变速器设计说明书正文讲义

合集下载

两轴式变速器设计说明书

两轴式变速器设计说明书

u课程设计说明书二○一零年十二月二十四日1 总体方案设计1.1 汽车参数的选择根据变速器设计所选择的汽车基本参数如下表表1-1设计基本参数表1.2 变速器设计应满足的基本要求对变速器如下基本要求.1)保证汽车有必要的动力性和经济性。

2)设置空挡,用来切断发动机动力向驱动轮的传输。

3)设置倒档,使汽车能倒退行驶。

4)设置动力输出装置,需要时能进行功率输出。

5)换挡迅速,省力,方便。

6)工作可靠。

汽车行驶过程中,变速器不得有跳挡,乱挡以及换挡冲击等现象发生。

7)变速器应当有高的工作效率。

除此以外,变速器还应当满足轮廓尺寸和质量小,制造成本低,维修方便等要求。

满足汽车有必要的动力性和经济性指标,这与变速器的档数,传动比范围和各挡传动比有关。

汽车工作的道路条件越复杂,比功率越小,变速器的传动比范围越大。

2 变速器传动机构布置方案机械式变速器因具有结构简单,传动效率高,制造成本低和工作可靠等优点,在不同形式的汽车上得到广泛应用。

2.1 传动机构布置方案分析2.1.1 固定轴式变速器固定轴式又分为两轴式,中间轴式,双中间轴式变速器。

固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。

与中间轴式变速器比较,两轴式变速器有结构简单,轮廓尺寸小,布置方便。

此外,受结构限制,两轴式变速器的一挡速比不可能设计得很大。

我们设计的是乘用车,所以我选择的是两轴式的变速器。

传递方案如下图所示2.1.2 倒挡布置方案与前进挡位比较,倒挡使用率不高,而且都是在停车状态下实现换倒挡,故多数方案采用直齿滑动齿轮方式换倒挡。

为实现倒挡传动,有些方案利用在中间轴和第二轴上的齿轮传动路线中,加入一个中间传动齿轮的方案。

前者虽然结构简单,但是中间传动齿轮的轮齿,是在最不利的正,负交替对称变化的弯曲应力状态下工作,而后者是在较为有利的单向循环弯曲应力状态下工作,并使倒挡传动比略有增加。

5+1变速器设计说明书

5+1变速器设计说明书

-6-
“5+1 档机械设变速器”设计说明书
间轴上的一挡齿轮, 因而缩短了中间轴的长度。 但换挡时有两对齿轮同时进入啮合, 使换挡困难。图 1-6c 所示方案能获得较大的倒挡传动比,缺点是换挡程序不合理。 图 1-6d 所示方案针对前者的缺点做了修改,因而取代了图 1-6c 所示方案。图 1-6e 所示方案是将中间轴上的一,倒挡齿轮做成一体,将其齿宽加长。图 1-6f 所示方 案适用于全部齿轮副均为常啮合齿轮,换挡更为轻便。为了充分利用空间,缩短变 速器轴向长度,有的货车倒挡传动采用图 1-6g 所示方案。其缺点是一,倒挡须各 用一根变速器拨叉轴,致使变速器上盖中的操纵机构复杂一些。 本设计采用图 1-6f 所示的传动方案。
-1-
“5+1 档机械设变速器”设计说明书
5. 噪声小。采用斜齿轮传动及选择合理的变位系数,提高制造精度和安装刚 性可减小齿轮的噪声。
§1.2 变速器结构方案的确定
变速器由传动机构与操纵机构组成。 1.变速器传动机构的结构分析与型式选择 有级变速器与无级变速器相比,其结构简单、制造低廉,具有高的传动效率 (η=0.96~0.98) ,因此在各类汽车上均得到广泛的应用。 设计时首先应根据汽车的使用条件及要求确定变速器的传动比范围、档位数及 各档的传动比,因为它们对汽车的动力性与燃料经济性都有重要的直接影响。 传动比范围是变速器低档传动比与高档传动比的比值。汽车行驶的道路状况愈 多样,发动机的功率与汽车质量之比愈小,则变速器的传动比范围应愈大。目前, 轿车变速器的传动比范围为 3.0~4.5;一般用途的货车和轻型以上的客车为 5.0~8.0; 越野车与牵引车为 10.0~20.0。 通常,有级变速器具有 3、4、5 个前进档;重型载货汽车和重型越野汽车则采 用多档变速器,其前进档位数多达 6~16 个甚至 20 个。 变速器档位数的增多可提高发动机的功率利用效率、汽车的燃料经济性及平均 车速,从而可提高汽车的运输效率,降低运输成本。但采用手动的机械式操纵机构 时,要实现迅速、无声换档,对于多于 5 个前进档的变速器来说是困难的。因此, 直接操纵式变速器档位数的上限为 5 档。多于 5 个前进档将使操纵机构复杂化,或 者需要加装具有独立操纵机构的副变速器,后者仅用于一定行驶工况。 某些轿车和货车的变速器,采用仅在好路和空载行驶时才使用的超速档。采用 传动比小于 1(0.7~0.8)的超速档,可以更充分地利用发动机功率,降低单位行驶 里程的发动机曲轴总转数,因而会减少发动机的磨损,降低燃料消耗。但与传动比 为 1 的直接档比较,采用超速档会降低传动效率。 有级变速器的传动效率与所选用的传动方案有关,包括传递动力的齿轮副数 目、转速、传递的功率、润滑系统的有效性、齿轮及轴以及壳体等零件的制造精度、 刚度等。 三轴式和两轴式变速器得到的最广泛的应用。 三轴式变速器如图 1-1 所示,其第一轴的常啮合齿轮与第二轴的各档齿轮分别

