概率论与数理统计 第七章 参数估计

合集下载

概率论与数理统计第7章

概率论与数理统计第7章

x 0 , x 0 ,x 1 ,x 2 ,
,x n 为 总 体 X
的 一 个 样 本 ,则 未 知 参 数 的 矩 估 计 ˆ _ _ _ _ _ _ _ _ _ _ _ .
这个例子所作的推断已经体现了极大似然法 的基本思想 .
最大似然估计原理:
设X1,X2,…Xn是取自总体X的一个样本,样 本的联合密度(连续型)或联合分布律 (离散型)为
f (x1,x2,… ,xn ; ) .
当给定样本X1,X2,…Xn时,定义似然函数为:
L() f (x1, x2 ,…, xn; )

pˆ1Βιβλιοθήκη nn i 1xix
即为 p 的最大似然估计值 .
从而 p 的最大似然估计量为
p ˆ(X1,
1n ,Xn)ni1Xi X
求最大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合分布率(或联 合密度);
(2) 把样本联合分布率 ( 或联合密度 ) 中自变
量看成已知常数,而把参数 看作自变量,得到似然 函数L();
要求:领会
2.2 估计量的有效性、相合性, 要求:领会
3.区间估计
3.1 置信区间的概念,
要求:领会
3.2 求单个正态总体均值和方差的置信区间,要求:简单应用
参数估计
现在我们来介绍一类重要的统计推断问题
参数估计问题是利用从总体抽样得到的信息来估计总体 的某些参数或者参数的某些函数.
估计新生儿的体重
1 p
n
pxi (1p)1xi
i1
n
n
xi
n xi
pi1 (1p) i1
n
n
xi
n xi
L(p)pi1 (1p) i1

概率论与数理统计教案参数估计

概率论与数理统计教案参数估计

概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。

教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。

教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。

教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。

作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。

教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。

教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。

教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。

教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论与数理统计讲义 (27)

概率论与数理统计讲义 (27)

原点矩
由矩法,
0
X 1
2
总体矩
样本矩
2
从中解得 ˆ 2X 1 , 即为 的矩估计.
1 X
例2 设X1,X2,…Xn是取自总体X的一个样本
X
~
f
(
x)
1
e( x
)
,
x
, 为未知参数
0,
其它
其中 >0,求 , 的矩估计.
解: 由密度函数知
X 具有均值为 的指数分布
故 E(X- )= 即 E(X)=
缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 .
其主要原因在于建立矩法方程时, 选取那些总体矩用相应样本矩代替带 有一定的随意性 .
第 七 章第一节 矩估计
矩是基于一种简单的“替换” 思想建立起来的一种估计方法 .
是英国统计学家K.皮尔逊最早提出的 .
其基本思想是用样本矩估计总体矩 . 理论依据: 大数定律
记总体k阶矩为 k E( X k )
样本k阶矩为
Ak
1 n
n i 1
X
k i
记总体k阶中心矩为 k E[ X E( X )]k
参数估计问题的一般提法
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 ( 可以是
向量) . 现从该总体抽样,得样本 X1, X2 , … , Xn
要依据该样本对参数 作出估计,或估计 的某个已知函数 g( ) .
这类问题称为参数估计.
点估计
参数估计
区间估计
假如我们要估计某队男生的平均身高.
1
n
n i 1
X
m i

