α是α的二倍形式,其他如4α是2α的二倍、α是α2的二倍、3α是3α2的二倍等等都是适用的. 【做一做1-1】 已知sin α=35,cos α=45,则sin 2α等于( )A.75B.125C.1225D.2425【做一做1-2】 已知cos α=13,则cos 2α等于( )A.13B.23 C .-79 D.79 【做一做1-3】 已知tan α=3,则tan 2α等于( )A .6B .-34C .-38 D.98答案:2sin αcos α 2cos 2α-1 1-2sin 2α 2tan α1-tan 2α【做一做1-1】 D sin 2α=2sin αcos α=2425.【做一做1-2】 C cos 2α=2cos 2α-1=29-1=-79.【做一做1-3】 B tan 2α=2tan α1-tan 2α=2×31-32=-34.倍角公式的变形公式 剖析:(1)公式的逆用:2sin αcos α=sin 2α;sin αcos α=12sin 2α;cos α=sin 2α2sin α;cos 2α-sin 2α=cos 2α; 2tan α1-tan 2α=tan 2α.(2)公式的有关变形: 1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2;1+cos 2α=2cos 2α;1-cos 2α=2sin 2α;cos 2α=1+cos 2α2;sin 2α=1-cos 2α2.(3)升幂和降幂公式升幂公式:1+sin α=⎝⎛⎭⎫sin α2+cos α22; 1-sin α=⎝⎛⎭⎫sin α2-cos α22; 1+cos α=2cos 2α2;1-cos α=2sin 2α2.降幂公式:cos 2α=1+cos 2α2;sin 2α=1-cos 2α2.题型一 利用二倍角公式求值 【例1】 求下列各式的值:(1)cos π5cos 2π5;(2)12-cos 2π8; (3)tan π12-1tan π12.分析:第(1)题可根据2π5是π5的2倍构造二倍角的公式求值;第(2)(3)题需将所求的式子变形,逆用二倍角公式化简求值.反思:解决此类题目时,应善于观察三角函数式的特点,变形后正用或逆用公式来解决.本题中,若要求出cos π5,cos 2π5,cos π8,tan π12的值,则会使问题复杂化.题型二 知值求值【例2】 已知sin α=513,α∈⎝⎛⎭⎫π2,π,求sin 2α,cos 2α,tan 2α的值. 分析:利用同角三角函数的基本关系求出cos α的值,然后利用二倍角公式求出sin 2α,cos 2α,进而求出tan 2α的值.反思:已知α的某个三角函数值,求sin 2α,cos 2α,tan 2α值的步骤:(1)利用同角三角函数基本关系式求出α的其他三角函数值;(2)代入S 2α,C 2α,T 2α计算即可.题型三 二倍角公式在三角形中的应用【例3】 在△ABC 中,cos B =35,tan C =12,求tan(B +2C )的值.分析:求出tan B 和tan 2C 的值,再用和角的正切公式求值.反思:在三角形中讨论三角函数问题时,要注意各内角的范围是(0,π).本题若忽视这一点,则易错得sin B =±45.题型四 易错辨析【例4】 化简2-2+2+2cos α(3π<α<4π). 错解:原式=2-2+4cos 2α2=2-2+2cos α2=2-4cos 2α4=2-2cos α4=4sin 2α8=2sin α8.错因分析:上述错解在运用倍角公式从里到外去掉根号时,没有顾及角的范围而选择正、负号,只是机械地套用公式.反思:利用二倍角公式化简1±cos α时,由于1+cos α=2cos 2α2,1-cos α=2sin 2α2,则1+cos α=2⎪⎪⎪cos α2,1-cos α=2⎪⎪⎪sin α2,要根据α2所在象限确定sin α2,cos α2的符号,从而去掉绝对值符号.答案:【例1】 解:(1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos2π52sinπ5=sin4π54sin π5=sin π54sinπ5=14.(2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.(3)原式=tan 2π12-1tan π12=-2×1-tan 2π122tan π12=-2×1tanπ6=-233=-2 3.【例2】 解:∵sin α=513,α∈⎝⎛⎭⎫π2,π, ∴cos α=-1-sin 2α=-1-⎝⎛⎭⎫5132=-1213. ∴sin 2α=2sin αcos α=2×513×⎝⎛⎭⎫-1213=-120169, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫5132=119169,tan 2α=sin 2αcos 2α=-120169×169119=-120119.【例3】 解:∵0<B <π,∴sin B =1-cos 2B =45.∴tan B =sin B cos B =43.又tan 2C =2tan C1-tan 2C=2×121-14=43, ∴tan(B +2C )=tan B +tan 2C1-tan B tan 2C=43+431-43×43=-247.【例4】 正解:因为3π<α<4π,所以3π2<α2<2π,3π4<α4<π,3π8<α8<π2,则cos α2>0,cos α4<0,cos α8>0. 所以原式=2-2+4cos 2α2=2-2+2cos α2=2-4cos 2α4=2+2cos α4=4cos 2α8=2cos α8.1.12-sin215°的值是( )2.已知α为第二象限角,且sin α=13,则sin 2α=__________. 3.2πtan8π1tan 8-=__________.4.在△ABC 中,cos A =513,则sin 2A =__________. 5.已知cos α=1213-,α∈3ππ,2⎛⎫⎪⎝⎭,求sin 2α,cos 2α,tan 2α的值.答案:1.D原式=12-1cos(215)2-⨯︒=cos302︒=4.2.9-由于α为第二象限角,则cos α=3-,则sin 2α=2sinαcos α=9 -.3.12原式=12×2π2tan8π1tan8-=1πtan228⎛⎫⨯⎪⎝⎭=1πtan24=12.4.120169∵0<A<π,∴sin A1213.∴sin 2A=2sin A cos A=120 169.5.解:∵cos α=1213-,α∈3ππ,2⎛⎫⎪⎝⎭,∴sin α==513-.∴sin 2α=2sin αcos α=2×513⎛⎫- ⎪⎝⎭×1213⎛⎫- ⎪⎝⎭=120169,cos 2α=1-2sin2α=1-2×2513⎛⎫- ⎪⎝⎭=119169,tan 2α=sin2cos2αα=120119.。