两轴式变速器设计说明书

两轴式变速器设计说明书

第1章 变速器主要参数的选择与计算1.1 设计初始数据最高车速:max a u =200Km/h 发动机最大功率:max e P =120KW 最大转矩:max e T =238m N * 整备质量:a m =1700Kg 最大转矩转速:T n =3500r/min 车轮:215/55R171.2 变速器各挡传动比的确定①满足最大爬坡度()Te g i Tf Gr i ηαα0max 1sin cos +≥(1.1)式中:G —作用在汽车上的重力,mg G =,m —汽车质量,g —重力加速度,mg G ==20090N ;max e T —发动机最大转矩,max e T =238N .m ;T η—传动系效率,T η=90%;r —车轮半径,r =0.3334m ;f —滚动阻力系数,取f =0.015;α—爬坡度,取α=20°带入数值计算得59.1101≥i i g②满足附着条件:≤ri i T Tg η01emax z2F ·φ (1.2)Φ为附着系数,取值范围为0.5~0.6,取为0.6z2F 为汽车满载静止于水平面,驱动桥给地面的载荷,这里取70%mg ;计算得01i i g ≤18.35 ; ② 由①②得11.59≤1g i ≤18.35 ; 取1g i =3.0 0.40=i ;0.1201=i i g 在计算范围内。

/n min min 377.0r U =01i i g =7.96km/h<10km/h ,检验最低稳定车速合格,故传动比合适。

其他各挡传动比的确定:按等比级数原则,一般汽车各挡传动比大致符合如下关系:q i i i i i i i i g g g g g g g g ====54433221 (1.3)式中:q —常数,也就是各挡之间的公比;五档设置为直接当故15=g i ,因此,各挡的传动比为:1n 51/-=g g i i q =40.3=1.32 (1.4)所以其他各挡传动比为:1g i =3.0, 2g i =3q =2.27,3g i =2q =1.72,4g i =1.30 ,5g i =11.3 变速器传动方案的确定图2-1a 为常见的倒挡布置方案。

汽车变速器课程设计说明书

汽车变速器课程设计说明书

第1章变速器主要参数的选择与计算 (2)1.1 档数 (2)1.2 传动比确定 (3)1.3 中心距A的确定 (4)1.4 齿轮参数选择 (5)1.4.1 模数 (5)1.4.2 压力角α (5)1.4.3 螺旋角β (6)1.4.4 齿宽b (7)1.5 各档齿轮齿数的分配 (7)1.6 变速器齿轮的变位 (11)第2章齿轮与轴的设计计算 (15)2.1齿轮设计与计算 (15)2.1.1 齿轮材料的选择原则 (15)2.1.2 各轴的转矩 (16)2.1.3 轮齿强度计算 (16)2.2 轴的设计计算 (26)2.2.1 轴的工艺要求 (26)2.2.2 初选轴的直径 (27)2.2.3 轴最小直径的确定 (28)2.2.4 轴的强度计算 (28)2.3 轴承选择与校核 (43)2.3.1 一轴轴承 (43)2.3.2 二轴轴承 (45)2.3.3 中间轴轴承 (46)第1章变速器主要参数的选择与计算本次课程设计是在已知主要整车参数的情况下进行设计,已知的整车主要技术参数如表1.1所示:377.0i i rn u g a = 式中:a u ——汽车行驶速度(km/h ); n ——发动机转速(r/min ); r ——车轮滚动半径(mm ); g i ——变速器传动比;0i ——主减速器传动比。

