最新相似三角形经典题(含答案)
相似三角形试题及答案
相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。
答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。
答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。
因此,BC:EF=AB:DE=6:9=2:3。
设BC=2x,则EF=3x。
由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。
因此,BC=6cm,
EF=9cm。
2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。
答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。
因此,k^2=24/36=2/3,解得k=√(2/3)。
所以相似比为√(2/3)。
最新相似三角形”8“字模型(含详细答案)-经典
AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.二、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似. 三、相似证明中的基本模型8字形图①8字型,结论:AO BO ABOD CO CD==,【例1】.如图,在▱ABCD 中,F 是AD 延长线上一点,连接BF 交DC 于点E ,则图中相似三角形共有( )对A .2对B .3对C .4对D .5对 【解答】解:∵ABCD 是平行四边形, ∴AD ∥BC ,DC ∥AB , ∴△ABF ∽△DEF ∽△CEB , ∴相似三角形共有三对. 故选:B .【例2】.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长AD 于点F ,已知S △AEF =4,则下列结论中不正确的是( ) A .B .S △BCE =36C .S △ABE =12D .△AFE ∽△ACD【解答】解:∵在▱ABCD 中,AO=AC , ∵点E 是OA 的中点, ∴AE=CE ,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故选项A正确,不合题意;∵S△AEF=4,=()2=,∴S△BCE=36;故选项B正确,不合题意;∵==,∴=,∴S△ABE=12,故选项C正确,不合题意;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故选项D错误,符合题意.故选:D.【练习1】.如图,E为▱ABCD的DC边延长线上一点,连AE,交BC于点F,则图中与△ABF相似的三角形共有2 个.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABF∽△CEF,△CEF∽△AED,∴△ABF∽△AED.∴图中与△ABF相似的三角形是:△CEF,△AED.故答案为:2【练习2】.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF∽△ACD,其中一定正确的是①②③.(填序号)【解答】解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵==,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故答案为:①②③.【练习3】.如图,在平行四边形ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有 4 对.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABG∽△FHG,△ABE∽△DHE∽△CHB,∴图中的相似三角形共有4对.故答案为:4.【练习4】.在△ABC中,DB=CE,DE的延长线交BC的延长线于P,求证:AD•BP=AE•CP.【解答】解:过点C作CG∥DP交AB于G,∴,,∴DG=,DG=,∴=,∵BD=EC,∴,∴AD•BP=AE•CP.【练习5】.如图,在△ABC中,AB>AC,边AB上取一点D,边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证:BP:CP=BD:CE.【解答】证明:如图,过点B作BF∥AC交PD延长线于点F.则△PCE∽△PBF,∴=.∵BF∥AC,∴∠1=∠2.又∵AD=AE,∴∠2=∠4,∠1=∠3=∠4,∴BF=BD.∴=,∴BP:CP=BD:CE.【练习6】.已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.(1)如图1,当OA=OB,且D为OA中点时,求的值;(2)如图2,当OA=OB,且时,求tan∠BPC的值.(3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值.【解答】解:(1)过D作DE∥CO交AC于E,∵D为OA中点,∴AE=CE=,,∵点C为OB中点,∴BC=CO,,∴,∴PC==,∴=2;(2)过点D作DE∥BO交AC于E,∵,∴==,∵点C为OB中点,∴,∴,∴PC==,过D作DF⊥AC,垂足为F,设AD=a,则AO=4a,∵OA=OB,点C为OB中点,∴CO=2a,在Rt△ACO中,AC===2a,又∵Rt△ADF∽Rt△ACO,∴,∴AF=,DF=,PF=AC﹣AF﹣PC=2a﹣﹣=,tan∠BPC=tan∠FPD==.(3)与(2)的方法相同,设AD=a,求出DF=a,PF=a,所以tan∠BPC=.【练习7】.已知线段OA⊥OB,C为OB上中点,D为AO上一点,连AC、BD交于P点.(1)如图1,当OA=OB且D为AO中点时,求的值;(2)如图2,当OA=OB,=时,求△BPC与△ACO的面积之比.【解答】解:(1)过C作CE∥OA交BD于E,∴△BCE∽△BOD,∴,∵C为OB上中点,∴CE=OD,∵D为AO中点,∴CE=AD,∵△ECP∽△DAP,∴=2;(2)过C作CE∥OA交BD于E,过P作PF⊥OB交OB于F,设AD=x,∵=,∴AO=OB=4x,∴OD=3x,∵△BCE∽△BOD,C为OB上中点,∴CE=OD=x,∵△ECP∽△DAP,∴;由勾股定理可知BD=5x,DE=x,∴,∴PD=AD=x,∵PF=,S△BPC=,∵S△ACO=4x2,∴.图②反8字型,结论:AO BO ABCO DO CD==、四点共圆【例3】.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【解答】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选:B.【练习1】.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA【解答】解:A、∵∠DAC=∠DBC,∠AOD=∠BOC,∴△AOD∽△BOC,故此选项正确,不合题意;B、∵△AOD∽△BOC,∴=,∴=,又∵∠AOB=∠COD,∴△AOB∽△DOC,故此选项正确,不合题意;C、∵△AOB∽△DOC,∴∠BAO=∠ODC,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BAC=∠BDC,∵∠DAC=∠DBC,∴∠CDB=∠CBD,∴CD=BC,故此选项正确,不合题意;D、无法得出BC•CD=AC•OA,故此选项错误,符合题意.故选:D.【练习2】.如图,(1)若AE:AB= AF:AC ,则△ABC∽△AEF;(2)若∠E= ∠B ,则△ABC∽△AEF.【解答】解:(1)若AE:AB=AF:AC,则△ABC∽△AEF;(2)若∠E=∠B,则△ABC∽△AEF.故答案为:AF:AC,∠B.图③双8字型,结论:AE DF BE CF,【例4】如图,AB//CD,点E为AB上一点,点F为CD上一点,求证:【例5】.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①② B.②③ C.②④ D.③④【解答】解:①平行四边形中邻边垂直则该平行四边形为矩形,故本题中AC≠BD,即AO≠BO,故①错误;②∵AB∥CD,∴∠E=∠F,又∵∠EOA=∠FOC,AO=CO∴△AOE≌△COF,∴OE=OF,故②正确;③∵AD∥BC,∴△EAM∽△EBN,故③正确;④∵△AOE≌△COF,且△FCO和△CNO不全等,故△EAO和△CNO不全等,故④错误,即②③正确.故选:B.20.如图,在△ABC中,E为高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A、D重合).过点F作BC的平行线与AB交于P,与AC交于Q,连接PE并延长交直线BC于点N,连接QE并延长交直线BC于点M,连接PM、QN.(1)试判断四边形PMNQ的形状,并说明理由;(2)若要使四边形PMNQ是一个矩形,则△ABC还应满足什么条件?请说明理由;(3)若BC=10,AD=6,则当点E在何处时,四边形PMNQ的面积与△APQ的面积相等?【解答】解:(1)四边形PMNQ是平行四边形.∵PQ∥MN,∴∠EPQ=∠ENM;∠EQP=∠EMN,∴△PEQ∽△NEM,∵ED⊥MN,EF⊥PQ,∴=,∵F、D关于点E对称,∴EF=ED,∴PQ=MN,∵PQ∥MN,∴四边形PMNQ是平行四边形;(2)满足条件:AB=AC,∵PQ∥BC,∴∠APQ=∠B,∠AQP=∠C,∵AB=AC,∴∠B=∠C,∴∠APQ=∠AQP,∴AP=AQ,∵AF⊥PQ,∴AF平分PQ,∴EP=EQ,∵四边形PMNQ是平行四边形,∴PE=EN,ME=EQ,∴PE=EQ=EM=EN,∴MQ=PN,∴当AB=AC时,PMNQ是矩形;(3)设ED=x,∵S PMNQ=S△APQ,∴PQ×2x=PQ×(6﹣2x),∴x=1,∴当ED=1时,四边形PMNQ与△APQ面积相等.21.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△ONC的面积为2cm2,求△AEM的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠E=∠F,在△AOE和△COF中,∵,∴△AOE≌△COF(AAS);(2)解:∵AB∥CD,∴△AEM∽△DFM,∴EM:FM=AM:DM=2:3,∵△AOE≌△COF,∴OE=OF,∵AD∥BC,∴∠AMO=∠CNO,在△AOM和△CON中,∵,∴△AOM≌△CON(AAS),∴OM=ON,即EM=FN,设EM=2x,FM=3x,则FN=2x,OM=ON=MN=(FM﹣FN)=x,∴EM:OM=2x:x=4,∵S△ONC=2cm2,∴S△OAM=2cm2,∴S△AEM=4S△ONC=4×2=8(cm2).22.如图,ABCD为四边形,两组对边延长后得交点E、F,对角线BD∥EF,AC的延长线交EF于G.求证:EG=GF.【解答】证明:如图,过C作EF的平行线分别交AE、AF于M、N.由BD∥EF,可知MN∥BD.易知S△BEF=S△DEF.又,则S△BMC=S△DCN.则MC=NC.又==,∴EG=GF.图④A8字型,结论:111 AB CD EF +=【例6】.如图,在▱ABCD中,过点B的直线与对角线AC,边AD分别交于点E和点F,过点E作EG∥BC,交AB于G,则图中相似的三角形有 5 对.【解答】解:图中相似三角形有△ABC∽△CDA,△AGE∽△ABC,△AFE∽△CBE,△BGE∽△BAF,△AGE∽△CDA 共5对,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,AB=CD,∠D=∠ABC,∴△ABC≌△CDA,∴△ABC∽△CDA,∵GE∥BC,∴△AGE∽△ABC∞△CDA,∵GE∥BC,AD∥BC,∴GE∥AD,∴△BGE∽△BAF,∵AD∥BC,∴△AFE∽△CBE.故答案是:5.故选:C.【练习3】.如图,AB∥DC,AC与BD 交于点E,EF∥DC交BC于点F,CE=5,CF=4,AE=BC,则等于()A.B.C.D.【解答】解:∵EF∥DC交BC于点F,CE=5,CF=4,AE=BC,∴△CEF∽△CAB,∴,即,∴,解得,AE=20,∵AB∥DC,∴△DCE∽△BAE,∴,即,故选:B.【练习4】.已知:如图,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,FG∥AD,且FG=EF.(1)求证:四边形ABED是菱形;(2)连接AE,又知AC⊥ED,求证:AE2=EF•ED.【解答】证明:(1)∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∵FG∥AD,∴△CFG∽△CAD,∴=.同理:=,∴=.∵FG=EF,∴AD=AB,∴四边形ABED是菱形.(2)连接BD ,与AE 交于点H ,如图所示.∵四边形ABED 是菱形,∴EH=AE ,BD ⊥AE ,∴∠DHE=90°.同理:∠AFE=90°,∴∠DHE=∠AFE .又∵∠AED 是公共角,∴△DHE ∽△AFE ,∴, ∴=EF•ED.图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ⋅=⋅△△△△【例7】.如图,四边形ABCD 中,AD ∥BC ,对角线相交于O 点,EF 过O 点,且EF ∥AD ,则图中一共有 5 对相似三角形.【解答】解:∵四边形ABCD 中,AD ∥BC ,∴∠ADO=∠CBO ,∠DAO=∠BCO ,∴△ADO ∽△CBO ,∵EF ∥AD ,AD ∥BC ,∴EF ∥AD ∥BC ,∴△AEO ∽△ABC ,△DFO ∽△DCB ,△BEO ∽△BAD ,△CFO ∽△CDA ,∴共有5对相似三角形.故答案为:5.【练习1】.如图,在梯形ABCD中,AD∥BC,AD=a,BC=b,E、F分别是AD、BC的中点,且AF交BE于P,CE 交DF于Q,则PQ的长为.【解答】解:∵AD∥BC,E、F分别是AD、BC的中点,∴==,==,∴==,∴PQ∥AD,∴==,∴PQ=.故答案为:.【练习2】.已知P为△ABC的中位线MN上任意一点,BP、CP的延长线分别交对边AC、AB于D、E,求证:+=1.【解答】证明:过点A作QL∥BC,分别交CE、BD的延长线于点Q、L.∵MN为△ABC的中位线,∴MN∥BC,∴QL∥MN∥BC,又∵AM=BM,∴PQ=PC,PL=PB.在△PQL与△PCB中,,∴△PQL≌△PCB(SAS),∴QL=BC.∵AL∥BC,∴△ADL∽△CDB,∴,同理可证,∴,而AL+AQ=QL=BC,∴+=1.。
相似三角形及其判定练习及参考答案
