紫外可见吸收光谱分析

合集下载

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

紫外可见吸收光谱法分析

紫外可见吸收光谱法分析

例: 铬酸盐或重铬酸盐溶液中存在下列平衡: CrO42- +2H+ = Cr2O72- +H2O 溶液中CrO42-、 Cr2O72-的颜色不同,吸光性质也不 相同。故此时溶液pH 对测定有重要影响。
五、有机化合物的紫外吸收光谱
知识回顾: 有机分子化学键的类型 两种或以上的原子或同一种原子由化学键连接; 主要化学键类型:σ键、π键、n键 (1)化学键的形成
处吸光度A 的差异最大。此特性可作为物质定量分析的依据。
4.2 吸光度的加和性
多组分的体系中,如各组分之间不发生相互作用,此时体系 的总吸光度等于各组分吸光度之和,称之为吸光度的加和性。
A = A1 + A2 + … +An
各组分在同一波长处吸光度等于各自物质在此波长处的吸光度 之和,而此波长并不一定是各组分的最大吸收波长
Optical response: Absorbance, Emission, diffraction,
reflection, refraction, polarization,scattering.
1.电磁波的基本性质
电磁波是一种光量子流,具有波粒二象性: 波动性
c /
频率 波长
光速=2.9979×108m· s-1 =2.9979×1010cm· s-1
粒子性
E h hc /
普朗克常数 h =6.6262×10-34J· s
电磁辐射
紫外光区: λ=180~400nm
波长
可见光区:λ=400~800nm
红外光区: λ=800~1000nm
在红外区域,常用波数代替波长,波数与波长的相互 关系为:
1/
σ单位:cm-1,物理意义:1cm 的间距内有多少个光波

仪器分析-紫外可见光光谱分析

仪器分析-紫外可见光光谱分析
1,3,5-己三烯
正己烷
258
n=4
1,3,5,7-辛四烯
环己烷
304
不共轭双键不发生红移。
C=O双键同C=C双键的共轭作用使n→*和→*跃迁的吸收峰都发生红移。
3)溶剂效应
01
02
03
04
05
极性溶剂使π-π*跃迁发生红移。
pH值
Note: 测UV-Vis应注明溶剂
pH增大,苯酚π-π*吸收带发生红移。
1
2
特点:灵敏度高,实际工作中常用。
1
常将M与某L(显色剂)生成具有电荷迁移的配合物,然后进行含量测定。
2
-* 跃迁 配体具有双键的金属络合物
3
2.3光的吸收定律
郎伯-比尔(Lambert-Beer )定律 入射光强度 吸光强度 反光强度 透光强度 + IS 散射光强度 均匀溶液,散射光小,可忽略
由于n—π共轭参与,使分子整体共轭效应增强。
取代基 苯环或烯烃(吸电子基)上的H被各种取代基取代,多发生红移。 空间异构
蓝移(紫移):使化合物的吸收波长向短波方向移动效应。 影响蓝移因素: 1)溶剂效应 极性溶剂使n-π*跃迁发生蓝移 2)pH值 pH值减小,苯胺的π-π*吸收带蓝移n—π共轭参与少,使分子整体π共轭效应减少。
分子转动-转动能级(rotation)
分子整体能级 E=Ee+Ev+Er
01
03
02
04
05
分子从基态能级跃迁到激发态能级
当有一频率v , 如果辐射能量hv恰好等于该分子较高能级与较低能级的能量差时,即有:
激发态
基态
ΔE电=1-20eV ΔE振=0.05-1eV ΔE转 在分子能级跃迁所产生的能量变化,电子跃迁能量变化最大,它对应电磁辐射能量主要在区紫外—可见区。

紫外~可见光谱分析

紫外~可见光谱分析
4、n→π* 跃迁:主要是既含有C=C双 键,又含有C=O、C=S、N=O、N=N等杂原子的 有机分子,由于n与π*这两种分子轨道的能量 间距较小,因此,产生这种跃迁需要吸收的光 子在石英紫外区,其波长范围较宽,能被普通 的紫外可见光谱分析所利用。这类跃迁的几率 更低,其摩尔吸光系数约101~102 。
出射狭缝:使分析所需波长的单色光通过。
准光镜 光源
棱镜
成像物镜
入射狭缝
出射狭缝



棱镜单色器的结构原理示意
狭缝大小的影响
紫外-可见分光光度计
单色器中入射狭缝越窄,则光谱带上任 意一点的波长成分越纯,光谱的质量就越高; 出射狭缝越小,则产生单色光的带宽小、单色 性好、但能量小,影响仪器的信噪比。
第三章
第三章 紫外—可见吸收光谱分析(分子)
第一节 概述:
第二节 紫外-可见吸收光谱 与分子结构的关系
第三节 紫外-可见分光光度计的 基本组成与结