最新人教版高中数学必修4第二章疱工巧解牛

最新人教版高中数学必修4第二章疱工巧解牛

疱工巧解牛知识•巧学一、向量1.数学中,我们把既有大小又有方向的量叫做向量,而把那些只有大小,没有方向的量叫做标量.2.具有大小和方向的量称为向量.更具体一些,我们先把向量理解为“一个位移”或“一点相对于另一点位置”的量.这是因为有些向量不仅有大小和方向,而且还有作用点.例如,力就是这样的量.显然,若用同样大小的力作用于一弹簧上,作用点不同,效果是不同的.有些向量是只有大小和方向,而无特定的位置,例如,位移、速度等.通常把后一类向量叫做自由向量.本章,我们所接触的向量,若无特别说明,都认为是自由向量.也就是说,本章所学的向量只有大小和方向两个要素.学法一得数学中的向量是由大小和方向唯一确定的,是与起点无关的向量.也就是说,只要不改变它的大小和方向,是可以任意平行移动的.辨析比较①数量只有大小,是一个代数量,而向量不仅有大小,还有方向(两重性);②数量能比较大小,而向量不能比较大小.例如,a>b没有意义,而|a|>|b|是有意义的;③数量可以进行代数运算,如数的加、减、乘、除运算,而向量只能按向量加法、减法的平行四边形法则和三角形法则或向量数乘的运算律去运算.二、有向线段在物理学中,表示位移的最简单方法是用一条带箭头的线段,箭头的方向表示位移的方向,线段的长度表示位移的大小.速度和力也是用这种方法表示的,箭头的方向分别表示速度和力的方向,线段的长度分别表示速度和力的大小.1.定义:一般地,在线段AB的两个端点中,规定一个顺序,假设A为起点,B为终点,我们说线段AB具有方向,具有方向的线段叫做有向线段.显然,它的方向由A指向B.2.表示方法:以A为起点,以B为终点的有向线段记作AB.应注意始点一定要写在终点的前面.如图2-1-3.图2-1-33.有向线段的三要素:已知,线段的长度也叫做有向线段AB的长度,记作||.有向线段包含三个要素:起点、方向、长度.显然有向线段的终点由它的起点、方向和长度唯一确定.辨析比较由向量与有向线段的组成要素可知,向量和有向线段是有区别的.但是当我们约定有向线段的起点也是任意的时候,它们就是相同的了.我们就可以说“向量就是有向线段,有向线段就是向量”.三、向量的表示法1.用有向线段表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量的长度(或称模),记作||.如图2-1-4所示.规定了合适的比例尺后,平面上的向量就可以用有向线段来表示了.2.用字母表示向量.向量印刷时可用黑体小写字母如a 、b 、c 来表示,书写用、、c 来表示,还可用表示向量的有向线段起点和终点的字母表示.四、两个特殊的向量1.零向量:长度(模)为0的向量,记作0.零向量的方向是不确定的.误区警示 注意0与0的区别:0是一个向量,具有方向,而0是数量,没有方向.2.单位向量:长度(模)为1个单位的向量叫做单位向量.显然,单位向量有无数个;单位向量的大小相等;单位向量不一定相等.五、平行向量1.定义:方向相同或相反的非零向量叫做平行向量.如图2-1-5,a ,b ,c 是平行向量.图2-1-5通常记作a ∥b ∥c .2.规定零向量与任一向量平行,即对于任意向量a ,都有0∥a .六、相等向量长度相等且方向相同的向量叫做相等向量.如图2-1-6,用有向线段表示的向量a 与b 相等,记作a =b .图2-1-6对于相等向量的理解要注意以下几个问题:(1)零向量与零向量相等,即0=0.(2)任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.(3)由相等向量的定义可知,对一个向量,只要不改变它的大小和方向,可任意平移(自由向量的起点可任意选定).如图2-1-7,容易看出:332211B A B A B A ==.由以上分析,一个平面向量的直观形象是平面上“同向且等长的有向线段的集合”.学法一得判断两个向量相等的唯一依据就是它的定义,即只需比较两个向量的模(有向线段的长度)是否相等、方向是否相同,与它们所在的直线是否共线无关.七、共线向量由于任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量.如图2-1-8,a、b、c是一组平行向量,任作一条与a所在直线平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.图2-1-8学法一得任一向量都与它自身是平行向量,因为零向量的方向不确定,所以规定零向量与任一向量都是平行向量.由于平行向量的基线互相平行或重合,所以其方向相同或相反,向量平行与直线平行不同,向量平行包括基线重合的情况,而直线平行一般不包含重合的情形. 典题•热题知识点一向量例1 指出下列概念是不是向量:(1)作用于物体上的大小为10 N,方向是南偏西30°的力;(2)温度表中表示零上、零下的温度;(3)物体M沿东北方向移动了8 m的位移.思路分析:根据向量定义可以判别.解:(1)是向量.因为力是既有大小又有方向的量;(2)不是.因为温度表可以用带正负号的实数来表示;(3)是向量.因为位移是既有大小又有方向的量.知识点二向量的表示法例2 如图2-1-9,在平行四边形ABCD中,用有向线段表示图中向量,正确的是( )图2-1-9A.AD,,BC,DCB.DA,BA,BC,DCC.,,,D.,,,思路分析:向量可用有向线段来表示,箭头的指向是从向量的起点指向终点的方向.答案:C知识点三两个特殊的向量例 3 把平面上一切单位向量的起点归结到同一点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段弧C.一个圆D.圆上一群孤立的点思路分析:因为单位向量的模是1,所以它的终点到公共点的距离都是1,符合圆的定义,故选C.答案:C知识点四平行向量例4 命题“若a∥b,b∥c,则a∥c”( )A.总成立B.当a≠0时成立C.当b≠0时成立D.当c≠0时成立思路分析:这里要作出正确选择,就要探求题中命题成立的条件.∵零向量与其他任何非零向量都平行,∴当两非零向量a、c不平行而b=0时,有a∥b,b∥c,但这时命题不成立,故不能选择A,也不能选择B与D,只能选择C.答案:C方法归纳本例说明向量平行的传递性要成立,就需“过渡”b向量不为零向量.事实上,在b≠0的情况下:①a≠0,c≠0时,∵a∥b,∴a与b同向或反向.又∵b∥c,∴b与c同向或反向.∴a与c同向或反向.∴a∥c.②若a与c中有一个为零向量,则另一个无论为零向量还是不为零向量,均有a∥c.由以上①②可以确定C是正确的.例5 如图2-1-10,D、E、F分别是△ABC的三边AB、BC、AC的中点,写出与平行的向量.图2-1-10思路分析:线段DF是△ABC的中位线,凡是与平行的有向线段都是与平行的向量.结合三角形中位线的性质可以得出结论.解:与平行的向量有、EC.知识点五相等向量例6 (1)如图2-1-11,D、E、F依次是等边△ABC的边AB、BC、AC的中点,在以A、B、C、D、E、F为起点或终点的向量中,找出与向量相等的向量.图2-1-11 图2-1-12(2)如图2-1-12,设点O为正八边形ABCDEFGH的中心,分别写出与、、、相等的向量.思路分析:寻找相等向量,应写出给定向量的相等向量,应结合图形的几何性质,如三角形中位线平行于底边且等于底边的一半等.先确定方向,再确定长度.解:(1)与相等的向量有,;(2)与OA相等的向量是EO与OB相等的向量是DO;与OC相等的向量是GO;与OD相等的向量是HO.方法归纳在研究相等向量时,要充分利用平面图形的几何性质,如平行四边形的对边平行且相等,对角线互相平分;三角形的中位线平行且等于底边的一半;梯形的中位线平行于两底且它的长等于两底长的和的一半等.知识点六共线向量与相等向量例7 判断下列命题的真假.(1)直角坐标系中坐标轴的非负半轴是向量;(2)若两个向量相等,则两个向量平行;(3)向量与是共线向量,则A、B、C、D必在同一条直线上;(4)向量的模是一个正实数;(5)若|a|=|b|,则a=b.思路分析:判断上述命题的真假性,需细心辨别才能识其真面目.解:(1)直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.(2)由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确.(3)不正确.由与共线,可以推知与平行或共线,故不一定能断定A、B、C、D在同一条直线上.∴此命题不正确.(4)不正确.因为零向量的模是零.(5)不正确.当a与b的方向不同时,a与b一定不相等.例8 试讨论以下几个问题:(1)平面向量是否一定方向相同?(2)共线向量是否一定相等?(3)起点不同,但方向相同且模相等的几个向量是不是相等的向量?(4)不相等的向量,一定不平行.(5)相等的非零向量,若起点不同,终点一定不相同.(6)非零向量的单位向量唯一.解:(1)否,还可以方向相反.(2)否,共线向量的方向相同或相反,大小不一定相等.(3)是,因为向量与起点的位置无关.(4)否,例如模不等的共线向量.(5)对,可以用反证法证明.(6)不对,因为任一非零向量a 的单位向量为±||a a . 问题•探究交流讨论探究问题 在初学本节时,由于受到实数学习中的负面影响,或相关概念理解不深,易发生一些错误的判断,请问你们能不能归纳出一些常见的错误判断?探究过程:学生甲:由于向量可以用有向线段来表示,有向线段的长度表示向量的大小,方向表示向量的方向,所以容易出现“向量就是有向线段”的错误判断.学生乙:在实数中,若|a|=|b|,则有a=b 或a=-b ,受它的影响易出现“若|a |=|b |,则有a =b 或a =-b ”的错误论断.学生丙:还有一条,由于实数中零书写的影响,容易出现“若|a |=0,则a =0”的错误判断. 学生丁:由于零向量与任意向量平行,当b =0时,不共线的两个非零向量a 、c 都与b 平行,即a ∥b ,b ∥c ,但受平面几何知识的影响,就易出现“若a ∥b ,b ∥c ,则a ∥c ”的错误判断. 探究结论:在本节中易出的错误判断有:“向量就是有向线段”“若|a |=|b |,则有a =b 或a =-b ”“若|a |=0,则a =0”“向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上”“向量AB 与向量CD 平行,线段AB 与线段CD 平行”等错误判断.误区陷阱探究问题 “向量就是有向线段”这个观点是否正确?探究过程:在画图时,向量常用有向线段来表示,有向线段的长度表示向量的大小(模),有向线段的方向表示向量的方向,因此,有向线段是向量的一种表示方法.此外有向线段是一个图形,它包括了起点、方向和长度三个要素,而向量是一个量,它只包含了方向和大小两个要素.也就是说,对于一个向量,只要不改变它的大小和方向,是可以任意平移的.因此,用有向线段表示向量时可以任意选取起点.再有起点不同,长度相等和方向相同的两个有向线段是不同的有向线段,但它们可以表示同一个向量.因此不能说向量就是有向线段.探究结论:“向量就是有向线段”这个观点是错误的.不能说向量就是有向线段,和向量相比,有向线段多了起点这个要素.材料信息探究问题 向量又称矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量,大约公元前350年,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.那么向量又是如何进入数学的?探究过程:“向量”一词来自力学、解析几何中的有向线段.向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以将线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.探究结论:向量能够进入数学并得到发展,是从复数的几何表示开始的.18世纪末,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.。