相似三角形及其判定练习一、选择题:1.下列判断正确的是()A.两个直角三角形相似B.两个相似三角形一定全等C.凡等边三角形都相似D.所有等腰三角形都相似2.下列各对三角形中一定不相似的是()A.△ABC中,∠A=54°,∠B=78°△A′B′C′中,∠C′=48°,∠B′=78°B.△ABC中,∠C=90°,AC=4cm,BC=3cm△A′B′C′中,∠C′=90°,A′C′=12cm,B′C′=15cmC.△ABC中,∠B=90°,AB=5,AC=13△A′B′C′中,∠B′=90°,A′B′=2.5a,B′C′=6aD.△ABC中,∠C=90°,∠A=45°,AB=5△A′B′C′中,∠A′=45°,A′B′=53.如图,AB∥CD,AC、BD交于O,BO=7,DO=3,AC=25,则AC长为()A.10B.12.5C.15D.17.54.在△ABC中,MN∥BC,MC、NB交于O,则图中共有()对相似三角形。
A.1B.2C.3D.4二、填空题1.如图16,已知△ABC中D为AC中点,AB=5,AC=7,∠AED=∠C,则ED= 。
2.在梯形ABCD中,AB∥CD,AC平分∠DAB,DC:AB=1:1.5,则AD:BC= 。
3.如图18在Rt △A B C 中∠ACB =90°,CD ⊥AB ,AC =6,AD =3.6,则BC = , BD = 。
4.已知:图19中AC ⊥BD ,DE ⊥AB ,AC 、ED 交于F ,BC =3,FC =1,BD =5,则AC = 。
三、解答题1.已知:如图20□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。
求:AM :AC 。
2.已知:如图21在△ABC 中EF 是BC 的垂直平分线,AF 、BE 交于一点D ,AB =AF 。
相似三角形练习题及答案
相似三角形练习题及答案相似三角形是几何学中的一个重要概念,它指的是两个三角形的对应角相等,且对应边成比例。
下面是一些相似三角形的练习题及答案,供同学们练习和参考。
练习题1:已知三角形ABC与三角形DEF相似,且AB/DE = 2/3,求BC/EF的比值。
答案1:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边的比值相等。
因此,BC/EF = AB/DE = 2/3。
练习题2:在三角形ABC中,点D在边BC上,且AD是三角形ABC的高。
已知AD = 6cm,AB = 8cm,AC = 10cm,求BD和DC的比值。
答案2:由于AD是三角形ABC的高,根据相似三角形的性质,三角形ABD与三角形ACD相似。
设BD = x,DC = y,则有:\[ \frac{AB}{BD} = \frac{AD}{DC} \]\[ \frac{8}{x} = \frac{6}{y} \]由于三角形ABD和三角形ACD共享边AD,根据相似三角形的面积比等于边长的平方比,我们有:\[ \frac{AB}{AC} = \frac{BD}{DC} \]\[ \frac{8}{10} = \frac{x}{y} \]解得 x = 4.8cm,y = 6cm,所以BD:DC = 4.8:6 = 4:5。
练习题3:已知三角形PQR与三角形XYZ相似,且∠P = ∠X,∠Q = ∠Y,求∠R与∠Z的比值。
答案3:由于三角形PQR与三角形XYZ相似,且对应角相等,根据三角形内角和定理,我们知道∠P + ∠Q + ∠R = 180°,∠X + ∠Y + ∠Z = 180°。
由于∠P = ∠X,∠Q = ∠Y,我们可以得出∠R = ∠Z,所以∠R:∠Z = 1:1。
练习题4:在三角形ABC中,点E在边AB上,点F在边AC上,且EF平行于BC。
已知AE:AB = 1:2,求AF:AC的比值。
答案4:由于EF平行于BC,根据平行线的性质,三角形AEF与三角形ABC相似。
相似三角形经典练习题(4套)附带答案
练习(一)一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
题3 题7 题84. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:题3 题4 题5①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
相似三角形经典题75题
相似三角形:填空:1. 如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为,面积为.2. 如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC= .3. 五边形ABCDE∽五边形A′B′C′D′E′,∠A=120°,∠B′=130°,∠C=105°,∠D′=85°,则∠E=.4. 如图,在△ABC中,D、E分别是AC、AB边上的点,∠AED=∠C,AB=6,AD=4,AC=5,则AE= .5. 如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为.6. 从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约cm的高跟鞋才能达到黄金比的美感效果(精确到0.01cm).7. 如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点D为AC的黄金分割点(AD>CD),AC=6,则CD= .8.如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2.(填“>”“=”或“<”)9.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()10.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()对11.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM= 时,△AED与以M,N,C为顶点的三角形相似.12.如图,C是AB的黄金分割点,BG=AB,以CA为边的正方形的面积为S1,以BC、BG为边的矩形的面积为S2,则S1S2(填“>”“<”“=”).13.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()14.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有(填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.15.如图,在▱ABCD中,E、F分别是AB、AD的中点,EF交AC于点G,则的值是.16.如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC= .17.如图,在△ABC中,BC=a.若D1,E1分别是AB,AC的中点,则D1E1=;若D2,E2分别是D1B,E1C的中点,则D2E2=…若D n E n分别是D n﹣1B,E n﹣1C的中点,则D n E n的长是多少(n>1,且n为整数,结果用含a,n的代数式表示)?18.如图,将△ABC绕顶点A顺时针旋转60°后,得到△AB′C′,且C′为BC的中点,则C′D:DB′=()19.如图,在正方形网格中,点A、B、C、D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A、D、E为顶点的三角形与△ABC相似.20.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()21.如图,▱ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G,则= .22.如图,△ABC是边长为1的等边三角形,取BC边中点E,作ED∥AB交AC 于点D,EF∥AC交AB于点F,得到四边形EDAF,它的面积记做S1,取BE边中点E1,作E1D1∥FB交EF于点D1,E1F1∥EF交AB于点F1,得到四边形E1D1FF1,它的面积记做S2.照此规律作下去,则S2013= .解答:1.已知:如图所示,D是AC上一点,BE∥AC,AE分别交BD,BC于点F,G,∠1=∠2.则证明BF2=FG•EF.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE 相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.5.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM 交AC于F,ME交BC于G.写出图中的所有相似三角形,并选择一对加以证明.6.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC 以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.8.如图,在梯形ABCD中,AD∥BC,P是AB上一点,PE∥BC交CD于点E.若AD=2,BC=,则点P在何处时,PE把梯形ABCD分成两个相似的小梯形?9.如图,已知线段AB,P1是AB的黄金分割点(AP1>BP1),点O是AB的中点,P2是P1关于点O的对称点.求证:P1B是P2B和P1P2的比例中项.10.如图,已知DE∥BC,EF∥AB,设S△ABC=S,S△ABC=S1,S△ECF=S2,请验证.11.如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.(1)求AE的长度;(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB 两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG 的大小,并说明理由.12.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.试在y轴上找一点P,使△AOP与△AOB相似,你能找出几个这样的点(点P与点B不重合)?分别求出对应AP的长度.13.如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上(与点A,C不重合),点Q在BC上.(1)△CPQ的边PQ上的高为时,求△CPQ的周长;(2)当△CPQ的周长与四边形PABQ的周长相等时,求CP的长.14.阅读下面的短文,并解答下列问题:我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a:b).设S甲、S乙分别表示这两个正方体的表面积,则==()2又设V甲、V乙分别表示这两个正方体的体积,则==()3(1)下列几何体中,一定属于相似体的是(A)A.两个球体B.两个锥体C.两个圆柱体D.两个长方体(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长的比等于;②相似体表面积的比等于;③相似体体积比等于.(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)15.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC 的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?16.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S N.①若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)②当n>1时,请写出一个反映S n﹣1,S n,S n+1之间关系的等式.(不必证明)17.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.18.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m的视力表,但两面墙的距离只有3m.在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙.(1)甲生的方案:如图①,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如果大视力表中“E”的高是3.5cm,那么小视力表中相应“E”的高是多少?(2)乙生的方案:使用平面镜来解决房间小的问题.如图②,若使墙面镜子能呈现完整的视力表,由平面镜成像原理,作出了光路图,其中视力表AB的上、下边沿A,B发出的光线经平面镜MM′的上下边沿反射后射人人眼C处.如果视力表的全长为0.8m,请计算出镜长至少为多少米.19.在直角边分别为5cm和12cm的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长.20.如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC 的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.21.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值;(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD 三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.22.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.24.在左图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90°(1)请你画出将Rt△ABC绕点C顺时针旋转90°后所得到的Rt△A′B′C′,其中A、B的对应点分别是A′、B′(不必写画法);(2)设(1)中AB的延长线与A′B′相交于D点,方格纸中每一个小正方形的边长为1,试求BD的长(精确到0.1).25.如图,已知:在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB,垂足为E,CD=DE,AC+CD=9.求BC的长.26.如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.27.如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=5,AD=3,∠BAE=30°,求BF的长.28.如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,CF 与AB交于点G,若CF=15cm,求GF之长.29.如图,AF⊥CE,垂足为点O,AO=CO=2,EO=FO=1.(1)求证:点F为BC的中点;(2)求四边形BEOF的面积.30.E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC 于P,连PF并延长交AB于Q,如图①(1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm);(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?