已知:最高车速max a u =max a v =91.5 km/h ;最高档为超速档,传动比g i =1;车轮滚动半径由所选用的轮胎规格R16得到r =335(mm);发动机转速n =p n =3000(r/min );由公式得到主减速器传动比计算公式: 1408.45.913000335377.0377.00=⨯⨯==a g u i nr i表1.1 CA1041整车主要技术参数1.1 档数增加变速器的档数能够改善汽车的动力性和经济性。

档数越多,变速器的结构越复杂,使轮廓尺寸和质量加大,而且在使用时换档频率也增高。

二轴式变速器毕业设计说明书

二轴式变速器毕业设计说明书

二轴式变速器毕业设计说明书目录第一章绪论 (1)第二章变速器的基本设计方案 (6)2.1概述 (6)2.2变速器的结构分析与型式选择 (6)2.3轿车变速器机构方案的选择 (9)2.4变速器设计的基本要求 (10)第三章变速器齿轮的设计 (11)3.1确定车轮直径 (11)3.2确定主减速器传动比 (12)3.3确定一挡传动比 (12)3.4各挡传动比的确定 (13)3.5确定中心距 (13)3.6初选齿轮参数 (13)第四章齿轮校核 (22)4.1计算各轴的转矩 (22)4.2轮齿强度计算 (22)第五章轴的设计及校核 (30)5.1轴的工艺要求 (30)5.2轴的强度计算 (30)第六章轴承校核 (33)6.1.1 输入轴的轴承校核 (33)6.1.2 输出轴轴承校核 (34)经济技术分析 (36)结论 (38)参考文献 (39)致谢 (40)附录一 (1)附录二 (5)轻型轿车变速器设计第一章绪论汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的行的手段。

因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步的象征及文明形态的一种代表。

中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥重大作用.现在人类社会在不断的进步与繁荣,交通的变革与发展在促进社会的发展中起了突出的作用,汽车作为一种交通工具的产生对社会更具有重要的意义。

人类社会及人们生活的“汽车化”,大大地扩大了人们日常活动的范围,扩大并加速了地区间、国际间的交往,成倍地提高了人们外出办事的效率,极大地加速了人们的活动节奏,促进了世界经济的大发展与人类的快速进步,开创了现代“汽车社会”这样一个崭新的时代。

据统计:在以前蒸汽机轮船与蒸汽机车的问世曾推动了当时的产生革命。

继蒸汽机轮船与火车出现之后,1886年德国工程师戴姆勒与奔茨二人以汽油内燃机为动力,分别独立地制成了最早的实用汽车。

最新变速器课程设计说明书

最新变速器课程设计说明书

变速器课程设计说明书目录目录 0第1章变速器的设计与计算 (1)1 方案的选择 (1)2 档数 (1)3 传动比范围 (1)4变速器各档传动比的确定 (2)5 中心距的选择 (4)6变速器的外形尺寸 (4)变速器的横向外形尺寸,可以根据齿轮直径以及倒档中间齿轮和换档机构的布置初步确定。

影响变速器壳体轴向尺寸的因素有档数、换档机构形式以及齿轮形式。

. 4货车变速器壳体的轴向尺寸可参考下列公式选用: (4)⨯==AL mm (4)5.3=5.3.625653737齿轮参数的选择 (4)8各档齿轮齿数的分配及传动比的计算 (6)第2章变速器齿轮强度校核 (11)1齿轮材料的选择原则 (11)2变速器齿轮弯曲强度校核 (11)第3章轴的设计和校核 (17)1轴的结构和尺寸设计 (17)2初选轴的直径 (17)3轴的刚度计算 (17)4轴的强度计算 (20)第4章轴承的选择和校核 (30)1 中间轴轴承的选择与寿命计算 (30)2 输出轴轴承的选择与寿命计算 (31)参考文献 (33)第1章变速器的设计与计算1 方案的选择最高车速 120 Km/h整车总质量 4800 Kg最大功率 55 Kw最大转矩 201 N·m最大转矩转速 2250 r/min前轮胎规格165/60 R142 档数近年来,为了降低油耗,变速器的档数有增加的趋势。