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。

能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。

参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。

⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。

当然由于样本的随机性,这种推断只能具有⼀定的可靠性。

本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。

由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。

第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。

例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。

现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。

问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。

灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。

即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。

另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。

这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。

究竟是哪种情况与实际情况相符合,这需要作检验。

假如给定显著性⽔平05.0=α。

在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

《概率论与数理统计》第七章

《概率论与数理统计》第七章
i 1
n
n
ln xi
(4)的极大似然估计量为:ˆ
n
n2 i1
lnX
i
2
i1
第七章 参数估计 ‹#›
例 9 设X~b(1,p), X1,X2,…,Xn是来自X的一个样本, 试求参数p的最大似然估计量
解: 设x1, x2,, xn,是相应于样本X1,X2,…,Xn 的一个样本值,X
的分布律为:
(3)以样本各阶矩A1, ,Ak代替总体各阶矩1,
得各参数的矩估计
ˆi gi(A1, ,Ak ), i 1, , k
, k,
第七章 参数估计 ‹#›
注意:
在实际应用时,为求解方便,也可以用
中心矩 i 代替原点矩i,相应地以样本中心矩Bi 估计 i.
(二)最大似然估计法
最(极)大似然估计的原理介绍
第七章
参数估计
目录/Contents
第1章 随机事件与 2 概率
§ 1 点估计
§3
估计量的评选标准
第七章 参数估计 ‹#›
问题的提出:
在实际进行统计时,有不少总体的(我们关心的某 确定指标)概率分布是已知的。比如
例 1 产品寿命服从的分布
X~
f
(
x)
1
x
e
x0
0
其他
但其中有参数是未知的: θ
n
似然函数 L f xi , 。 i 1
, xn ,
极大似然原理:L(ˆ( x1 ,
,
xn
))
max
L(
).
计算简化方法:
在求L 的最大值时,通常转换为求:lnL 的最大值,
lnL 称为对数似然函数.
利用

参数估计

参数估计

根据“概率越大的事件越可能发生”的实际推断原理,应选3/4作为p的估计值。
若p的可供选择的估计值有许多,仍应选择发生概率最大的 就是极大似然估计的思想。
作为p的估计,这p
Exceltek Electronics (HK) Ltd Confidential
极大似然估计的原理(教材p180-181)
设总体X的概率密度函数族为f(x; ) (或概率分布函数族为P(X=x)=p(x ; ) ), 。
矩估计的缺陷:当总体分布类型已知时,未能充分利用总体分布提供的信息。
Exceltek Electronics (HK) Ltd Confidential
二、极大似然估计
引例:罐中有许多白球和黑球,已知两色球的比例为3:1,但不知哪种颜色的球多。 今有放回连抽两球均取出黑球,问:罐中黑球多还是白球多?
第七章 参数估计
引言 参数估计:当总体的某些参数未知(一般要求分布类型已知)时,从样本出发构造适当 的统计量,作为未知参数的估计量。当取得一组观察值后,以相应的统计量的观察 值作为未知参数的估计值,并讨论估计值对真值进行估计的可靠性。
参数估计方法是处理实际问题时最常用的方法。
预备概念:当总体X中含有未知参数 (可以是向量)时,可用 F(x; )来表示X的分布函数,当取不同的值,就会得到不同的分布函数。我们 称所有可能取值的集合为参数空间,记为。把{F(x; ), }称为X的分布 函数族。
的极大似然估计。
便是
D(X )
Exceltek Electronics (HK) Ltd Confidential
第三节 点估计量的评选标准 问题:1. 哪种估计是最好的估计?
2. 评价“好”的标准是什么? 建立评价标准的原则:估计量在某种意义下与待估参数的真值最接近。

概率论与数理统计第四版课后习题答案

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ 其中θ>0,θ为未知参数。

(5)()p p m x p p x X P xm x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)Xθcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX X θ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp 令mp =X, 解得mX p=ˆ3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni iθn nni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。

浙大版概率论与数理统计答案---第七章

浙大版概率论与数理统计答案---第七章

第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。

3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。

建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--, 11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。

极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。

5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为^394(3)34322X X p -----==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂pp L ,求得到θ的极大似然估计值:n n n n p 22210^++=6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。