人教版高中数学必修四常见公式及知识点总结(完整版)

人教版高中数学必修四常见公式及知识点总结(完整版)

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

人教版高中数学必修4全册

人教版高中数学必修4全册

(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
2
2
则α角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)

人教版高中数学必修四 (空间中点、线、面的位置关系)

人教版高中数学必修四 (空间中点、线、面的位置关系)

教案漂市一中钱少锋点A不在直线l上l A∉2.两条直线位置关系符号表示图形表示直线a与l 相交Ala=直线a与l 平行l a//直线a与l 异面异面与la异面直线的定义:空间中的两条直线既不平行也相交,则称这两条直线异面.两条直线异面,则它们不同在任何一个平面内. 用平面衬托的方法表示异面直线.3.点与平面空间中的平面也可看成这个平面上的所有点组成的集合.位置关系符号表示图形表示点A 在平面α内 α∈A点A 不是平面α内的点 α∉A4. 直线与平面(1)直线在平面α内(或平面α过直线l ):直线l 上的所有点都在平面α内,记作α⊂l .(2)直线l 在平面α外:直线l 上至少有一个点不在平面α内,记作α⊄l .①直线l 与平面α相交:直线l 与平面α有且只有一个公共点A ,记作A l =α .②直线l 与平面α平行:直线l 与平面α没有公共点,记作α//l .5. 平面与平面 位置关系 符号表示 图形表示平面βα与相交l =βα平面βα与平行βα//三、直线与平面垂直1. 直线与平面垂直的定义:如果直线l与平面α相交于点A,且对平面α内任意一条过点A的直线m,都有ml⊥,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作α⊥l.其中点A称为垂足.2.点与面的距离:给定空间中的一个平面α及一个点A,过点A作只可以作平面α的一条垂线,如果记垂足为B,则称B为A在平面α内的射影(也称投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.3.直线与平面的距离:当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;4.两个平行平面的距离:当平面与平面平行时,一个平面上的任意一点到另一个平面的距离称为这两平行平面之间的距离.以可以取其中任一点来作点面距来求线面距离.两个平面平行时,其中一个平面的每一点到另一个平面距离都相等,所以可以转化为点面距来处理.例题例1 判断下列命题是否正确.(1)若直线l上有无数个点不在平面α内,则α//l.( )(2)若直线l与平面α平行,则l与平面α内的任意一条直线都平行. ( )(3)若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点. ( )【答案】(1)错;(2)错;(3)对.例2 在正方体1111DCBAABCD-中,(1)与直线1AA异面的棱有条;(2)与直线BA1相交的棱有条;(3)直线BA1与直线CB1的位置关系是;(4)直线BA1与直线CD1的位置关系对线面平行关系的定义的认识,线与面没有公共点即线与平面中的所有线都没有公共点,且直线上的所有点都不在平面内,这与直线上无数个点都不在平面上不同.两条直线的平行依赖于在同一平面内没有公共点,所以仅由直线与平面平行不可得到.是 .【答案】(1)排除相交和平行的情况,4条;(2)从一个顶点出发的棱有3条,所以共有6条; (3)异面,通过找到衬托平面来判断; (4)平行.例3 已知1111D C B A ABCD -是长方体,且2,3,41===AA AD AB .(1)求点A 到平面11B BCC 的距离;(2)求直线AB 到平面1111D C B A 的距离;(3)求平面11A ADD 与平面11B BCC 之间的距离. 【答案】(1)4;(2)2;(3)4.在正方体内,判断两条直线的位置关系,通过对图形的观察,熟练掌握位置关系描述和判断的方法.通过找线面垂直,完成距离的求解.【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。