(3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)31.如图,在平面直角坐标系中,点A在x轴负半轴上,点B的坐标是(0,2),过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交x轴于点E,过点E作EF⊥DE交y轴于点F,若EA=3AC.(1)求证:△CBA∽△EDC;(2)请写出点A,点C的坐标(解答过程可不写);(3)求出线段EF的长.32.Ⅰ.如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:;Ⅱ.如图②,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连结AG,AF,分别交DE于M,N两点.(1)如图②,若AB=AC=1,直接写出MN的长;(2)如图③,探究DM,MN,EN之间的关系,并说明理由.33.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.34.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C 作CE垂直于BD或BD的延长线,垂足为E,如图.(1)若BD是AC的中线,求的值;(2)若BD是∠ABC的角平分线,求的值;(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究的值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由.35.已知抛物线y=ax2+bx﹣1经过点A(﹣1,0)、B(m,0)(m>0),且与y轴交于点C.(1)求a、b的值(用含m的式子表示);(2)如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);(3)在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与△ABC 相似,求m的值.36.如图,点D,E分别在△ABC的边BC,BA上,四边形CDEF是等腰梯形,EF∥CD.EF与AC交于点G,且∠BDE=∠A.(1)试问:AB•FG=CF•CA成立吗?说明理由;(2)若BD=FC,求证:△ABC是等腰三角形.37.如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.38.如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD 两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.(1)在图①中,求证:AF⊥BG,DF=CG;(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.39.已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.(1)若线段AM、AN的长是关于x的一元二次方程x2﹣2mx+n2﹣mn+m2=0的两个实数根,求证:AM=AN;(2)若AN=,DN=,求DE的长;(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2﹣16ky+10k2+5=0的两个实数根,求BC的长.40.把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE 与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)41.(Ⅰ)如图1,点P在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交AD,CD于点R,T.求证:PQ•PR=PS•PT;(Ⅱ)如图2,图3,当点P在平行四边形ABCD的对角线BD或DB的延长线上时,PQ•PR=PS•PT是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);(Ⅲ)如图4,ABCD为正方形,A,E,F,G四点在同一条直线上,并且AE=6cm,EF=4cm,试以(Ⅰ)所得结论为依据,求线段FG的长度.42.取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.试问:(1)当α为多少度时,能使得图②中AB∥DC;(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.43.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE 分别平分∠ADC,∠BCD;(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.44.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.45.等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.①探究1:△BPE与△CFP还相似吗?(只需写出结论)②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;③设EF=m,△EPF的面积为S,试用m的代数式表示S.46.如图:在平行四边形ABCD中,E是AD上的一点.求证:.47.(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.48.如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AM.求证:(1)△ACM≌△BCM;(2)AD•BE=DE•BC;(3)BM2=MN•MF.49.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.50.如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB 的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求CF的长.51.如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.52.如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论.53.已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥EG∥AC,FH、EG分别交边BC所在的直线于点H、G.(1)如图1,如果点E、F在边AB上,那么EG+FH=AC;(2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是;(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是.对(1)(2)(3)三种情况的结论,请任选一个给予证明.解析:填空:1.解:设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等∴解得:a=15,b=36,则较大三角形的周长为90,面积为270.故较大三角形的周长为90,面积为270.∴,∵AD=2,AE=3,BD=4,∴,∴CE=6,∴AC=AE+EC=3+6=9.故答案为:9.∴∠B=∠B′=130°,∠D=∠D′=85°,又∵五边形的内角和为540°,∴∠E=540°﹣∠A﹣∠B﹣∠C﹣∠D=100°,故答案为:100°.∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB.∴,∴,∴AE=.故答案为:.5.解:如图,∵A(2,2),C(6,4),∴点P的坐标为(4,3),∵以原点为位似中心将△ABC缩小位似比为1:2,∴线段AC的中点P变换后的对应点的坐标为(﹣2,﹣)或(2,).故答案为:(﹣2,﹣)或(2,).xcm的高跟鞋才能达到黄金比的美感效果.根据题意,得=≈0.618,解得x≈7.00故答案为:7.00.∴AD=AC═×6=3﹣3,∴CD=AC﹣AD=6﹣(3﹣3)=9﹣3.故答案为9﹣3.8.解:∵P是线段AB的黄金分割点,且PA>PB,∴PA2=PB•AB,又∵S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∴S1=PA2,S2=PB•AB,∴S1=S2.故答案为:=.9.解:∵∠A=∠A∴①∠ACP=∠B,②∠APC=∠ACB时都相似;∵AC2=AP•AB∴AC:AB=AP:AC∴③相似;④此两个对应边的夹角不是∠A,所以不相似.所以能满足△APC与△ACB相似的条件是①②③.10.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.11. 解:设CM的长为x.在Rt△MNC中∵MN=1,∴NC= ,①Rt△AED∽Rt△CMN时,则,即,解得x=或x=(不合题意,舍去),②Rt△AED∽Rt△CNM时,则,即,解得x=或(不合题意,舍去),综上所述,当CM=或时,△AED与以M,N,C为顶点的三角形相似.故答案为:或.12.解:由题意得:===1.即:S1=S2.13.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.14.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.15.解答:解:连接BD,与AC相交于O,∵点E、F分别是AD、AB的中点,∴EF是△ABD的中位线,∴EF∥DB,且EF=DB,∴△AEF∽△ADB,∴,∴,∴,∴AG=GO,又OA=OC,∴AG:GC=1:3.故答案为:.16.解答:解:根据题意,AD∥BC∴△AOD∽△COB ∵S△AOD:S△COB=1:9∴=则S△AOD:S△DOC=1:3所以S△DOC:S△BOC=3:9=1:3.17.解答:解:在△ABC中、BC=a,若D1、E1分别是AB、AC的中点,根据中位线定理得D1E1==a,∵D2、E2分别是D1B、E1C的中点,∴D2E2=(+a)=a=a,∵D3、E3分别是D2B、E2C的中点,则D3E3=(a+a)=a,…根据以上可得:若Dn、En分别是D n﹣1B、E n﹣1C的中点,则DnEn=a,即D n E n的长是a.18.解答:解:根据旋转的性质可知:AC=AC′,∠AC′B′=∠C=60°,∵旋转角是60°,即∠C′AC=60°,∴△ACC′为等边三角形,∴BC′=CC′=AC,∴∠B=∠C′AB=30°,∴∠BDC′=∠C′AB+∠AC′B′=90°,即B′C′⊥AB,∴BC′=2C′D,∴BC=B′C′=4C′D,∴C′D:DB′=1:3.19.解答:解:根据题意得:AD=1,AB=3,AC==6,∵∠A=∠A,∴若△ADE∽△ABC时,,即:,解得:AE=2,若△ADE∽△ACB时,,即:,解得:AE=,∴当AE=2或时,以点A、D、E为顶点的三角形与△ABC相似.故答案为:2或.20.解答:解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.21解答:解:∵DE=2AE,BF=2FC,∴BF=2AE,ED=2CF,即有△AHE∽△FHB,△CFG∽△EGD,则=,同理=∴S△BFH=S△ABF=×××S▱ABCD,S△CFG=S△CFD=×S▱ABCD,故S四边形EHFG=S△BCE﹣S△BFH﹣S△CFG=S▱ABCD﹣S▱ABCD S▱ABCD=S▱ABCD.故答案为:22.解答:解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•sinA=1×=,∵DE、EF是△ABC的中位线,∴AF=,∴S1=××=;同理可得,S2=×;…∴S n=×()n﹣1;∴S2013=×()2012=.故答案为:.解答:1.解答:答:BF是FG,EF的比例中项.证明:∵BE∥AC,∴∠1=∠E,∵∠1=∠2,∴∠2=∠E,∴△BFG∽△EFB,∴=,即BF2=FG•EF,2解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.解答:证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.4.解答:(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.5.解答:解:图中的相似三角形有:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM (3分)以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E(外角定理),∠DME=∠A=∠B(已知),∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,∴△AMF∽△BGM.(7分)6.解答:解:CP和CB是对应边时,△CPQ∽△CBA,所以,=,即=,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,=,即=,解得t=.综上所述,当t=4.8秒或秒时,△CPQ与△CBA相似.7.解答:解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.8.解答:解:∵PE把梯形ABCD分成两个相似的小梯形,∴梯形ADEP∽梯形PECB,∴,∵AD=2,BC=,∴PE=3,∴相似比为:,∴AP=AB.9.解答:证明:设AB=2,∵P1是AB的黄金分割点(AP1>BP1),∴AP1=×2=﹣1,∴P1B=2﹣(﹣1)=3﹣,∵点O是AB的中点,∴OB=1,∴OP1=1﹣(3﹣)=﹣2,∵P2是P1关于点O的对称点,∴P1P2=2(﹣2)=2﹣4,∴P2B=2﹣4+3﹣=﹣1,∵P1B2=(3﹣)2=14﹣6,P2B•P1P2=(﹣1)(2﹣4)=14﹣6,∴P1B2=P2B•P1P2,∴P1B是P2B和P1P2的比例中项.10.解答:证明:∵DE∥BC,EF∥AB∴四边形DBFE是平行四边形,∴BD=EF,∵相似三角形的面积比等于对应边的平方比,∴,即=1∴.11.解答:解:(1)在Rt△ABC中,由AB=1,BC=,得AC==,∵以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E∴BC=CD,AE=AD,∴AE=AC﹣CD=;(2)∠EAG=36°,理由如下:∵FA=FE=AB=1,AE=,∴=,∴△FAE是黄金三角形,∴∠F=36°,∠AEF=72°,∵AE=AG,∴∠EAG=∠F=36°.12.解答:解:∵当x=0时,y=1,当y=0时,x=﹣2,∴OA=2,OB=1,∵∠AOB=∠AOP=90°,∴当OA:OB=OP:OA时,△AOP与△AOB相似,∴2:1=OP:2,解得OP=4,故有2个这样的P点为:(0,﹣4)或(0,4),AP==2.