目前,乘用车一般用5~6个档位的变速器。

发动机排量大的乘用车变速器多用6个档。

商用车变速器采用4~5个档或多档。

载质量在2.0~3.5t的货车采用五档变速器,载质量在4.0~8.0t的货车采用六档变速器。

多档变速器多用于总质量大些的货车和越野汽车上。

档数选择的要求:1、相邻档位之间的传动比比值在1.8以下。

2、高档区相邻档位之间的传动比比值要比低档区相邻档位之间的比值小。

因此,本次设计的变速器为6档变速器。

3 传动比范围变速器传动比范围是指变速器最高档与最低档传动比的比值。

变速器课程设计说明书word文档

变速器课程设计说明书word文档

目录第1章变速器的设计与计算 (1)1方案的选择 (1)2 档数 (1)3传动比范围 (1)4变速器各档传动比的定 (2)5中心距的选择 (4)6 变速器的外形尺寸 (5)7齿轮参数的选择 (5)8 各档齿轮齿数的分配及传动比的计算 (7)9 变速器齿轮的变位及齿轮螺旋角调整 (11)第2章变速器齿轮强度校核 (16)1 齿轮材料的选择原则 (16)2 变速器齿轮弯曲强度校核 (16)3 轮齿接触应力校核 (19)第3章轴的设计和校核 (21)1 轴的结构和尺寸设计 (21)2初选轴的直径 (21)3 轴的刚度计算 (22)4 轴的强度计算 (29)第4章轴承选择与寿命计算 (35)1 输入轴轴承的选择与寿命计算 (35)2 输出轴轴承的选择与寿命计算 (40)第5章同步器的选择………………………………………………………………………1 同步器的选择412 同步器的校核参考文献 (40)第1章变速器的设计与计算1 方案的选择最高车速 150 Km/h整车总质量 1200 Kg最大功率 65 Kw最大转矩 145 N·m最大转矩转速 5500 r/min前轮胎规格165/60 R142 档数近年来,为了降低油耗,变速器的档数有增加的趋势。

目前,乘用车一般用5~6个档位的变速器。

发动机排量大的乘用车变速器多用6个档。

商用车变速器采用4~5个档或多档。

载质量在2.0~3.5t的货车采用五档变速器,载质量在4.0~8.0t的货车采用六档变速器。

多档变速器多用于总质量大些的货车和越野汽车上。

档数选择的要求:1、相邻档位之间的传动比比值在1.8以下。

2、高档区相邻档位之间的传动比比值要比低档区相邻档位之间的比值小。

因此,本次设计的变速器为5档变速器。

3 传动比范围变速器传动比范围是指变速器最高档与最低档传动比的比值。

最高档通常是直接档,传动比为1.0;有的变速器最高档是超速档,传动比为0.7~0.8。

最新两轴变速器设计说明书

最新两轴变速器设计说明书
1.0>V≤1.6
1.6<V≤2.5
6.0 ≤14.0
≥14.0
模数 /mm
2.25~2.75
2.75~3.00
3.50~4.50
4.5~6.00
表2汽车变速器齿轮法向模数
一系列
1.00
1.25
1.5
2.00
2.50
3.00
4.00
5.00
6.00
二系列
1.75
2.25
2.75
3.25
3.50
3.75
第四部分:变速器轴的设计计算------------------------------------------6
第五部分:变速器齿轮的校核--------------------------------------------14
第六部分:变速器轴的的校核-------------------------------- ----------18
初取 =0.75 =4.36
根据汽车行驶方程式
汽车以一挡在无风、干砂路面行驶,公式简化为
式中:G—作用在汽车上的重力, , —汽车质量, —重力加速度,
=16709N;
=167N.m;
—传动系效率, =0.88;
—车轮半径, =0.29m;
—滚动阻力系数,干砂路面 (0.100~0.300)取 =0.150;
4.50
5.50

表3汽车变速器常用齿轮模数
根据表2及3,一二档齿轮的模数定为3mm,三四五档及倒档的模数定为2.75mm,啮合套和同步器的模数定为2.5mm。
变速器设计的基本要求:
1)保证汽车有必要的动力性和经济性。
2)设置空挡,用来切断发动机的动力传输。

汽车设计变速器设计说明书

汽车设计变速器设计说明书

第一章基本数据选择1.1设计初始数据:(方案二)学号:12;最高车速:m ax a U =110-12=98km/h ; 发动机功率:m ax e P =66-12/2=60kW ; 转矩:max e T =210-12×3/2=192Nm ; 总质量:m a =4100-12×2=4076kg ;转矩转速:n T =2100r/min ; 车轮:R16(选205/55R16) ;r ≈R=16×2.54×10/2+0.55×205=315.95mm 。

2.1.1 变速器各挡传动比的确定1.初选传动比:设五挡为直接挡,则5g i =1 m ax a U = 0.377min i i r n g p式中:m ax a U —最高车速p n —发动机最大功率转速 r —车轮半径m in g i —变速器最小传动比 0i —主减速器传动比max e T =9549×pe n P maxα (式中α=1.1~1.3)所以,p n =9549×19260)3.1~1.1(⨯=3282.47~3879.28r/min取p n =3500r/minp n / T n =3500/2100=1.67在1.4~2.0围,符合要求0i =0.377×0max i i rn g p =0.377×981095.31535003-⨯⨯=4.25双曲面主减速器,当0i ≤6时,取η=90%,0i ›6时,η=85%。