最新人教版高中数学必修4第三章《三角函数的积化和差与和差化积》示范教案

最新人教版高中数学必修4第三章《三角函数的积化和差与和差化积》示范教案

示范教案整体设计教学分析本节主要包括利用已有的公式进行推导发现.本节的编写意图与特色是教师引导学生发现创造,从而加深理解变换思想,提高学生的推理能力.三角恒等变换所涉及的问题各种各样,内容十分丰富,我们希望能总结出一些有规律性的数学思想、方法和技巧,提高对三角变换的理性认识.科学发现是从问题开始的,没有问题就不可能有深入细致的观察.为了让学生经历一个完整的探索发现过程,教科书从三角函数运算的角度提出了研究课题.这是从数学知识体系的内部发展需要提出问题的方法.用这种方法提出问题可以更好地揭示知识间的内在联系,体会推理论证和逻辑思维在数学发现活动中的作用.从运算的角度提出问题,还可以帮助学生认识到三角变换也是一种运算,丰富对运算的认识,从而把对三角变换的研究纳入整体的数学体系之中.类比对数运算,由两角和与差的正弦公式易推出积化和差公式.在推导了公式sinα+sinβ=2sin α+β2cosα-β2以后,可以让学生推导其余的和差化积及积化和差公式.和差化积、积化和差不要求记忆,都在试卷上告诉我们,要注意不应该加大三角变换的难度,不要在三角变换中“深挖洞”.高考在该部分内容上的难度是一降再降.三维目标1.通过类比推导出积化和差与和差化积公式.体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.通过和差化积公式和积化和差公式的推导,让学生经历数学探索和发现过程,激发学生学好数学的欲望和信心.重点难点教学重点:推导积化和差、和差化积公式.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排1课时教学过程导入新课思路1.(复习导入)在前面的几节课中我们学习了两角和与差的三角函数的计算公式,并运用这些公式解决了一些三角函数的化简、求值以及三角恒等式的证明问题,在我们运用三角函数知识解决一些问题的时候,我们也会遇到形如sinα+sinβ,sinα-sinβ,cosα+cosβ,cosα-cosβ的形式,那么,我们能否运用角α、β的有关三角函数值表示它们呢?这就是我们本节课所要研究的问题.思路2.(类比导入)我们知道log a m+log a n=log a(mn),那么sinα+sinβ等于什么呢?推进新课新知探究提出问题(1)你能从两角和与差的正、余弦公式中发现些什么?(2)积化和差与和差化积公式的特点是什么?活动:考察公式cos(α+β)=cosαcosβ-sinαsinβ; cos(α-β)=cosαcosβ+sinαsinβ; sin(α+β)=sinαcosβ+cosαsinβ; sin(α-β)=sinαcosβ-cosαsinβ.从公式结构上看,把cosαcosβ,sinαsinβ,sinαcosβ,cosαsinβ分别看成未知数解方程组,则容易得到如下结论:cosαcosβ=12[cos(α+β)+cos(α-β)];sinαsinβ=-12[cos(α+β)-cos(α-β)];sinαcosβ=12[sin(α+β)+sin(α-β)];cosαsinβ=12[sin(α+β)-sin(α-β)].从上面这四个公式,又可以得出sin(α+β)+sin(α-β)=2sinαcosβ; sin(α+β)-sin(α-β)=2cosαsinβ; cos(α+β)+cos(α-β)=2cosαcosβ; cos(α+β)-cos(α-β)=-2sinαsinβ. 设α+β=x ,α-β=y ,则α=x +y 2,β=x -y2.这样,上面得出的四个式子可以写成sinx +siny =2sinx +y 2cos x -y2; sinx -siny =2cos x +y 2sin x -y2;cosx +cosy =2cos x +y 2cos x -y2;cosx -cosy =-2sin x +y 2sin x -y2.利用这四个公式和其他三角函数关系式,我们可把某些三角函数的和或差化成积的形式.教师还可引导学生用向量运算证明和差化积公式. 如图1所示.作单位圆,并任作两个向量图1OP →=(cosα,sinα),OQ →=(cosβ,sinβ).取的中点M ,则M(cos α+β2,sin α+β2).连接PQ ,OM ,设它们相交于点N ,则点N 为线段PQ 的中点且ON ⊥PQ. ∠xOM 和∠MOQ 分别为α+β2,α-β2.探索三个向量OP →,ON →,OQ →之间的关系,并用两种形式表达点N 的坐标,以此导出和差化积公式cosα+cosβ=2cos α+β2cos α-β2;sinα+sinβ=2sin α+β2cos α-β2.讨论结果:略应用示例例 1已知sinx -cosx =12,求sin 3x -cos 3x 的值.活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a -b)3=a 3-3a 2b +3ab 2-b 3=a 3-b 3-3ab(a -b),∴a 3-b 3=(a -b)3+3ab(a -b).解完此题后,教师引导学生深挖本例的思想方法,由于sinxcosx 与sinx±cosx 之间的转化,提升学生的运算、化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x -cos 3x =(sinx -cosx)3+3sinxcosx(sinx -cosx)=1116.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx -cosx =12,得(sinx -cosx)2=14,即1-2sinxcosx =14,∴sinxcosx =38.∴sin 3x -cos 3x =(sinx -cosx)(sin 2x +sinxcosx +cos 2x)=12(1+38)=1116.例 2已知cos 4A cos 2B +sin 4A sin 2B =1,求证:cos 4B cos 2A +sin 4Bsin 2A=1.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A 、B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A 、B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证法一:∵cos 4A cos 2B +sin 4Asin 2B =1,∴cos 4A·sin 2B +sin 4A·cos 2B =sin 2B·cos 2B.∴cos 4A(1-cos 2B)+sin 4A·cos 2B =(1-cos 2B)cos 2B ,即cos 4A -cos 2B(cos 4A -sin 4A)=cos 2B -cos 4B.∴cos 4A -2cos 2Acos 2B +cos 4B =0. ∴(cos 2A -cos 2B)2=0.∴cos 2A =cos 2B.