概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案

æ çè
x
±
ua
/
2
s n
ö ÷ø
=
(14.95
±
0.1´1.96)
=
(14.754,15.146)
大学数学云课堂
3028709.总体X ~ N (m,s 2 ),s 2已知,问需抽取容量n多大的样本,
才能使m的置信概率为1 -a,且置信区间的长度不大于L?
解:由s
2已知可知m的置信度为1
-
a的置信区间为
64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求m的置信概率为0.95的置信区 间.
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
大学数学云课堂
3028706.设X1,X 2,L,X n是取自总体X的样本,E(X)= m,D(X)= s 2,
n -1
å sˆ 2 = ( X i+1 - X i )2 ,问k为何值时sˆ 2为s 2的无偏估计. i =1 解:令 Yi = X i+1 - X i , i = 1, 2,¼, n -1, 则E(Yi ) = E( X i+1) - E( X i ) = m - m = 0, D(Yi ) = 2s 2 , n -1 å 于是Esˆ 2 = E[k ( Yi2 )] = k(n -1)EY12 = 2s 2 (n -1)k, i =1 那么当E(sˆ 2 ) = s 2 ,即2s 2 (n -1)k = s 2时, 有k = 1 . 2(n -1)
的密度函数为f
(x,q

概率论与数理统计课件第7章参数估计

概率论与数理统计课件第7章参数估计

一、矩估计
4
A B
一、矩估计 例1
5
01
OPTION
02
OPTION
一、矩估计 解
6
一、矩估计
7
一、矩估计
8
解(1)
一、矩估计
9
解(2)
一、矩估计 例3
10
一、矩估计 解
11
一、矩估计
12
关于矩估计量有下列结论:
一、矩估计
13
例4

一、矩估计
14
01
OPTION
02
OPTION
一、无偏性 定义1
51
ˆ lim E θ 如果 n+ X1 ,
, X n θ
一、无偏性
52
例1
试求 1 3 2

(1)由矩估计定义可知
一、无偏性
53

一、无偏性
54
一、无偏性 例2
55
一、无偏性
56

一、无偏性 定理 1
57
则有
因此, 样本均值是总体均值的无偏估计, 样本
二、极大似然估计
48
极大似然估计求解
似然函数 对数似然求导法
直接法
49
目录/Contents
7.1 7.2
点估计 点估计的优良性评判标 准 置信区间 单正态总体下未知参数的置信区间 两个正态总体下未知参数的置信区间
7.3
7.4 7.5
50
目录/Contents
7.2
点估计的优良性评判标准 一、无偏性 二、有效性 三、相合性
置信区间
69
置信区间
70
置信区间

概率论与数理统计(第三版)课后答案习题7

概率论与数理统计(第三版)课后答案习题7

第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。

2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。

注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。

3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。

⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。

概率论与数理统计PDF版课件7-2

概率论与数理统计PDF版课件7-2
即有%的概率包含的真实值. 这就是置信水平 − =
. 的一个合理解释. 但注意,并不要求包含真实值的区
间正好%,只要是大约%就是合理地,比如也可以.
第七章参数估计 §7.2 区间估计
求置信区间的步骤
෡=
෡ , ⋯ , ,
(1)找一个与未知参数有关的统计量
11 0.248

3.816
第七章参数估计 §7.2 区间估计
注1 上述求解或 的置信区间时,我们选取的点估计
都是矩估计量或者最大似然估计量. 事实上,我们也可以用
贝叶斯估计量来构造置信区间.详细内容参考本章“重要补
充及扩展问题”的第五节(见教材P220)
注2 上述利用枢轴量进行区间估计的时候都要求总体服
从正态分布. 但实际中,我们考虑的总体经常不服从正态分
布. 这种情况下的区间估计采用的是大样本区间估计. 详细
内容参考本章“重要补充及扩展问题”的第六节(见教材
P220)
第七章参数估计 §7.2 区间估计
三、两个正态总体的区间估计
设 , ⋯ , 为来自正态总体 ∼ , 的简单随机
1. 当 和 已知时,求 − 的置信区间
ഥ−
ഥ 作为总体均值差 − 的点估计;
(1)选取样本均值差
X − Y − ( 1 − 2 )
(2)构造枢轴量
~ N ( 0,1) ;
2
2
(
)
1
n1
(3)选取 = − = Τ ;
+
2
n2
(4) − 的 − 的置信区间
.
n
n
2
2
第七章参数估计 §7.2 区间估计
例3( 见教材P213) 假设 轮胎的寿 命服从正 态分布