若△AOP≌△AOB,则AP=.解答:解:(1)∵AB=5,BC=3,AC=4,∴BC2+AC2=AB2,∴∠C=90°,设AB边上的高为h,则×3×4=×5h,∴h=,∵PQ∥AB,∴△CQP∽△CBA,∴====,∵AB=5,BC=3,AC=4,∴CQ=,CP=1,PQ=,∴△CPQ的周长CQ+CP+PQ=+1+=3;(2)∵△CPQ的周长与四边形PABQ的周长相等,∴CP+CQ+PQ=BQ+PQ+PA+AB=(AB+BC+AC)=6,∵AB=5,BC=3,AC=4,∴CP+CQ=3﹣CQ+4﹣CP+5,2CQ+2CP=12,CQ+CP=6,∵PQ∥AB,∴△PQC∽△ABC.∴=,即=,解得:CP=.解答:解:(1)A;(2分)(2)①相似比②相似比的平方③相似比的立方;(每空(2分),共6分)(3)由题意知他的体积比为;又因为体重之比等于体积比,若设初三时的体重为xkg,则有=解得x==60.75.答:初三时的体重为60.75kg.(2分)15.解答:解:(1)当点P在AC上时,∵AM=t,∴PM=AM•tan60°=t.∴y=t•t=t2(0≤t≤1).当点P在BC上时,PM=BM•tan30°=(4﹣t).y=t•(4﹣t)=﹣t2+t(1≤t≤3).(2)∵AC=2,∴AB=4.∴BN=AB﹣AM﹣MN=4﹣t﹣1=3﹣t.∴QN=BN•tan30°=(3﹣t).由条件知,若四边形MNQP为矩形,需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形.(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2.∴,.∴当s或s时,以C,P,Q为顶点的三角形与△ABC相似.解答:解:(1)如图:割线CD就是所求的线段.理由:∵∠B=∠B,∠CDB=∠ACB=90°,∴△BCD∽△ACB.(2)①△DEF经N阶分割所得的小三角形的个数为,∴S n=.当n=5时,S5=≈9.77,当n=6时,S6=≈2.44,当n=7时,S7=≈0.61,∴当n=6时,2<S6<3.②S n2=S n﹣1×S n+1.17.解答:解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1,即S1=S2+S3.(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.解答:解:(1)∵FD∥BC∴△ADF∽△ABC.∴=.∴=.∴FD=2.1(cm).答:小视力表中相应“E”的长是2.1cm;(2)解:作CD⊥MM′,垂足为D,并延长交A′B′于E,∵AB∥MM′∥A′B′,∴CE⊥A′B′,∴△CMM′∽△CA′B′,∴=,又∵CD=CE﹣DE=5﹣3=2,CE=5,A′B′=AB=0.8,∴=,∴MM′=0.32(米),∴镜长至少为0.32米.19.解答:解:∵AC=12,BC=5,∴AB=13,如图1所示:设DE=x,∵四边形ADEF是菱形,∴DE∥AB,∴△CDE∽△CAB,∴=,即=,解得x=cm;如图2所示,同上可知△CEF∽△CAB,设EF=x,∴=,解得x=cm;如图3所示,同理△AEF∽△ABC,∴=,即=,解得x=cm.故所作菱形的边长为:cm、cm、cm.。
相似三角形经典题(含答案)
相似三角形典型习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x xx -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形因此,正方形的面积为3612-或121348156-.。
最新《相似三角形》经典练习题(附答案)
相似三角形经典练习题(附答案)(2)当点F 是BC 的中点时,过 F 作EF // CD 交AD 于点E ,若AB=6cm ,EF=4cm,求 CD 的长.3 .如图,点 D , E 在 BC 上,且 FD // AB , FE // AC . 求证:△ ABCFDE .4 .如图,已知 E 是矩形 ABCD 的边CD 上一点, BF 丄AEF ,试说明:△ ABF EAD .1 .如图,在△A 中C DE // BC , EF // AB ,求证:△ ADE2.如图,梯形 ABCD 中, AB // CD,^ 在BC 上,连DF 与AB 的延长线交于点 G .(1 )求证:△CDFBGF ;EFC.D _____ C5 .已知:如图①所示,在△和△XEAD中, AB=AC , AD=AE,/ BAC= / DAE ,且畑,A , D在一条直线上,连接BE, CD , M , N分别为BE, CD的中点.(1 )求证:①BE=CD :②厶A是等腰三角形;(2 )在图①的基础上,将△绕点DE按顺时针方向旋转180。
,其他条件不变,得到图②所示的图形•请直接写出(1 )中的两个结论是否仍然成立;(3 )在(2)的条件下,请你在图②中延长ED交线段BC于点P .求证:△PBDAMN.图①6 .如图,E是? ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.上.(1 )填空:/ A _____________ °,BC= ______________(2 )判断△ ABC^ DE是否相似,并证明你的结论.7 .如图,在4 X3的正方形方格中,△8 .如图,已知矩形ABCD的边长AB=3cm , BC=6cm.某一时刻,动点M从A点出发沿的速度向A点匀速运动,问:(1 )经过多少时间,△的面积等于矩形ABCD面积的?9(2 )是否存在时刻t,使以A,M,N为顶点的三角形与△相似D若存在,求t的值; 若不存在,请说明理由.9 .如图,在梯形ABCD中,若AB // DC, AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1 )列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2 )请你任选一组相似三角形,并给出证明.10 .如图△ AB中, D 为AC 上一点,CD=2DA , / BAC=45 ° 上BDC=60 ° CE丄BD于E,连接AE . (1 )写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,AB方向以1cm/s的速度向B点匀速运动; 同时,动点N从D点出发沿DA方向以2cm/s请写出一对;若没有,请说明理由; (3 )求厶BEA勺面积之比.11 .如图,在△中BCAB=AC=a , M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q .(1 )求四边形AQMP的周长;(2 )写出图中的两对相似三角形(不需证明) ;(3 ) M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12 .已知:P是正方形ABCD的边BC上的点,且BP=3PC , M是CD的中点,试说明:△ADM s^ MCP.13 .如图,已知梯形ABCD 中,AD// BC,D=2 , AB=BC=8 , CD=10 .(1 )求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B? A? D? C方向,向点C运动;动点Q 从点C出发,以1cm/s的速度,沿C? D? A方向,向点A运动,过点Q作QE丄BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P在B? A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△木CQE若存在,请求出所有符合条件的t的值;若不存在,请说明理由;15 .如图,在厶AB(中, AB=10cm , BC=20cm ,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△与仲睡©目似.③在运动过程中,是否存在这样的t,使得以P、Q为顶点的三角形恰好是以DQ为腰的等腰三角形?若存在,请求出所有符合条件的14 .已知矩形ABCD ,长BC=12cm ,宽AB=8cm ,P、Q分别是AB、BC上运动的两点. 若P自点A出发,以1cm/s的速度沿AB方向运动, 同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以B、Q为顶点的三角形与△的值;若不存在,请说明理由.相BDC16 .如图,/ ACB= / ADC=90A °=U& AD=2.问当AB 的长为多少时,这两个直角三角形相似.17 .已知,如图,在边长为 a 的正方形ABCD 中,M 是AD 的中点,能否在边 AB 上找一 点N (不含A 、B ),使得△ CDlMT ^ MAN 相似?若能,请给出证明,若不能,请说明理由.18 .如图在△ ABC, / C=90 ° BC=8cm , AC=6cm ,点 Q 从 B 出发,沿 BC 方向以 2cm/sP 从C 出发,沿CA 方向以1cm/s 的速度移动.若 Q 、P 分别同时从B 、CAD // BC ,Z A=90 AB=7 , AD=2 , BC=3,试在腰 AB上确定点P 的位置,使得以P , A , D 为顶点的三角形与以 P , B , C 为顶点的三角形相似.出发,试探究经过多少秒后,以点C 、P 、Q 为顶点的三角形与△的速度移动,点19 .如图所示,梯形 ABCD 中, 相似A图1郢2cm/s 的速度移动;点 Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果 P 、Q同时出发,用t (秒)表示移动的时间,那么当 t 为何值时,以点 Q 、A 、P 为顶点的三角形与△ AB 相似.20 .△ ABCH A DE 是两个等腰直角三角形,/中占上I 八、、一L- ♦A= / D=90 °的顶占 DEF 于边BC 的(1 )如图1,设DE 与AB 交于点 M , EF 与AC 交于点N ,求证:△ BEM ^A CNE ; (2 )如图2,将△DE 绕点E 旋转,使得 DE 与BA 的延长线交于点 M , EF 与AC 交于点N ,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21 .如图,在矩形ABCD 中,AB=15cm , BC=10cm,点P 沿AB 边从点A 开始向B 以22 .如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(0点)20米的A点,沿0A所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23 •阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1 )所需的测量工具是:__________________ ; (2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24 •问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量•下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm .乙组:如图2,测得学校旗杆的影长为900cm .丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm .任务要求:(1 )请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2 )如图3,设太阳光线NH与OO相切于点M •请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+208 2=260 2)26 .如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高0P=0' P' =l ,两灯柱之间的距离00' =m.(1 )若李华距灯柱0P的水平距离0A=a,求他影子AC的长;(2 )若李华在两路灯之间行走,则他前后的两个影子的长度之和( DA+AC )是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以V1匀速行走,试求他影子的顶端在地面上移动的速度V2 .25 •阳光通过窗口照射到室内,在地面上留下 2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m ,求窗口底边离地面的高BC •ABCAADE5 , AC=9 , BD=5 .求 AE .27 .如图①,分别以直角三角形 ABC 三边为直径向外作三个半圆,其面积分别用 S i , S 2,S 3表示,则不难证明 S 1=S 2+S 3. (i )如图②,分别以直角三角形 ABC 三边为边向外作三个正方形,其面积分别用 S i , S 2,S 3表示,那么S i , S 2 , S 3之间有什么关系; (不必证明) (2 )如图③,分别以直角三角形 ABC 三边为边向外作三个正三角形,其面积分别用 S i、S 2、S 3表示,请你确定 S i ,S 2,S 3之间的关系并加以证明; (3)若分别以直角三角形 ABC 三边为边向外作三个一般三角形,其面积分别用 S i ,S 2,S 3表示,为使S i ,S 2,S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证 明你的结论; (4 )类比(i ),( 2),( 3)的结论,请你总结出一个更具一般意义的结论. 28 .已知:如图,△29 .已知:如图Rt △ ABC s Rt △ BDC,A若=3 , AC=4 .(1 )求BD、CD的长;(2 )过B作BE丄DC于E,求BE的长.(2 )已知:两相似三角形对应高的比为 3 : 10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析1.如图,在△A中C DE// BC, EF // AB,求证:△ ADEEFC .考点:相似三角形的判定;平行线的性质。
(完整版)相似三角形经典解答题难题含答案个人精心整理,推荐文档
一、相似三角形中的动点问题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.如图,在△ABC 中,ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s 时,求△CPQ 的面积;②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.3.如图1,在Rt △ABC 中,ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分CDB 交边BC 于点E ,EM ⊥BD ,垂足为M ,EN ⊥CD ,垂足为N .(1)当AD =CD 时,求证:DE ∥AC ;(2)探究:AD 为何值时,△BME 与△CNE 相似?4.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,当P 点到达B 点时,Q 点随之停止运动.设运动的时间为x .(1)当x 为何值时,PQ ∥BC ?(2)△APQ 与△CQB 能否相似?若能,求出AP 的长;若不能说明理由.5.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0<t <6)。