∴sin 2A =sin 2B. ∴cos 4B cos 2A +sin 4Bsin 2A=cos 2B +sin 2B =1.证法二:令cos 2A cosB =cosα,sin 2AsinB =sinα,则cos 2A =cosBcosα,sin 2A =sinBsinα.两式相加得1=c osBcosα+sinBsinα,即cos(B -α)=1.∴B -α=2kπ(k ∈Z ),即B =2kπ+α(k ∈Z ).∴cosα=cosB ,sinα=sinB. ∴cos 2A =cosBcosα=cos 2B ,sin 2A =sinBsinα=sin 2B. ∴cos 4B cos 2A +sin 4B sin 2A =cos 4B cos 2B +sin 4Bsin 2B =cos 2B +sin 2B =1.例3 证明1+sinx cosx =tan(π4+x 2).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x ,三角函数的种类为正弦,余弦,右边是半角x2,三角函数的种类为正切.证法一:从右边入手,切化弦,得tan(π4+x2)=sin (π4+x 2)cos (π4+x 2)=sin π4cos x 2+cos π4sin x 2cos π4cos x 2-sin π4sin x 2=cos x 2+sin x 2cos x 2-sinx2,由左右两边的角之间的关系,想到分子分母同乘以cos x 2+sin x2,得(cos x 2+sin x2)2(cos x 2+sin x 2)(cos x 2-sin x 2)=1+sinxcosx .证法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得1+sinxcosx =(cos x 2+sin x 2)2(cos x 2+sin x 2)(cos x 2-sin x 2)=cos x 2+sinx 2cos x 2-sinx2. 由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos x2,得1+tan x 21-tan x 2=tan π4+tanx 21-tan π4tanx 2=tan(π4+x 2).课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛:本节学习的数学方法:公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.作业课本本节习题3—3A 组1~4,B 组1~4.设计感想 1.本节主要学习了怎样推导积化和差,和差化积公式,在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用.备课资料 一、一道给值求角类问题错解点击. 解决给值求角这类问题时,要注意根据问题给出的三角函数值及角的范围,选择适当的三角函数,确定所求角的恰当范围,利用函数值在此范围内的单调性求出所求角.解答此类问题一定要重视角的范围对三角函数值的制约关系,常见的错误为不根据已知条件确定角的范围而盲目求值,造成增解.例题:若sinα=55,sinβ=1010,α、β均为锐角,求α+β的值. 错解:∵α为锐角, ∴cosα=1-sin 2α=255.又β为锐角, ∴cosβ=1-sin 2β=31010. ∴sin(α+β)=sinαcosβ+cosαsinβ=22. ∵α,β均为锐角, ∴0°<α+β<180°. ∴α+β=45°或135°.点评:上述解法欠严密,仅由sin(α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的.但题设中sinα=55<12,sinβ=1010<12,使得0°<α+β<60°,故上述结论是错误的.事实上,由0°<α+β<180°,应选择求cos(α+β)=22(∵余弦函数在此范围内是单调的),易求得cos(α+β)=22,则α+β=45°,因此,解决给值求角这类问题一般分三步:第一步是确定角所在的范围;第二步是求角的某一个三角函数值(要尽量使所选择的三角函数在所确定的范围内单调);第三步是得到结论,求得所求角的值.二、如何进行三角恒等变式的证明. 三角恒等式证明的基本方法:(1)可从一边开始,证得它等于另一边,一般是由繁到简. (2)可用左右归一法,即证明左右两边都等于同一个式子. (3)可采用切割化弦,将其转化为所熟知的正、余弦. (4)可用分析法,即假定结论成立,经推理论证,找到一个显然成立的式子(或已知条件). (5)可用拼凑法,即针对题设与结论间的差异,有针对性地变形,以消除其差异,简言之,即化异求同.(6)可采用比较法,即“左边右边=1”或“左边-右边=0”.证明三角恒等式的实质是消除等式两边的差异,就是有目的地进行化简,因此,在证明时要注意将上述方法综合起来考虑,要灵活运用公式,消除差异,其思维模式可归纳为三点:(1)发现差异:观察角、函数、运算结构的差异;(2)寻求联系:运用相关公式,找出转化差异的联系; (3)合理转化:选择恰当的公式,实现差异的转化.二、备用习题1.已知tanx =-3,则sin2x =________,cos2x =________.2.已知tanα=2,则cos2α等于( ) A .-13 B .±13C .-35D .±353.下列各式化成和差的形式分别是: (1)sin(π3+2x)cos(π3-2x);(2)cos α+β2sin α-β2.4.设α、β≠k π+π2(k ∈Z ),且cos2α+sin 2β=0.求证:tan 2α=2tan 2β+1.5.已知△ABC 的三个内角A 、B 、C 满足A +C =2B ,且1cosA +1cosC =-2cosB ,试求cos A -C2的值.6.不查表求值: tan6°tan42°tan66°tan78°. 参考答案: 1.-35 -45 2.C3.(1)34+12sin4x ;(2)12(sin α-sin β). 4.证明:∵cos2α+sin 2β=0, ∴1-tan 2α1+tan 2α+sin 2βsin 2β+cos 2β=0, 即1-tan 2α1+tan 2α+tan 2β1+tan 2β=0. 化简得tan 2α=2tan 2β+1.5.由题设条件,知B =60°,A +C =120°,设A -C2=α,则A =60°+α,C =60°-α.代入1cosA +1cosC =-2cosB,可得1cos (60°+α)+1cos (60°-α)=-22,即2cosα-3sinα+2cosα+3sinα=-2,可化为4cos 2α+2cosα-3=0, 解得cosα=22或-324(舍去). ∴cos A -C 2=22.6.原式=tan54°tan6°tan66°tan42°tan78°tan54°=tan(60°-6°)tan6°tan(60°+6°)tan42°tan78°tan54°=tan18°tan42°tan78°tan54°=tan(60°-18°)tan18°tan(60°+18°)tan54°=tan54°tan54°=1.。