轻型商用车1g i 在5.0~8.0围,g η=96%, T η=η×g η=90%×96%=86.4% ①最大传动比1g i 的选择: 满足最大爬坡度: 根据汽车行驶方程式dtdu m Gi u A C Gf ri i T a D Tg δη+++=20emax 15.21 (1.1)汽车以一挡在无风、干砂路面行驶,公式简化为ααηsin cos 0emax G Gf ri i T Tg += (1.2)即,()Ttq g i T f Gr i ηαα01sin cos +≥式中:G —作用在汽车上的重力,mg G =,m —汽车质量,g —重力加速度,mg G ==4076×9.8=39944.8N ;max e T —发动机最大转矩,max e T =192N .m ;0i —主减速器传动比,0i =4.25;T η—传动系效率,T η=86.4%;r —车轮半径,r =0.316m ;f —滚动阻力系数,对于货车取f =0.02;α—爬坡度,取α=16.7° %4.8625.4192316.0)7.16sin 7.16cos 02.0(8.940761⨯⨯⨯︒+︒⨯⨯⨯≥)(g i =5.49②最小传动比1g i 的选择 满足附着条件:≤ri i T Tg η01emax z2F ·φ在沥青混凝土干路面,φ=0.7~0.8,取φ=0.75 即1g i ≤%4.8625.4192316.075.0%608.94076⨯⨯⨯⨯⨯⨯=8.055由①②得5.49≤1g i ≤8.055; 又因为轻型商用车1g i =5.0~8.0; 所以,取1g i =6.0 。

汽车设计变速器设计说明书

汽车设计变速器设计说明书

第一章 根本数据选择1.1设计初始数据:〔方案二〕**:12;最高车速:m ax a U =110-12=98km/h ; 发动机功率:m ax e P =66-12/2=60kW ; 转矩:max e T =210-12×3/2=192Nm ; 总质量:m a =4100-12×2=4076kg ;转矩转速:n T =2100r/min ; 车轮:R16〔选205/55R16〕 ;r ≈R=16×2.54×10/2+0.55×205=315.95mm 。

2.1.1 变速器各挡传动比确实定1.初选传动比:设五挡为直接挡,则5g i =1m ax a U =0.377min i i r n g p式中:m ax a U —最高车速p n —发动机最大功率转速 r —车轮半径min g i —变速器最小传动比0i —主减速器传动比 max e T =9549×pe n P maxα 〔式中α=1.1~1.3〕所以,p n =9549×19260)3.1~1.1(⨯=3282.47~3879.28r/min取p n =3500r/minp n /T n =3500/2100=1.67在1.4~2.0围,符合要求0i =0.377×0max i i rn g p =0.377×981095.31535003-⨯⨯=4.25双曲面主减速器,当0i ≤6时,取η=90%,0i ›6时,η=85%。

轻型商用车1g i 在5.0~8.0围,g η=96%, T η=η×g η=90%×96%=86.4% ①最大传动比1g i 的选择: 满足最大爬坡度: 根据汽车行驶方程式dtdum Gi u A C Gf ri i T a D Tg δη+++=20emax 15.21〔1.1〕 汽车以一挡在无风、干砂路面行驶,公式简化为ααηsin cos 0emax G Gf ri i T Tg +=〔1.2〕即,()Ttq g i T f Gr i ηαα01sin cos +≥式中:G —作用在汽车上的重力,mg G =,m —汽车质量,g —重力加速度,mg G ==4076×9.8=39944.8N ;max e T —发动机最大转矩,max e T =192N .m ; 0i —主减速器传动比,0i =4.25;T η—传动系效率,T η=86.4%;r —车轮半径,r =0.316m ;f —滚动阻力系数,对于货车取f =0.02;α—爬坡度,取α=16.7°%4.8625.4192316.0)7.16sin 7.16cos 02.0(8.940761⨯⨯⨯︒+︒⨯⨯⨯≥)(g i =5.49②最小传动比1g i 的选择 满足附着条件:≤ri i T Tg η01emax z2F ·φ在沥青混凝土干路面,φ=0.7~0.8,取φ=0.75 即1g i ≤%4.8625.4192316.075.0%608.94076⨯⨯⨯⨯⨯⨯=8.055由①②得5.49≤1g i ≤8.055; 又因为轻型商用车1g i =5.0~8.0; 所以,取1g i =6.0 。