相似三角形练习题(超经典含答案)
1.如果△ABC∽△A′B′C′,相似比为k(k≠1),则k的值是A.∠A︰∠A′B.A′B′︰ABC.∠B︰∠B′D.BC︰B′C′2.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,下列比例式不成立的是A.AD AEDB EC=BAD DEDB BC=.CAD AEAB AC=.DAB ACDB CE=.3.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E,B、D、F,AC=4,CE=6,BD=3,则BF=A.7 B.7.5 C.8 D.8.54.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD︰DB=3︰5,那么CF︰CB等于A.5︰8 B.3︰8 C.3︰5 D.2︰55.如图,已知在等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则一定相似的三角形是A.△ABC和△BAD B.△ABD和△BDCC.△BDC和△ABC D.△ABD和△BDC和△ABC6.在相同时刻的物高与影长成正比例,如果高为1.6米的竹竿的影长为2.0米,那么影长为30米的旗杆的高是A.25米B.24米C.20米D.18米7.△ABC和△A′B′C′相似,记作__________,相似三角形__________的比叫__________,当相似比为1时,两个三角形__________.8.如图,在△ABC和△A′B′C′中,∠A=60°,∠B=40°,∠A′=60°,当∠C′=__________时,则△ABC∽△A′B′C′.9.若△ABC与△A′B′C′相似,一组对应边的长为AB=6cm,A′B′=8cm,那么△ABC与△A′B′C′的相似比为__________.10.如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F,则AFE△与BCF△的面积比等于__________.11.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且14FC BC.图中相似三角形共有__________对.12.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是________.(填一个即可)13.如图,要测量池塘两端A 、B 的距离,可先取一个可以直接到达A 和B 的点C ,连接AC并延长到D ,使12CD CA =,连接BC 并延长到E ,使12CE CB =,连接ED ,如果量出DE 的长为25米,那么池塘宽AB 为________米.14.如图,在ABC △中,90C ∠=︒,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长.15.如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.(1)求ADAB的值;(2)求BC的长.16.如图,△ABC∽△DEC,CA=CB,且点E在AB的延长线上.(1)求证:AE=BD;(2)求证:△BOE∽△COD;(3)已知CD=10,BE=5,OD=6,求OC的长.17.如图,甲、乙两人分别从A(1)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4的速度行走.t h后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;(2)当t为何值时,△OMN∽△OBA?18.如图,点F是ABCD的边AD上的三等分点(靠近A点),BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于A.18 B.22C.24 D.4619.在矩形ABCD中,点E、F分别在AD、CD上,且∠BEF=90°,则三角形Ⅰ,Ⅱ,Ⅲ,Ⅳ一定相似的是A.Ⅰ和ⅡB.Ⅰ和ⅢC.Ⅰ和ⅣD.Ⅲ和Ⅳ20.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,如果边AB上的点P使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,则这样的P点共有A.1个B.2个C.3个D.4个21.如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=__________.22.如图1,正方形ABCD的边长为4,把三角板的直角顶点放置在在BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.(1)求证:△GBE∽△GEF.(2)设AG=x,GF=y,求y关于x的函数表达式,并写出自变量取值范围.(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.23.(2018•绥化)两个相似三角形的最短边分别为5cm 和3cm ,它们的周长之差为12cm ,那么大三角形的周长为 A .14cm B .16cm C .18cmD .30cm24.(2018•毕节市)如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC =3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为A .2:5B .3:5C .9:25D .4:2525.(2018•巴中)如图,在△ABC 中,点D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连接DE .下列结论:①OE OB =OD OC ;②DE BC =12;③DOE BOC S S △△=12;④DOE DBES S △△=13.其中正确的个数有A .1个B .2个C .3个D .4个26.(2018•阜新)如图,在矩形ABCD 中,点E 为AD 中点,BD 和CE 相交于点F ,如果DF =2,那么线段BF 的长度为__________.27.(2018•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=___________m.28.(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)29.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE–BE;(2)连接BF,如果AFBF=DFAD.求证:EF=EP.1.【答案】D【解析】对应边的比是相似比,且有顺序性,故△ABC 与△A ′B ′C ′的相似比k 的值为BC ︰B ′C ′. 2.【答案】B【解析】∵DE ∥BC ,,,AD AE AD AE AB ACDB EC AB AC DB CE∴===,∴选项A ,C ,D 均正确;故选B . 3.【答案】B【解析】∵a ∥b ∥c ,∴AC BD CE DF =,即436DF =.∴364.54DF ⨯==.∴BF =BD +DF =3+4.5=7.5.4.【答案】A【解析】∵DE ∥BC ,∴AE ︰EC =AD ︰DB =3︰5, ∵EF ∥AB ,∴BF ︰FC =AE ︰EC =3︰5, 故CF ︰CB =5︰8.故选A . 5.【答案】C6.【答案】B【解析】设旗杆的高是x 米,则1.6230x=,解得x =24. 7.【答案】△ABC ∽△A ′B ′C ′;对应边;相似比;全等【解析】ABC △和'''A B C △相似,记作ABC A'B'C'△∽△,相似三角形对应边的比叫相似比,当相似比为1时,两个三角形全等.故答案为:ABC A'B'C'△∽△,对应边,相似比,全等. 8.【答案】80°【解析】60,40A B ∠=︒∠=︒,180604080C ∴∠=︒-︒-︒=︒,,ABC A'B'C'△∽△80C C'∴∠=∠=︒,∴当80C'∠=︒时 ,△ABC ∽△A ′B ′C ′.故答案为:80.︒ 9.【答案】34【解析】相似三角形的对应边的比叫做相似比,即相似比为6384AB A B ==''.故答案为:34. 10.【答案】14【解析】相似三角形的面积比等于相似比的平方,∵E 为AD 的中点,四边形ABCD 为矩形,∴12AE BC =,∴21124AEF BCFS S⎛⎫== ⎪⎝⎭.故答案为:1:4.11.【答案】312.【答案】∠ADB =∠BAC (或∠BAD =∠C 或BD BABA BC=) 【解析】∵∠B 是△ABC 与△DBA 的公共角,∴添加∠ADB =∠BAC 或∠BAD =∠C 都可根据“两角对应相等的两个三角形相似”得证;也可添加BD BABA BC=,根据“两边成比例且夹角相等的两个三角形相似”得证. 13.【答案】50【解析】∵12CD CA =,12CE CB =,∴12CD CE AC CB ==.∵∠ACB =∠DCE ,∴△ACB ∽△DCE .∴12DE CD AB AC ==. ∵DE =25米,∴AB =50米.故答案为:50. 14.【答案】3【解析】在ABC △中,9086C AC BC ∠===,,,10AB ∴==.又6BD BC ==,4AD AB BD ∴=-=.DE AB ⊥,90ADE C ∴∠=∠=︒.又A A ∠=∠,AED ABC ∴△∽△.DE ADBC AC∴=. ∴4638AD DE BC AC =⋅=⨯=. 15.【解析】(1)48,AD DB ==,4812.AB AD DB ∴=+=+=41.123AD AB ∴== (2)DE ∥BC ,,ADE ABC ∴△∽△1,3DE AD BC AB ∴==3,DE =31,3BC ∴=9.BC ∴=16.【解析】(1)∵△ABC ∽△DEC ,CA =CB ,17.【解析】(1)因为A点坐标为(1),所以OA=2,由题意知OM=2-4t,ON=6-4t,若246426t t--=,解得t=0.即在甲、乙两人到达O点前,只有当t=0时,△OMN∽△OAB,所以MN与AB不可能平行.(2)因为甲到达O点的时间为21h42t==,乙到达O点的时间为63h42t==,所以12t=或32时,O、M、N三点不能连接成三角形.①当12t<时,如果△OMN∽△OBA,则有246462t t--=,解得122t=>(舍去);②当1322t<<时,∠MON>∠OAB,显然△OMN不可能相似于△OBA;③当32t>时,424662t t--=,解得322t=>.所以当t=2时,△OMN∽△OBA.18.【答案】B【解析】∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴AFBC=AEEC=13,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF的面积为2,∴四边形CDFE的面积=S△FCD+S△EFC=16+6=22.故选B.19.【答案】B20.【答案】C【解析】若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴AD APBP BC=,∴273APAP=-,∴AP2−7AP+6=0,∴AP=1或AP=6,当AP=1时,由BC=3,AD=2,BP=6,∴AP AD BC BP=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴AP ADBP BC=,∴273APAP=-,∴AP=145.检验:当AP=145时,BP=215,AD=2,BC=3,∴AP ADBP BC=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,故选C.21.【答案】3【解析】∵四边形ABCD为平行四边形,∴DE∥AB,DC=AB,∴△DEF∽△BAF.∵△DEF的面积与△BAF的面积之比为9:16,∴3=4 DEBA,∵3=343DE DEEC CD DE==--.故答案为:3:1.22.【解析】(1)如图1,延长FE交AB的延长线于F',∵AG=x,∴BG=4–x,∴242xCF-=,∴CF=44x-,由(1)知,BF'=CF=44x-,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4–x+44x-,当CF=4时,即:44x-=4,∴x=3,(0≤x≤3),即:y关于x的函数表达式为y=4–x+44x-(0≤x≤3);。
相似三角形性质与判定专项练习30题(有答案)
相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2,问E在处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正形ABCD(点B在△AEC,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP 为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=°,∠ACB+∠CED=°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=°﹣∠ACB﹣∠DCE=°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。
相似三角形练习题及答案
相似三角形练习题及答案一、选择题1. 若两个三角形的对应角相等,且对应边成比例,则这两个三角形是相似的。
这种说法正确吗?A. 正确B. 错误2. 三角形ABC和三角形DEF相似,AB=6cm,DE=3cm,那么AC的长度是多少?A. 4cmB. 6cmC. 9cmD. 12cm3. 在三角形ABC中,∠A=60°,∠B=40°,那么∠C是多少度?A. 40°B. 60°C. 80°D. 100°二、填空题4. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,BC=8cm,求DE的长度。
5. 在三角形ABC中,若∠A=30°,∠B=70°,求∠C的度数。
三、解答题6. 已知三角形ABC与三角形DEF相似,且AC=4cm,DF=6cm,AB=5cm,求EF的长度。
7. 在三角形ABC中,已知AB=6cm,AC=4cm,BC=8cm,判断三角形ABC 是否为直角三角形,并说明理由。
四、证明题8. 已知三角形ABC与三角形DEF相似,且∠A=∠D,∠B=∠E,证明∠C=∠F。
9. 已知三角形ABC与三角形DEF相似,且AB/DE=2/3,AC/DF=2/3,证明BC/EF=2/3。