最新人教版高中数学必修4第一章函数的周期性

最新人教版高中数学必修4第一章函数的周期性

f(x)的周期,则T的整数倍也是f(x)的周期.
4.函数 y = Asin(ωx + φ) 和 y = Acos(ωx + φ)
( A ? 0,ω 0) 的最小正周期都是
2π ω
,这是正、
余弦函数的周期公式,解题时可以直接应用.
2
2. 世界上有许多事物都呈现“周而复始” 的变化规律,如年有四季更替,月有阴 晴圆缺 . 这种现象在数学上称为周期性, 在函数领域里,周期性是函数的一个重
要性质.
思考1:由正弦函数的图象可知 , 正弦曲线每相隔 2π个单位重复出现, 这一规律的理论依据是什么?
.
sin( x 2k ) sin x (k Z )
思考2:设f(x)=sinx,则
sin( x 2k ) sin x
可以怎样表示?其数学意义如何?
思考 3 :为了突出函数的这个特性,我们把函数 f(x)=sinx称为周期函数,2kπ为这个函数的周期. 一般地,如何定义周期函数? 对于函数f(x),如果存在一个非零常数T,
使得当x取定义域内的每一个值时,都有
1.正弦函数和余弦函数的图象分别是什么?二者
有何相互联系?
1 -6π -4π - 5π
2
y π
y=sinx
3π 2π 4π 5π 6π x
-2π - 3π
2 2
-π O
-1
2
2
y 1 O -1
2
y =cosx
2 2
2
2
x
2
x π (3)y = 2sin( - ) x∈R ; 2 6 (4)y=|sinx| x∈ R.
例2 已知定义在R上的函数f(x)满足