变速器设计PPT课件

变速器设计PPT课件


汽车加速性

对换档技术要求 高(熟练)
啮合套换档
复杂 居中 较高 小 小 较短 长 较差 高
同步器换档
最复杂 长 高
没有 没有
长 短 好 低
16
第二节 变速器传动机构布置方案
3、防止自动脱挡的结构措施 由于接合齿磨损、变速器轴刚度不足、振动等原因都会导致自 动脱挡,这是变速器主要故障之一。
❖使两接合齿啮合位置错开约1~3mm,挤压磨损形成凸肩; ❖将啮合套齿座齿厚切薄,齿后端面被齿座前端面顶住; ❖将接合齿工作面加工成斜面,形成倒锥角; ❖将接合齿的齿侧加工成台阶形状,也可以防止自动脱挡。
❖第一轴后端与常啮合主动齿轮做成一体 ❖一般将第二轴前端经轴承支承在第一轴后端孔内,两轴轴线 在同一直线上 ❖使用直接挡时,齿轮、轴承及中间轴均不承载,传动效率高, 噪声低,磨损少,寿命提高 ❖中间挡位可以获得较大的传动比 ❖高挡齿轮采用常啮合齿轮传动,低挡齿轮可以不采用常啮合 齿轮传动 ❖除一挡以外的其它挡位,换挡机构多采用同步器或啮合套换 挡(有的一挡也采用同步器或啮合套换挡) ❖各挡同步器或啮合套多设置在第二轴上 ❖除直接挡外,其他挡位传动效率较低
17
18
第二节 变速器传动机构布置方案
4、变速器轴承
19
第二节 变速器传动机构布置方案
4、变速器轴承
❖圆锥滚子轴承 直径小、宽度大,负荷高,容量大; 需要调整预紧度,装配麻烦,且磨损后轴易歪斜; 不适合用在线膨胀系数较大的铝合金壳体上。
❖滚针轴承 摩擦损失小、传动效率高; 径向配合间隙小、定位及运转精度高,有利于齿轮啮合 用于齿轮与轴有相对运动的地方;
7
第二节 变速器传动机构布置方案
中间轴式四挡变速器传动方案

变速器设计说明书

变速器设计说明书
By changing the transmission ratio, Automobile transmission can change the torque of engine crankshaft, adapt to the start, acceleration, traffic and overcome road obstacles of different driving conditions on the drive wheels, traction and the speed requirements of the different needs, so that the engine work in the most favorable conditions . The transmission design require that shift rapidly, saving, convenient and higher efficiency, low noise work.
设计结论表明,变速器齿轮及各轴尺寸确定,各轴强度的校核满足设计要求,设计结构合理。
关键词:变速器;齿轮;中间轴;同步器
Abstract
Transmission is a transmission device which can fix or change gear ratio at the output shaft and the transmission input shaft, also known as the gearbox, transmission is one of the most important components.
This design is a manual transmission gearbox ofmedium truck.A scheme of structure with three shafts, five (5+1) shifts andLocking pin type synchronizerwas adopted here,combine to pour to block wheel gear and stir fork to carry on a reasonable decoration.The first and second shafts were arranged in line. This kind of structure reduces the gearbox dimension in the axis direction,in assurance block to count under the constant circumstance, decrease wheel gear number.Therefore makes the designed transmission gearbox more compact.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 变速器主要参数的计算及校核学号:15最高车速:m ax a U =113Km/h 发动机功率:m ax e P =65.5KW 转矩:max e T =206.5Nm 总质量:m a =4123Kg转矩转速:n T =2200r/min 车轮:R16(选6.00R16LT )1.1设计的初始数据表1.1已知基本数据车轮:R16(选6.00R16LT ) 查GB/T2977-2008 r=337mm1.2变速器传动比的确定确定Ι档传动比:汽车爬坡时车速不高,空气阻力可忽略,则最大驱动力用于克服轮胎与路面间的滚动阻力及爬坡阻力。

故有:ααηsin cos 0emax G Gf ri i T Tg +==max ψmg (1.1)式中:G ----作用在汽车上的重力,mg G =;m ----汽车质量;g ----重力加速度,41239.840405.4G mg N ==⨯=;max e T —发动机最大转矩,m N T e ⋅=174max ;0i —主减速器传动比,0 4.36i =;T η—传动系效率,%4.86=T η;r —车轮半径,0.337r m =;f —滚动阻力系数,对于货车取02.0=f ;α—爬坡度,30%换算为16.7α=o 。