五、应用题10. 在平面直角坐标系中,点A(-3,4),B(1,-2),C(5,6),点D(-1,1),E(3,-6),F(7,3),判断三角形ABC与三角形DEF是否相似,并求出相似比。
答案:1. A2. B3. C4. 6cm5. 80°6. 7.5cm7. 是直角三角形,因为AB²+AC²=BC²。
8. 由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等,所以∠C=∠F。
9. 根据相似三角形的性质,对应边的比值相等,所以BC/EF=AB/DE=2/3。
10. 三角形ABC与三角形DEF相似,相似比为3/2。
相似三角形测试题及答案
相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。
以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。
答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。
答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。
答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。
答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。
已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。
因此,AC = 6.25cm。
8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。
已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。
相似三角形试题及答案
相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。
答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。
答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。
答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。
这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。
四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。
答案:首先,利用余弦定理计算BC的长度。
根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。
代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。
然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。
7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。
答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。
中考相似三角形经典练习题及答案
相似三角形分类练习题(1)一、填空题1、如图,DE是△ABC的中位线,那么△ADE面积与△ABC面积之比是________。
2、如图,△ABC中,DE∥BC,,且,那么=________。
3、如图,△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AD=8cm,DB=2cm,则CD=________cm。
4、如图,△ABC中,D、E分别在AC、AB上,且AD:AB=AE:AC=1:2,BC=5cm,则DE=________ cm。
5、如图,AD、BC相交于点O,AB∥CD,OB=2cm,OC=4cm,△AOB面积为4.5cm2,则△DOC面积为___cm2。
6、如图,△ABC中,AB=7,AD=4,∠B=∠ACD,则AC=_______。
7、如果两个相似三角形对应高之比为4:5,那么它们的面积比为_____。
8、如果两个相似三角形面积之比为1:9,那么它们对应高之比为_____。
9、两个相似三角形周长之比为2:3,面积之差为10cm2,则它们的面积之和为_____cm2。
10、如图,△ABC中,DE∥BC,AD:DB=2:3,则=______。
二、选择题1、两个相似三角形对应边之比是1:5,那么它们的周长比是()。
(A);(B)1:25;(C)1:5;(D)。
2、如果两个相似三角形的相似比为1:4,那么它们的面积比为()。
(A)1:16;(B)1:8;(C)1:4;(D)1:2。
3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是()。
(A)1;(B)2;(C)3;(D)4。
4、如图,梯形ABCD,AD∥BC,AC和BD相交于O点,=1:9,则=()。
(A)1:9;(B)1:81;(C)3:1;(D)l:3。
三、如图,△ABC中,DE∥BC,BC=6,梯形DBCE面积是△ADE面积的2倍,求DE长。
四、如图,△ABE中,AD:DB=5:2,AC:CE=4:3,求BF:FC的值。
相似三角形测试题及答案
相似三角形测试题及答案### 相似三角形测试题及答案#### 测试题一:基础概念题题目:下列哪组三角形是相似的?A. 等腰三角形和直角三角形B. 两个等腰直角三角形C. 两个等边三角形D. 两个不同形状的三角形答案:B、C解析:相似三角形的定义是两组对应角相等,且两组对应边的比相等的两个三角形。
选项B中的两个等腰直角三角形,它们的两个锐角相等,且两组对应边的比相等,因此是相似的。
选项C中的两个等边三角形,它们的三个角都相等,并且三组对应边的比也相等,因此也是相似的。
#### 测试题二:计算题题目:已知三角形ABC与三角形DEF相似,且AB:DE = 3:2,求AC:EF 的比值。
答案:AC:EF = 3:2解析:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,它们的对应边的比值是相等的。
因此,AC与EF作为对应边,它们的比值也应该是3:2。
#### 测试题三:应用题题目:在平面直角坐标系中,三角形PQR的顶点坐标分别为P(1,2),Q(4,6),R(1,6)。
点S(2,4)是否在以PQ为斜边的相似三角形PQS的内部?答案:是的,点S(2,4)在以PQ为斜边的相似三角形PQS的内部。
解析:首先计算PQ的长度,使用距离公式得到PQ = √[(4-1)² + (6-2)²] = √13。
然后计算PS和QS的长度,PS = √[(2-1)² + (4-2)²] = √2,QS = √[(2-4)² + (4-6)²] = √13。
由于PS < PQ < QS,根据三角形的不等式定理,点S在以PQ为斜边的三角形PQS 的内部。
#### 测试题四:证明题题目:若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,请证明∠C = ∠F。
答案:根据相似三角形的性质,如果两个三角形相似,那么它们的对应角相等。
已知∠A = ∠D,∠B = ∠E,根据三角形内角和定理,三角形ABC的内角和为180°,即∠A + ∠B + ∠C = 180°。
最新相似三角形压轴经典大题(含答案)
相似三角形压轴经典大题解析1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?【答案】解:(1)MN BC Q ∥ AMN ABC ∴△∽△68h x ∴= 34x h ∴= (2)1AMN A MN Q △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤)②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h , 则132662h h x =-=- 11EF MNA EF A MN ∴Q ∥△∽△11A MN ABC A EF ABC ∴Q △∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=Q △ 22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪ ⎪⎝⎭1△A1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭Q △△ 所以 291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大 当48x <<时,2912248y x x =-+-, 取163x =,8y =最大 86>Q∴当163x =时,y 最大,8y =最大2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;MNCBEFAA 1【答案】解:(1)Q 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-.(2)存在.如图,设P 点的横坐标为m , 则P 点的纵坐标为215222m m -+-, 当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠=Q °,∴①当21AM AO PM OC ==时,APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,.类似地可求出当4m >时,(52)P -,. 当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,.3.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,. 由2160x -+=,得8x B =∴.点坐标为()80,. ∴()8412AB =--=.由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ∴111263622ABC C S AB y ==⨯⨯=△·.(2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,.又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC Q △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-, ∴38038]32838)4(32[421+-=-++-⨯=t t t s 当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t t t t s4.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,BC →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.(1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.【答案】解: (1)34PM =,(2)2t =,使PNB PAD △∽△,相似比为3:2(图3)(图1)(图2)N(3)PM AB CB AB AMP ABC ∠=∠Q ⊥,⊥,,AMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==Q ,, (1)3t a QM a-∴=-当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a=+,3t Q ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <Q ≤时梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66at a=+代入,解之得23a =±,所以23a =. 所以,存在a ,当23a =时梯形PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形.(2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ;(3)因为Q R ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600, 所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t,所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形, 所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ,所以∠QPR=∠A=600,所以tan600=PR QR ,即3326=-tt ,所以t=56, 所以当t=56时, △APR ~△PRQ 6.在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2E B ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N .使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.A BDE(第26题 图1)FC OMNxy图7-2AD OBC 21MN图7-1AD BM N1 2D 2MO.7.在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=. 10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟可到达A 点。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
相似三角形经典题(含答案)(Si...