人教版高中数学必修四课程纲要

人教版高中数学必修四课程纲要

高中数学必修四课程纲要学科组:高一数学教研组授课教师:孟星辉授课对象:高一(9)、(18)班课程类型:必修一、课程目标1.任意角、弧度:(1)了解任意角的概念和弧度制的概念(2)能进行弧度和角度的互化2.三角函数:(1)理解任意角的三角函数定义(2)会利用三角函数线推导诱导公式(3)会画三角函数的图像,并能进行图像的变换,准确理解正弦、余弦函数的性质,会应用(4)理解同角三角函数的基本关系式,并熟练应用(5)会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型3.三角恒等变换:(1)会用向量的数量积推导两角差的余弦公式,以次来推导三角函数的和、差公式,并熟练运用(2)能利用和、差公式推导倍角公式,了解内在联系,并能灵活应用(3)能利用上述公式进行简单的恒等变换4.平面向量:(1)了解平面向量的实际背景,理解向量的概念、相等向量、相反向量的含义,理解向量的几何表示(2)掌握向量的线性运算,即加、减、数乘运算及几何意义,理解共线向量的含义(3)了解平面向量的基本定理,会进行向量的正交分解,会用坐标表示加、减、数乘运算,理解向量共线条件(4)理解平面向量数量积的含义,掌握数量积的坐标运算。

会用数量积判断平面向量的垂直关系(5)会用向量的方法解决某些简单的几何问题,力学问题及其他一些实际问题二、内容安排(一)内容、要求课时分配(二)考情分析1、三角函数是中学教学中重要的初中函数之一,它和代数、几何有着密切的联系,是研究其他知识的有力工具,是高考考查基础知识和基本技能的重要内容之一,考查多以选择题、填空题的形式出现,解答题主要是三角与其它知识的综合渗透,如与数列、不等式等,考查三角函数性质及图像变换,侧重于:(1)三角函数的性质、图像及其变换,主要是(2)已知三角函数值求角(3)与周期有关的问题(4)三角函数的对称问题(5)灵活运用公式,通过简单的三角恒等变换解决三角函数的化简求值、证明,借助三角变换解三角形问题2.平面向量每年都考,而且有逐步加强的趋势,题型多以选择题的形式呈现,而且多和解析几何的知识联系在一起,特别是向量的数量积的概念。

2019人教版高中数学必修4全套教案(80页)

2019人教版高中数学必修4全套教案(80页)

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。

人教版高中数学必修四教案

人教版高中数学必修四教案

人教版高中数学必修四教案
科目:数学
年级:高中必修四
课时:第一课时
教学内容:函数的基本概念和性质
教学目标:
1. 了解函数的基本概念和表示方法;
2. 掌握函数的性质和分类;
3. 能够应用函数解决实际问题。

教学重点:函数的定义和性质。

教学难点:函数的分类和应用。

教学过程:
一、引入(5分钟)
教师通过引入例子,让学生了解函数在日常生活中的应用,并引出函数的概念。

二、讲解(15分钟)
1. 函数的定义:函数是一种映射关系,每个自变量对应唯一的因变量。

2. 函数的表示方法:函数通常用f(x)表示,其中x为自变量,f(x)为因变量。

3. 函数的性质:单调性、奇偶性、周期性等。

三、练习(20分钟)
1. 通过例题让学生练习判断函数的性质;
2. 让学生解决实际问题,使用函数进行建模和求解。

四、总结(5分钟)
教师对本节课的内容进行总结,强调函数的重要性和应用。

五、作业布置(5分钟)
布置相关习题作业,以巩固学生对函数的理解和掌握。

教学反思:
本节课采用了引入、讲解、练习、总结和作业布置等教学方法,使学生在理解函数的基本概念和性质的同时,能够应用函数解决实际问题。

希望通过本节课的教学,学生能够更深入地理解和掌握函数的相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4数学基础知识
§1.1.1、任意角
1、 正角、负角、零角、象限角的概念.
2、 与角α终边相同的角的集合:
{}Z k k ∈+=,2παββ.
§1.1.2、弧度制
1、 把长度等于半径长的弧所对的圆
心角叫做1弧度的角. 2、
r l =
α.
3、弧长公式:R
R n l απ==
180
.
4、扇形面积公式:
lR
R n S 2
1360
2
=
=
π.
§1.2.1、任意角的三角函数 1、 设α
是一个任意角,它的终边与单
位圆交于点()y x P ,,那么: .
x
y x y =
==αααtan ,cos ,sin
2、 设点()
00,y x A 为角α
终边上任意一点,
那么:(设2
20y x r +=

r
y 0s i n =
α,
r
x 0cos =
α,
0tan x y =
α.
3、 αsin ,αcos ,αtan 在四个象
限的符号和三角函数线的画法. 4、 诱导公式一:
()()().
tan 2tan ,
cos 2cos ,
sin 2sin απααπααπ
α=+=+=+k k k (其中:Z
k ∈)
5、 特殊角0°,30°,45°,60°,
90°,180°,270°的三角函数值.
§1.2.2、同角三角函数的基本关系式 1、
平方关系:1cos
sin
2
2
=+αα.
2、 商数关系:
α
ααcos sin tan =
.
§1.3、三角函数的诱导公式 1、 诱导公式二:
()()().
tan tan ,
cos cos ,
sin sin ααπααπαα
π=+-=+-=+
2、诱导公式三:
()()().tan tan ,cos cos ,
sin sin αααααα
-=-=--=- 3、诱导公式四:
()()().tan tan ,cos cos ,
sin sin ααπααπαα
π-=--=-=-
4、诱导公式五:
.sin 2cos ,
cos 2sin ααπααπ=⎪⎭