概率论与数理统计习题及答案-第七章

概率论与数理统计习题及答案-第七章


1 F(x,β)=
x
,
x ,
0,
x .
其中未知参数 β>1,α>0,设 X1,X2,…,Xn 为来自总体 X 的样本 (1) 当 α=1 时,求 β 的矩估计量; (2) 当 α=1 时,求 β 的极大似然估计量; (3) 当 β=2 时,求 α 的极大似然估计量. 【解】

2 0.025
(19)

32.852,

2 0.975
(19)

8.907
(1) μ的置信度为 0.95 的置信区间
s

18.14

x ta/2 (n 1) 76.6
2.093 (68.11,85.089)
n

20

(2) 2 的置信度为 0.95 的置信区间
(2)
D( ˆ1 )


2
2


D( X1 )


1
2


D(X2 )

4
X
2

5
2
,
3
3
9
9
3
2
1
2
3
5 2
D(ˆ2 ) D( X1) D( X 2 ) ,
4
4
8
D(ˆ3
)


1
2



D( X1 )

D(X
2
)


2
(

x),
0 x ,
0,
其他.
X1,X2,…,Xn 为其样本,试求参数θ的矩法估计.

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

概率论与数理统计第七章参数估计

概率论与数理统计第七章参数估计
则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而 称hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ,
σ2 ,求μ , σ2的矩估计量。
E(X )
E( X 2 ) D( X ) [EX ]2 2 2
(3) 写出方程 ln L 0
i1
若方程有解,
求出L(θ)的最大值点 ˆ(x1,x2,..x.n,)
于 是 ˆ ˆ ( X 1 , X 2 , . . . , X n ) 即 为 的 极 大 似 然 估 计 量
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
例3. 已知某产品的不合格率为p,有简单随机样本 X1 ,X2 ,…, Xn,求p的极大似然估计量。 若抽取100件产品,发现10件次品,试估计p.
ˆ(x1,x2,..x.n,),使得
L (ˆ) m a x L (), (或 L (ˆ) s u p L ())
则 称 ˆ ( x 1 ,x 2 , . . . ,x n ) 为 的 极 大 似 然 估 计 值
称 ˆ ( X 1 ,X 2 ,...,X n ) 为 极 大 似 然 估 计 量
第7章 参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息
来估计总体的某些参数. 估计新生儿的体重
估计废品率
估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 (可以是向量) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) 解方程组,得 θi=hi (X1, X2,…, Xn) (i=1,2,…,k);
则以hi (X1, X2,…, Xn)作为θi 的估计量 ,并 称hi(X1, X2,…, Xn)为θi 的矩法估计量,而 称hi(x1, x2,…, xn) 为θi 的矩法估计值。
例1. 设总体X的数学期望和方差分别是μ, σ2 ,求μ , σ2的矩估计量。
2 设X1,…Xn是取自 N ( , 2 ) 的样本, 未知,
求参数 的置信度为1 的置信区间.
查t分布表得 t 2 ,
X 使 P{| | t 2 } 1 S n
1.无偏性
2.有效性 3.一致性
一、无偏性
ˆ( X ,, X )是未知参数 的估计量,若 设 1 n
E (ˆ)
ˆ 为 的无偏估计 . 则称
二、有效性
ˆ ˆ ( X ,, X ) ˆ ˆ ( X ,, X )和 设 2 2 1 n 1 1 1 n
都是参数 的无偏估计量,若有
第 7章
参数估计
总体所服从的分布类型已知/未知
抽样
参数 估计
估计总体中未知的参数
参数估计 参数估计问题是利用从总体抽样得到的信息 来估计总体的某些参数. 估计新生儿的体重 估计废品率 估计湖中鱼数
§7.1
点估计
设有一个统计总体,总体的分布函数 为 F(x, ),其中 为未知参数 ( 可以是向量) . 现从该总体抽样,得到样本 X1,X2,…,Xn
从样本出发构造适当的统计量
ˆ ˆ( X , , X ) 1 n
作为参数 的估计量,即点估计。
将 x1,, xn 代入估计量,得到 的估计值
ˆ ˆ( x1 , , xn )
关键问题:如何构造统计量?
ˆ ˆ( X , , X ) 1 n
点估计