相似三角形经典题(含答案)(Similar triangle classic questions(including answers))Similar triangle classical exercisesExample 1. Choose a similar triangle from the following trianglesExample 2 is known: as in figure ABCD, the ratio of the perimeter to the sum if...Figure 3 cases, known to, to prove that.Example 4 which of the following statements are true and which ones are wrong?(1) all right triangles are similar. (2) all isosceles triangles are alike(3) all isosceles right triangles are similar. (4) all equilateral triangles are alikeFigure 5 example, D is a point on the AC, D DE E the dotted line, in the side, the small triangle and point D, point E and a vertex with similar composition. Draw as much as possible to meet the conditions of the graphics, and that of line DE painting.Figure 6 cases, a person holding a small scale paintings engraved with cm, standing about 30 meters away from the poles, the arm straight forward, small scale vertical ruler, see about 12 paintings just over the poles, the known arm length of about60 cm high, for the wire rod.Figure 7 cases, in order to measure a high-rise MN Xiaoming, put a mirror in the A from N 20m, NA back to C along the Xiao Ming, just from the mirror to see the roof of M, if m, his eyes from the ground height of 1.6m, please help you calculate Xiaoming the height of the building (accurate to 0.1M).The two triangles in the 8 lattice diagram are similar triangles, and the reasons are givenExample 9 determines whether the case is similar and explains the reasons for the following groups of conditions:(1)(2)(3)Example 10. In the following graph, there is no similar triangle. If it exists, show them in letters, and briefly explain the basis for identificationExample 11 is known: as in Fig., in the case of angular bisector, try using a triangle similar relation descriptionExample 12, the known three side length is 5, 12 and 13, and its similar maximum length is 26, the area of S.13 cases in a mathematics activity class, the teacher let thestudents to the playground to measure the height of the flagpole, and then come back to AC measurement method for their measurement is. Xiaofang: take a 3.5 meter high pole upright in the 27 meters away from the flagpole at C (pictured), then walk along the BC direction D, the top of the flagpole and pole top A visual E is in the same line, C D, and measured the distance between two points is 3 meters, Xiaofang mesh is 1.5 meters high, so that you can know the high flagpole. Do you think this measurement method is feasible? Please explain the reasonFigure 14. cases, in order to estimate the width of the river on the other side of the river, we can select a target as A, on this side of the river and then points B and C, so, then choosing E, BC and AE to determine the intersection point is D, measured in meters, meters, meters, you can find the distance between the two sides of AB roughly?Figure 15. cases, in order to find the island peak height of AB, DC and FE to establish a benchmark in D and F, the benchmark is 3 feet high, separated by 1000 step (step 1 is equal to 5 feet), and AB, CD and EF in the same plane, from the G DC benchmark back the 123 step, can see peaks A and C benchmark top end in a straight line, from the H FE benchmark 127 steps back, can see peaks A and E benchmark top on a straight line. How much is the horizontal distance BD AB and its peak height and benchmark CD? (ancient problems)Figure 16 example, known Delta ABC boundary AB = AD, AC = 2, BC = high on the side.(1) seeking the length of BC;(2) if there is a square edge on AB, the other two vertices are on AC, BC, respectively, and the area of this square is calledSimilar triangle classic Exercises answer1. cases of the solution, five and six, and the similar, similar, three or four, and similar2. solution is a parallelogram, so, l ~,Again, so, and the perimeter of the perylene ratio is 1:3.Again, dry.3 cases analysis, so as to, if further proof, the problem must pass.To prove dreams, *.Again, l,Star.To dreams, *.In dreams, and in R ~Case 4. analysis (1) is incorrect, because in the right triangle, the size of the two angles is uncertain, so the shape of the right triangle is different(2) not correct either,The vertices of an isosceles triangle are not of definite size, so the shape of an isosceles triangle is also different(3) right. There are isosceles right triangle ABC and, among them,Then,The three sides are a, B, and C, and the edges are,Then,So, l ~.(4) is correct, and is an equilateral triangle, the corresponding angles are equal, the corresponding edge is proportional to it.Answer: (1) and (2) incorrect. (3) and (4) correctExample 5. solutions:Painting slightly.The analysis of 6. cases of the narrative can draw the geometry as shown below, the CM cm m, m, m, and BC. ~ ~ because, again, so, so you can find the BC long.So, l ~ solution. Hence.Again, l,So, l ~ *,.And cm cm meters, meters, meters, meters. The pole star is 6 meters high.Example 7. analysis according to the law of Physics: the incident angle of light is equal to the angle of reflection, so that the similarity relation is clearBecause the solution, so so.So, that is. So (m)This shows that this is a practical application, the method seems simple, but in fact it is very clever, saving the use of instrumentation to measure the troubleExample 8.. It is impossible to judge these two graphs if they are not painted in the grid. In fact, the lattice virtually adds to the condition the length and the angleThe solution is in the grid, so..,Again. So. So ~.Explain the problems encountered in the grid point, we must fully find the various conditions, do not make omissionsIn 9. cases (1) because the solution to it;(2) because the two triangles only, the other two are not equal, and not so similar;(3) because, so it is similarIn 10. cases (1) and two equal solution; (2) to two equal;(3) to two equal; (4) to both sides proportionally equal angles;(5) to both sides proportionally equal angles; (6) to both sides proportionally equal angles.Analysis of 11. cases with a 65 degree angle of the isosceles triangle, the angle is 72 degrees, and BD is the bisector of the corner, so, you can launch to, and then by the similar triangle corresponding edge is proportional to the ratio between the line launched.That star.But equally, dry.And so, so, so, so, L.That (1) has two angles equal, then the two triangles are similar, this is the judgment of two triangles. The most commonly used method, and according to the equal angle position, can determine which side is the corresponding edge.