⎝⎛-=⎪⎭⎫
⎝⎛-
5、诱导公式六:
.sin 2cos ,
cos 2sin ααπααπ-=⎪⎭

⎝⎛+=⎪⎭

⎝⎛+
§1.4.1、正弦、余弦函数的图象 1、记住正弦、余弦函数图象: 2、 能够对照图
象讲出正弦、余弦函数的相关性质:定义
域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.
3、 会用五点法作图.
§1.4.2、正弦、余弦函数的性质
1、周期函数定义:对于函数()x
f,如果存在一个非零常数T,使得
当x取定义域内的每一个值时,都
有()()x f
T
x
f=
+,那么函数
()x
f就
叫做周期函数,非零常数T叫做
这个函数的周期.
§1.4.3、正切函数的图象与性质1、记住正切函数的
图象:
2、能够对照图象讲出正切函数的相
关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()ϕω+=x A y sin 的图象
1、 能够讲出函数x y sin =的图象
和函数()b x A y ++=ϕωs i n 的图象之间的平移伸缩变换关系. 2、 对于函数:
()()0,0sin >>++=ωϕωA b x A y 有:
振幅A ,周期ω
π
2=
T ,初相
ϕ,相

ϕ
ω+x ,


π
ω
21
=
=
T
f .
§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.
§2.1.1、向量的物理背景与概念
1、了解四种常见向量:力、位移、
速度、加速度.
2、既有大小又有方向的量叫做向
量.
§2.1.2、向量的几何表示
1、带有方向的线段叫做有向线段,
有向线段包含三个要素:起点、
方向、长度.
2、向量AB的大小,也就是向量AB的
长度(或称模),记作;长度
为零的向量叫做零向量;长度等
于1个单位的向量叫做单位向
量.
3、方向相同或相反的非零向量叫做
平行向量(或共线向量).规定:
零向量与任意向量平行.
§2.1.3、相等向量与共线向量
1、长度相等且方向相同的向量叫做
相等向量.
§2.2.1、向量加法运算及其几何意义
1、三角形法则和平行四边形法则.
2、+≤+.
§2.2.2、向量减法运算及其几何意义
1、与a长度相等方向相反的向量叫做
a
的相反向量.
§2.2.3、向量数乘运算及其几何意

1、 规定:实数λ
与向量a
的积是一个
向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:

λλ=,
⑵当0>λ时, a λ的方向与
a
的方向相同;当0<λ时,
a λ的方向与a
的方向相反.
2、 平面向量共线定理:向量()
0≠a a
与b 共线,当且仅当有唯一一个实数λ,使a b λ=. §2.3.1、平面向量基本定理 1、 平面向量基本定理:如果21,e e 是
同一平面内的两个不共线向量,那么对于这一平面内任一向量
a ,有且只有一对实数21,λλ,
使
2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐
标表示
1、 ()y x j y i x a ,=+=. §2.3.3、平面向量的坐标运算
1、 设()()2211,,,y x b y x a ==,则:
⑴()2121,y y x x b a ++=+,
⑵()2121,y y x x b a
--=-,
⑶()11,y x a λλλ=,
⑷1221//y x y x b
a =⇔.
2、 设,()()2211,,,y x B y x A 则: ()1212,y y x x AB
--=.
§2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则
⑴线段AB 中点坐标为
()2
2
2
12
1,
y y x x ++,
⑵△ABC
的重心坐标为
(
)3
3
3
213
21,
y y y x x x ++++.
§2.4.1、平面向量数量积的物理背景及
其含义
1、
θ
cos b a b a =⋅.
2、 a
在b
方向上的投影为:
θ
cos a .
3、
2
2
a =. 4、
a =.
5、 0=⋅⇔⊥b a b a .
§2.4.2、平面向量数量积的坐标表示、模、夹角
1、 设()()2211,,,y x b y x a ==,则:
⑴2121y y x x b a +=⋅

2
1
21y x a +=
⑶02121=+⇔⊥y y x x b a 2、 设()()2211,,,y x B y x A ,则:
()()
2
12212y y x x -+-=
.
§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例
§3.1.1、两角差的余弦公式 1

()β
αβαβαsin sin cos cos cos +=-
2、记住15°的三角函数值:
§3.1.2、两角和与差的正弦、余弦、正切公式
1()βαβαβαsin sin cos cos cos -=+ 2、()β
αβαβαsin cos cos sin sin -=-
3、()β
αβαβαsin cos cos sin sin +=+ 4、()βαβαβαtan tan 1tan tan tan -+=+. 5、
()β
αβαβαtan tan 1tan tan tan +-=
-.
§3.1.3、二倍角的正弦、余弦、正切公式 1、α
ααcos sin 22sin
=,
变形:ααα2sin cos sin 2
1=.
2、ααα2
2
sin
cos
2cos -=
1cos
22
-=α
α
2
sin
21-=, 变形1:
2
2cos 12
cos α
α+=
, 变形2:
2
2cos 12
sin α
α-=
.
3、.
ααα2
tan
1tan 22tan -=
§3.2、简单的三角恒等变换 1、注意正切化弦、平方降次.。

相关文档
最新文档