矩估计 极大似然估计
矩估计
L( x1 , x2 ,..., xn ; ) f ( xi ; )
i 1
n
为样本的似然函数,简记为L(θ)。
对于固定的样本观测值x1,x2,…,xn。如果有
例1. 设总体X~N(μ,σ2),其中μ,σ2是 未知参数。求μ,σ2的极大似然估计。
1 1 f ( x; , ) exp[ 2 ( x ) 2 ] 2 2 n 1 1 2 L( , ) exp[ 2 ( xi ) 2 ] 2 2 i 1
总体期望、方差的矩估计量分别是样本均值和 样本二阶中心矩。
例2: 已知某产品的不合格率为p, 有简单随 机样本X1 ,X2 ,…, Xn 求p的矩估计量。 解:E(X)=p.
1 ˆ Xi X p n i 1
n
例3:设电话总机在某段时间内接到呼唤的次数 服从参数λ 未知的泊松分布,现在收集了如下42 个数据:
设样本X1 , , X n来自数学期望E ( X ) , 方差D( X )
2
的总体,则X 是的一致估计量。
伯努利大数定律
设总体为参数为p的0-1分布,X1 , , X n为样本, 则X 是p的一致估计量。
§7.3
置信区间定义:
设θ 是 一个待估参数,给定 0, 若由样本X1,X2,…Xn确定的两个统计量 ˆ ˆ ( X , X ,, X ), ˆ ˆ ( X , X ,, X ) 1 1 1 2 n 2 2 1 2 n
如果只知道0<p<1,并且实 测记录是X=k (0 ≤ k≤ n),又 应如何估计p呢?
若总体分布已知,对于样本值,选取适当 的参数,使样本值出现的概率最大,这种 估计方法就是极大似然估计法。
极大似然估计法
设总体X的分布律或概率密度为f(x; Ө), θ=(θ1, θ2,…, θk)是未知参数, X1,X2, …,Xn是 总体X的样本,则称X1,X2, …,Xn的联合分布 律或概率密度函数
设X1,…Xn是取自 N ( , 2 ) 的样本, 2已知, 求参数 的置信度为1 的置信区间.
ห้องสมุดไป่ตู้
X 利用 ~ N (0, 1) / n
查正态分布表得 u 2 ,
X 使 P{| | u 2 } 1 n
例1:随机地从一批服从正态分布N(μ,0.022)的零 件16个,分别测得其长度为: 2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11 估计该批零件的平均长度μ,并求μ的置信区间 (α=0.05) 2.14 ... 2.11 2.125 解: X 16 查表u 2 u0.025 1.96, 0.02, n 16, 代入得 X u 2 2.115, X u 2 2.135 n n μ的置信区间为(2.115,2.135).
解:(1)矩估计
E( X )