则由最大爬坡度要求的变速器I 档传动比为:Te r g i T mgr i η0max max 1ψ≥=41239.80.2940.3375.17206.5 4.3686.4%⨯⨯⨯=⨯⨯ (1.2) 驱动轮与路面的附着条件:≤rTg r i i T η01emax φ2G (1.3)2G ----汽车满载静止于水平路面时驱动桥给地面的载荷;8.0~7.0=ϕ取75.0=ϕ1g i ≤2max 00.641239.80.750.3377.9206.5 4.3686.4%r e T G r T i φη⨯⨯⨯⨯==⨯⨯综上可知:15.177.9g i ≤≤ 取1 5.8g i = 其他各档传动比的确定: 按等比级数分配原则:q i i i i i i i i g g g g g g g g ====54433221 (1.4)式中:q —常数,也就是各挡之间的公比;因此,各挡的传动比为:41q i g =,32q i g =,23q i g =,q i g =4 1n 1-=g i q1.55=高档使用率比较高,低档使用率比较低,所以可使高档传动比较小,所以取其他各挡传动比分别为:2g i =3 3.7q =;23 2.4g i q ==;4 1.55g i q ==1.3中心距A1.3.1初选中心距 可根据下述经验公式31max g e A i T K A η= (1.5)式中:A —变速器中心距(mm );A K —中心距系数,商用车:6.96.8-=A K ; max e T —发动机最大转矩(N.m );1i —变速器一挡传动比,8.51g =i ;g η—变速器传动效率,取96% ;max e T —发动机最大转矩,max 206.5e T N m =⋅。

则,31max g e A i T K A η=(8.6=:86.49100.57mm =-初选中心距96A mm =。

1.3.2变速器的轴向尺寸货车变速器壳体的轴向尺寸:(2.7 3.0)(2.7 3.0)96259.2288A -=-⨯=-mm 。

1.4齿轮参数及齿轮材料的选择1.4.1齿轮模数同步器与啮合套的接合齿多采用渐开线齿形。

出于工艺性考虑,同一变速器的接合齿采用同一模数。

轻中型货车为2.0-3.5,选取较小的模数并增多齿数有利于换挡。

变速器一档及倒档模数为3.5mm ,其他档位为3.0。

1.4.2齿形、压力角α及螺旋角β根据刘维信的《汽车设计》表6-3汽车变速器齿轮的齿形,压力角及螺旋角分别为:表1.2选择斜齿轮的螺旋角时应力求使中间轴上的轴向力相互抵消。

为此,中间轴上的全部齿轮一律取右旋,而第一,第二轴上的斜齿轮一律取左旋,其轴向力经轴承盖由壳体承受。

1.4.3齿宽b通常是根据齿轮模数来确定齿宽b直齿m k b c =,c k 为齿宽系数,取为4.4~8.0,小齿轮取8 .0 大齿轮取7.0; 斜齿n c m k b =,c k 取为7.0~8.6,小齿轮取8.0 大齿轮取7.0。

一档及倒档小齿轮齿宽285.30.8=⨯=b mm 大齿轮齿宽 3.5724.5b =⨯=; 其他档位小齿轮齿宽240.30.8=⨯=b mm 大齿轮齿宽 3.0721b =⨯=。

第一轴常啮合齿轮副的齿宽系数可取大些,以提高传动的平稳性和齿轮的寿命。

采用啮合套或同步器换挡时,其接合齿的工作宽度初选时可取为2~4mm ,取2.5mm 。

1.4.4齿顶高系数f一般规定齿顶高系数取为1.00。

1.4.5齿轮材料的选择原则1、满足工作条件的要求不同的工作条件,对齿轮传动有不同的要求,故对齿轮材料亦有不同的要求。

但是对于一般动力传输齿轮,要求其材料具有足够的强度和耐磨性,而且齿面硬,齿芯软。

2、合理选择材料配对如对硬度≤350HBS 的软齿面齿轮,为使两轮寿命接近,小齿轮材料硬度应略高于大齿轮,且使两轮硬度差在30~50HBS 左右。

为提高抗胶合性能,大、小轮应采用不同钢号材料。

3、考虑加工工艺及热处理工艺 变速器齿轮渗碳层深度推荐采用下列值:5.3≤法m 时渗碳层深度0.8~1.25.3≥法m 时渗碳层深度0.9~1.3 5≥法m 时渗碳层深度1.0~1.3表面硬度HRC58~63;心部硬度HRC33~48对于氰化齿轮,氰化层深度不应小于0.2;表面硬度HRC48~53[12]。

对于大模数的重型汽车变速器齿轮,可采用25CrMnM O ,20CrNiM O ,12Cr3A 等钢材,这些低碳合金钢都需随后的渗碳、淬火处理,以提高表面硬度,细化材料晶面粒[13]。