(2) to explain the product of a line, or the square formula, usually to prove the scaling formula, or, again, to derive the product formula or the square formula according to the basic nature of the proportionBy the analysis of 12 cases of the three sides can be judged as a right triangle, and because it is also a right triangle, so, then by the maximum edge length is 26, can calculate the similarity ratio, two right angle side to calculate, and obtain the area.The solution of a three side in order,,, L.And to dreams, *,Again, *. *.13. cases analysis method to judge whether it is feasible, should consider the use of this method combined with our existing knowledge can be obtained according to the flagpole high. This measuring method, F to G, CE to H, so that, and GF, HF, EH and AG, this can be obtained, so the AB can be obtained. The flagpoleThe solution is feasible. The reasons are as follows:The flagpoles high. F for G, CE H (pictured). So ~.Because, soSo, that is, by, so the solution (m)So the height of the flagpole is 21.5 metersIt shows that the method should be practical and feasible in concrete measurementExample 14. solutions:,L ~, (m), a: between the two sides of AB is roughly 100 meters away.Example 15. answer: rice, step, (Note:.)16. cases analysis: BC long, need to draw solution, because AB and AC are higher than AD, so there are two kinds of situations, namely D in BC or D in the BC extension line, so long for the BC to two to discuss the situation. For the area of a square key is the length of the side for a square.Solution: (1) as above, by the AD BC group, by the Pythagorean theorem BD = 3, DC = 1, BC = so BDDC = 3 + 1 = 4.As follows, BD = 3, DC = 1, so BC = BD = CD = 3-1 = 2.(2) as shown by the graph, BC = 4, and so is ABC. Hence, the right triangle.The AEGF is a square, set GF = x, FC = 2x,GF "AB dreams, so, that is. So, dry.As follows, when BC = 2,AC = 2, Delta ABC is an isosceles triangle, as an CP AB in P, AP = r,In Rt APC, by the Pythagorean theorem CP = 1,Dreams GH / / AB, R ~ Delta CGH Delta CBA, dreams, RTherefore, the square has an area of orThird (lower) similar triangleFirst pages, 6 pages(similarity triangle's nature and application) practice rollFill in the blanks1. When the similarity ratio between two similar triangles is 3, their perimeter ratio is..;2, if the delta delta A to ABC 'B' C ', and the perimeter of delta ABC is 12cm, then the perimeter of delta A' B 'C' for;3, as shown in Figure 1, in ABC, BE, CD line intersect at point G, then the delta GED:S Delta GBC= = S;4, as shown in Figure 2, the ABC / B= / AED, AB=5, AD=3, CE=6, AE=;5, as shown in Figure 3, ABC, M AB is the midpoint of the N on BC, BC=2AB / BMN= / C, is a ~ Delta, similarity ratio =;6, as shown in Figure 4, the trapezoidal ABCD, AD / / BC S, Delta ADE:S Delta BCE=4:9, Delta ABD:S Delta ABC= S;The perimeter of 7 and two similar triangles are 5cm and 16cm, respectively, and the ratio of the bisector of their corresponding angles is;8, as shown in Figure 5, the BC=12cm in ABC, D, and F are three points AB, E, G is three points AC, DE+FG+BC=;The ratio of the area of the two and the 9 triangles is 2:3, and the ratio of them to the angle is equal to the ratio of the height of the opposite side;10, it is known that there are two triangles similar, one side length is 2, 3 and 4 respectively, and the other side length is x, y and 12 respectively. Then the values of X and y are respectively;Two, multiple-choice questions11, the following polygon must be similar to (), A, two rectangles, B, two diamond, C, two squares, D, two parallelogramIn 12, ABC, BC=15cm, CA=45cm, AB=63cm, the shortest edge of another and it is similar to the triangle is 5cm, is the longestside (18cm) is A, B, 21cm C, 24cm D, 19.5cm13, as shown in ABC, BD, CE to the high point of O, the following conclusion is wrong ()A, CO, CE=CD, CA, B, OE, OC=OD, OBC, AD, AC=AE, AB, D, CO, DO=BO, EO14, known in ABC / ACB=900, CD, AB in group D, if BC=5, CD=3, AD (long)A, 2.25 B, 2.5 C, 2.75 D, 315, as shown in figure ABCD, the edge of square BC is on the bottom QR of the isosceles right triangle PQR,The other two vertices, A and D, are on PQ and PR, and PA:PQ equals ()A, 1:B, 1:2, C, 1:3, D, 2:316, as shown in figure D, and E are Delta ABC edge AB and AC point, ==3,And / AED= / B, Delta AED and delta ABC is the area ratio is ()A, 1:2, B, 1:3, C, 1:4, D, 4:9Three, answer questions17, figure, known in the delta ABC, CD=CE / A= / ECB, CD2=AD - BE test.18, known as shown in ABC, DE, BC, AD=5, BD=3, S and delta ADE:S Delta ABC value.19, known square ABCD, C straight line, respectively, AD, AB extension line at points E, F, and AE=15, AF=10, square ABCD for the length of the side.20, known as shown in the equilateral Delta CDE and B respectively, A ED, DE extension line, DE2=AD and EB, and the degree of angle ACB.21, known as shown in ABC / C=600, AD, BC in D group, BE group AC E, Delta CDE Delta CBA to explain.22, known, as shown in figure F, ABCD edge, DC extension of the line point, link AF, pay BC at G, hand in BD at E, try to explain AE2=EG EF24. ABC, D, E / C=900, respectively AB, AC on AD, AB=AE AC, ED AB (13) to verify the aboveIn 25, ABC, M and AC is the midpoint, side of the AE=BA connection EM, and extend the BC line to D, verify the BC=2CDAB=AC, the 26 known isosceles triangle ABC, AD, BC in group D, CG, AB, AD, AC BG respectively in E, F, BE2=EF and EG prove:27, known in ABC, AD / BAC=900 BC in D P group, AD midpoint, BP extension line AC to E EF BC in F, an EF2=AE AC confirmation:28., as shown in the parallelogram,1. APD ~ CDQTwoMap your own painting, with a triangle of 30 degrees can be drawn outDreams of an isosceles triangle ABC / ABC = 120 DEGL / DAP= / DCQ=30 / CDQ / PDA=150 ~ * ~ / ADP / APD=150 degrees and dreamsL / CDQ= / APD / DAP= / QCD and dreamsStar delta APD Delta CDQ ~ AP/CD=PD/DQ frequencyD is the midpoint of AC AD=DC dreams AP/DP=AD/DQ AP/AD=PD/QD perylene perylene perylene / PDQ= / PAD dreamsStar delta APD to DPQ3. a triangle has 1 angles of 30, and the other has 2 30 degrees angles, in favor of the 155| review (6)(1) dreams / ABC=120 / A= / L degrees, C=30 degrees,Dreams / ADP+ / APD=150 / ADP+ / QDC=150 degrees degrees,L / APD= / CDQ,Star delta APD to CQD(2) set up; as shownDreams / ADP+ / APD=150 / ADP+ / QDC=150 degrees, degrees, R / APD= / CDQ / A= / C, andStar delta APD to CQD / A= / C only, the other corresponding angle are not equal, therefore, Delta APD and delta DPQ is similar;(3), two triangle into a more general condition, but the ABC must be an isosceles triangle, and / EDF= / A, otherwise it is not established.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠. ∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F 作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米)所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.)例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形.如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1,∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.。