1 xf ( x)dx x( 1) x dx 0 2
1

1 X 2
2 X 1 ˆ 1 1 X
(2)极大似然估计
L( ) ( 1) ( xi )
n i 1 n

n
(0 xi 1)
求置信区间的步骤 (1) 构造仅与待估参数θ 有关,但分布已知的 函数U;
(2) 给定置信度1-α,得常数a,b,使 P{a<U<b}= 1-α; (3) 将a<U<b变形,使得: ˆ ( X , X ,..., X ) ˆ ( X , X ,..., X ) 1 1 2 n 2 1 2 n
ˆ ˆ ) 1 (ˆ1 ˆ2 ) 满足 P( 1 2
ˆ ,ˆ ]是θ 的置信度为 则称区间 [ 1 2 信区间.
1 的置
ˆ1和ˆ2 分别称为置信下限和置信上限.
§7.4
单正态总体四种类型的区间估计
1. 期望的区间估计 σ2已知时μ的置信区间 σ2未知时μ的置信区间 2. 求方差的区间估计 μ已知时σ2的置信区间 μ未知时σ2的置信区间
总体k阶原点矩 样本k阶原点矩
k EX
k
1 n k Ak X i n i 1
K.皮尔逊
P (| 大数定律: nlim
X
i 1
n
k i
n
E ( X k ) | ) 1
矩估计基本思想: 用样本矩估计总体矩 .
设总体的分布函数中含有k个未知参数 1 ,, k (1)它的前k阶原点矩都是这k个参数的函数,记为: (2)用样本i阶原点矩替换总体i阶原点矩
例2:设X1,X2,…, Xn是来自某总体X的样本,且
EX , DX
2 , 判断
2 的矩估计量是 ,
否是无偏估计。
三、一致性(相合性)
ˆ ˆ ( X ,, X ) 是参数 的估计量,若有 设 n n 1 n
则称 ˆn
是参数 的一致估计量.
切比雪夫大数定律 1 n lim P(| X i | ) 1 n n i 1
ˆ ) D( ˆ) D( 1 2
则称 ˆ1 较 ˆ2 有效 .
ˆ ) min( D( ˆ)) 如果对固定的n, D( 1 ˆ 是 ˆ的有效估计。 则称
1
例1:设X1,X2, X3是来自某总体X的样本,且 E(X)=μ,讨论μ的以下估计量的无偏性和一致性。
1 1 1 ˆ1 X 1 X 2 X 3 2 3 6 1 1 1 ˆ2 X1 X 2 X 3 3 3 3 1 1 2 ˆ3 X 1 X 2 X 3 6 6 3
1 n ˆ xi x n i 1 n 1 ˆ 2 ( xi x ) 2 n i 1
ˆX 2 n 1 2 ˆ n S
求极大似然估计量的步骤: (1) 根据f(x; θ),写出似然函数 L( ) f ( xi ; ) (2) 对似然函数取对数 ln L( ) ln f ( xi ; )
(4) 结论
ˆ , ˆ )就是的一个 区间( 1 2 置信度为1 的置信区间.
方差未知,求期望的区间估计
例2:随机地从一批服从正态分布N(μ, σ2)的零件 16个,分别测得其长度为: 2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11 估计该批零件的平均长度μ,并求μ的置信区间 (α=0.05)
2
(2 ) ( 2 ) exp[

n 2

n 2
1 2 2
2 ( x ) ] i i 1
n
n n 1 2 2 ln L( , ) ln( 2 ) ln 2 2 2 2
2 ( x ) i i 1
n
ln L 1 n 2 [ xi n ] 0 i 1 n ln L n 1 2 ( x n ) 0 i 2 2 2 2 2 2( ) i 1
已知方差,求期望的区间估计
例1:随机地从一批服从正态分布N(μ,0.022)的零 件16个,分别测得其长度为: 2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11 估计该批零件的平均长度μ,并求μ的置信区间 (α=0.05)
n
i 1 n
ln L (3) 写出方程 0
若方程有解, 求出L(θ)的最大值点
i 1
ˆ( x , x ,..., x ) 1 2 n
例2. 设总体X服从参数λ>0的泊松分布,求 参数λ的极大似然估计量。
相关文档
最新文档