1.5一档齿轮参数的计算、齿轮校核、受力计算图3.1 中间轴式五档变速器简图1.5.1一挡齿轮参数的计算中间轴一挡齿轮齿数,货车可在12~17之间选用,最小为12-14,取1012Z =,一挡齿轮为斜齿轮。

一挡传动比为 101921g Z Z Z Z i =(1.6) 为了求9Z ,10Z 的齿数,先求其齿数和h Z , nh m A Z βcos 2=(1.7) =296cos213.5⨯⨯︒=51.25 取 51即9Z =h Z -10Z =51-12=39 对中心距A 进行修正因为计算齿数和h Z 后,经过取整数使中心距有了变化,所以应根据取定的h Z 和齿轮变位系数重新计算中心距A ,再以修正后的中心距A 作为各挡齿轮齿数分配的依据。

理论中心距:109n0cos 2mA -=βhZ =3.5(1239)2cos21⨯+︒=95.59mm (1.8)对一挡齿轮进行角度变位:端面压力角t α: tan t α=tan n α/cos 10-9β (1.9) t α∴=21.29° 端面啮合角,t α: cos ,t α=t oAA αcos (1.10),t α∴=21.9° 由表14-1-21查得:0.01996t inva '=0.01829t inva =齿轮齿数之比393.25 3.012u ==≥ 变位系数之和 ()()nt ,t 109n tan 2αααinv inv z z -+=X ∑ (1.11)=0.117 查图14-1-4选择变位系数线图(1*=ah ,︒=20α),可知,100.307n x =则 90.19n x =-计算β精确值:A=109ncos 2m-βhZ (1.12)91021.61β-∴=︒当量齿数 3v9991039z z /cos 49cos 21.61β-===o3v101091012z z /cos 15cos 21.61β-===o根据齿形系数图可知9100.144,0.157y y == 一挡齿轮参数:分度圆直径 1099n 9cos /m -=βz d =3.5×39/cos21.61°=146.39mm 10910n 10cos /m -=βz d =3.5×12/cos21.61°=45.17mm中心距变动系数 n 0n /m A A y )(-==(96-95.59)/3.5=0.117 齿顶变动系数 n n n y y -=∆∑x =0.117-0.1171=-0.0001 齿顶高 ()n n 9an 9y h m x h n a ∆-+=*=2.835mm ()n n 10an 10y h m x h n a ∆-+=*=4.57mm齿根高 ()n 9an 9h m x c h f -+=**=5.04mm ()n 10an 10h m x c h f -+=**=3.3mm齿高 9f a9h h +=h =7.875mm 齿顶圆直径 99a92a h d d +==152.06mm 10a 10102h d d a +==54.31mm 齿根圆直径 9992f f h d d -==136.31mm 1010102f f h d d -==38.57mm 1.5.2一挡齿轮强度的计算 1.齿轮弯曲应力的计算 2.图3.2 齿形系数图斜齿轮弯曲应力w σεσπβσK yK zm K T c n g w 3cos 2=(1.13)式中: g T —计算载荷(N·mm );n m —法向模数(mm ); z —齿数;β—斜齿轮螺旋角;σK —应力集中系数,5.1=σK ;y —齿形系数,可按当量齿数β3cos z z n =在图2.1中查得;c K —齿宽系数6.80.7-=c K ; εK —重合度影响系数,0.2=εK 。

(1)计算一挡齿轮9,10的弯曲应力9w σ ,10w σεσπβσK K y m z K T c n w 939109219cos 2-=03321021.34cos 21.61 1.50103.1439 3.50.1447.0 2.0⨯⨯⨯=⨯⨯⨯⨯⨯⨯ 269.12300400a a MP MP =<-εσπβσK K y m z K T c n w 1031010910cos 2-=中0332330.65cos 21.61 1.50103.1412 3.50.1578.0 2.0⨯⨯⨯=⨯⨯⨯⨯⨯⨯ 227300400a a MP MP =<-。

2.齿轮接触应力的计算⎪⎪⎭⎫ ⎝⎛+'=b z g j d b ET ρρβασ11cos cos 418.0 (1.14) 式中:j σ—轮齿的接触应力(MP a );g T —计算载荷(N .mm );d '—节圆直径(mm);α—节点处压力角(°),β—齿轮螺旋角(°); E —齿轮材料的弹性模量(MP a ); b —齿轮接触的实际宽度(mm);z ρ、b ρ—主、从动齿轮节点处的曲率半径(mm),直齿轮αρsin z z r =、αρsin b b r =,斜齿轮()βαρ2cos sin z z r =、()βαρ2cos sin b b r =;z r 、b r —主、从动齿轮节圆半径(mm)。

相关文档
最新文档