第四节 紫外-可见分光光度计的 性能
第五节 紫外-可见吸收光谱法的
第一节 概 述:
紫外~可见吸收光谱分析,简称UV-V IS。
利用分光光度计测量物质对紫外~可 见光的吸光度和通过物质的紫外~可见吸收光 谱来确定物质的组成、含量,推断物质结构的 分析方法,称紫外~可见吸收光谱分析,又称 为紫外~可见分光光度法。
(1)单色器的组成:
紫外-可见分光光度计
入射狭缝:只许光源分一束光进入。
准光镜:将光源产生的光转变为平行光束, 使其照射在色散元件上的入射角均相等。
色散元件:为棱镜或光栅,将复合光色散成 按一定波长顺序排列的单色光。
成像物镜:将色散原件产生的单色平行光, 在其焦平面的不同位置聚焦,成为出射狭缝对应波长 的单色光。

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法
杂原子电负性越大,跃迁所需的能量越大。 λmax CH3Cl:173 nm,CH3Br:204 nm,CH3I: 258 nm
2020/10/25
(3)n →π*跃迁
由n电子从非键轨道向π*反键轨道的跃迁(R 带),基团中 既有π电子,也有n电子,可以发生这类跃迁。如:
C=O, N=N, N=O, C=S
-OH、-OR、 -NH2、 -NR2、 -SH、 -SR、 -Cl、-Br
D. 蓝移
是指一些基团与某些生色团(C=O)连接后,使生色团的吸 收带向短波移动,这种效应成为蓝移,该基团称为蓝移基团 :
-CH3、-CH2CH3、 -O-COCH3
2020/10/25
E. 增色效应
最大吸收带的 εmax 增加时称为增色效应。 F. 减色效应
B. 助色团
是指分子中的一些带有非成键电子对的基团。本身在紫 外-可见光区不产生吸收,但是当它与生色团连接后,使生 色团的吸收带向长波移动,且吸收强度增大。
-OH、-OR、-NHR、-SH、-Cl、-Br、-I
2020/10/25
C. 红移
是指一些带有非成键电子对的基团与生色团连接后,使 生色团的吸收带向长波移动,这种效应成为红移,该基团 称为红移基团:
特点: (a). 与组成π键的杂原子有关,杂原子的电负性越强,
λmax 越小; (b). n →π* 跃迁所需能量最小,大部分吸收在
200 ~ 700 nm; (c). n →π* 跃迁的几率比较小,所以摩尔吸光系数比较
小 ,一般~ 102。
2020/10/25
(4) π→π* 跃迁
是π电子从成键π轨道向反键π*轨道的跃迁,含有π电子 基团的不饱和有机化合物,都会发生π→π*跃迁。如含有 碳碳双键、碳碳叁键的化合物。吸收一般在200 nm附近。

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。

本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。

首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。

在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。

当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。

物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。

为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。

该仪器由光源、样品室、单色器、检测器和计算机等组成。

光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。

样品放在样品室中,光线穿过样品后到达检测器。

检测器将光强度转换为电信号,并将信号输出到计算机进行分析。

紫外可见光谱分析法在各个领域有广泛的应用。

在药物领域,紫外可见光谱可用于药物成分的定量分析。

例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。

在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。

通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。

同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。

此外,紫外可见光谱分析法还在食品行业中得到了应用。

例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。

紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。

综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。

紫外吸收光谱分析原理

紫外吸收光谱分析原理

紫外吸收光谱分析原理
紫外吸收光谱分析是一种常用的分析方法,用于测定物质在紫外光波段的吸收特性。

其原理基于分子在紫外光波长的辐射下,会吸收特定波长的光能,而波长较短的紫外光可以提供充分的能量,使得分子的电子跃迁至能级更高的激发态。

在紫外吸收光谱分析中,常用的仪器是紫外可见分光光度计。

该仪器通过使用一束连续可见光谱范围的光源,并将光分成几种不同波长的组分。

这束光线经过样品后,会发生吸收作用,被吸收的光能量与样品中存在的物质量成正比。

未被吸收的光线则通过光谱仪,最终转化为一个电子信号。

在分析过程中,将样品和参比物(一般是纯溶剂)分别放入两个
光路,并测量它们的吸收谱线。

通过比较两者的吸收度差异,可以得到样品物质在不同波长下的吸收特性。

这种减法方法可以排除溶剂本身的吸收对结果的影响,提高测量的准确性。

紫外吸收光谱分析在许多领域中都有广泛的应用,特别是在药学、生物化学和环境监测等领域。

通过测定样品的吸收谱线,可以定量测定物质的浓度、检测它们的组分以及判断样品的纯度。

同时,该分析方法快速、灵敏度高,无损伤性,不需要特殊样品处理,是一种非常有效的分析手段。

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

• 分子、原子或离子具有不连续的量子化能级,仅当
照射光光子的能量(hυ)与被照射物质粒子的基态和 激发态能量之差相当时才能发生吸收。不同的物质微粒 由于结构不同而具有不同的量子化能级,其能量差也不 相同。所以物质对光的吸收具有选择性。
三、吸收曲线(吸收光谱)
• 吸光度(A)--波长(λ)曲线称--。 • 光吸收程度最大处的波长叫 • 最大吸收波长,用λmax表示。 • 高锰酸钾的λmax=525nm。 • 浓度不同时,光吸收曲线形状不同,最大吸收波长
1852年,比耳(Beer)发现:
• 当单色光通过液层厚度b一
• 定的有色溶液时,溶液的吸
• 光度A与溶液浓度C成正比:

A= lg(I0/I)= k2 C
• --- 比耳定律

( C--有色溶液的浓度 k2--比例常数 )
• 将朗白定律与比耳定律合并起来:

A = lg(I0/I) = K b c
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸收光
颜色
波长范围

40/0n-m450

450-480
绿蓝
480-490
蓝绿
490-500
绿
500-560
黄绿
560-580

580-600

600-650

650-700
二、物质对光的选择性吸收
当一束光照射到某物质或其溶液时,组成该物质的 分子、原子或离子与光子发生“碰撞”,光子的能量就 转移到分子、原子上,使这些粒子由最低能态(基态) 跃迁到较高能态(激发态):M + hυ → M* 这个作用叫物质对光的吸收。

紫外可见吸收光谱分析课件PPT

紫外可见吸收光谱分析课件PPT
紫外可见吸收光谱分析课件
目录
• 引言 • 基础知识 • 紫外可见吸收光谱分析原理 • 实验技术 • 应用实例 • 展望与未来发展
01
引言
课程目标
掌握紫外可见吸收光谱的基本原理和应用 学会使用紫外可见分光光度计进行实验操作 了解光谱分析在各个领域的应用和前景
课程大纲
第一章紫外可见Βιβλιοθήκη 收光谱的基本原理化学计量学
紫外可见吸收光谱在化学计量学中用于多元校正和模型构建,提高分析的准确 性和可靠性。
在生物学研究中的应用
生物分子相互作用
利用紫外可见吸收光谱可以研究生物分子之间的相互作用和结合 方式。
蛋白质结构分析
通过对蛋白质的紫外光谱进行分析,可以推断蛋白质的二级结构。
生物活性物质检测
紫外可见吸收光谱用于检测生物活性物质,如维生素、氨基酸等。
定量分析
通过测量物质在特定波长下的吸光度,可以计算 物质的浓度或含量。
吸收光谱的应用
01
有机化合物的鉴定
02
金属离子的测定
03
生物大分子的研究
通过比较已知化合物的吸收光谱, 可以鉴定未知有机化合物的结构。
通过测量金属离子在特定波长下 的吸光度,可以测定金属离子的 浓度。
通过分析生物大分子在紫外可见 区的吸收光谱,可以研究其结构 和功能。
第二章
紫外可见分光光度计的原理及使用方法
第三章
实验操作及数据分析
第四章
光谱分析的应用及前景
02
基础知识
光的性质
01
02
03
光的波动性
光是一种电磁波,具有波 动性质,包括振幅、频率 和波长等特征。
光的粒子性
光同时具有粒子性质,光 子是光的能量单位,可以 与物质发生相互作用。

紫外吸收光谱分析(UV)

紫外吸收光谱分析(UV)

1 紫外光谱法的特点
(1)所对应的电磁波长较短,能量大,它反映了分 子中价电子能级跃迁情况。主要应用于共轭体系 (共轭烯烃和不饱和羰基化合物)及芳香族化合物 的分析。
(2)电子光谱图比较简单,但峰形较宽。一般来说, 利用紫外吸收光谱进行定性分析信号较少。
(3)紫外吸收光谱常用于共轭体系的定量分析,灵 敏度高,检出限低。
(4) 吸收带分类
5.3 分子结构与紫外吸收光谱
1 有机化合物的紫外吸收光谱
(1) 饱和烃化合物 如甲烷和乙烷的吸收带分别在125nm和135nm。
(2)简单的不饱和化合物
最简单的乙烯化合物,在165nm处有一个强 的吸收带。
(3)共轭双烯
(4) α,β-不饱和羰基化合物
(5)芳香族化合物
1 紫外-可见分光光度计的基本结构 紫外-可见分光光度计由光源、单色器、吸收池、
检测器以及数据处理及记录(计算机)等部分组成。
图2.30 双光束分光光度计的原理图
5.6 紫外吸收光谱的应用
物质的紫外吸收光谱基本上是其分子中生色团及助色 团的特征,而不是整个分子的特征。如果物质组成的变化 不影响生色团和助色团,就不会显著地影响其吸收光谱, 如甲苯和乙苯具有相同的紫外吸收光谱。另外,外界因素 如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合 物吸收光谱的精细结构会消失,成为一个宽带。所以,只 根据紫外光谱是不能完全确定物质的分子结构,还必须与 红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理 方法共同配合才能得出可靠的结论。
ii 二取代苯
在二取代苯中,由于取代基的性质和取代位置 不同,产生的影响也不同。
a 当一个发色团(如 —NO2,—C=O)及 一个助色团(如—OH,—OCH3,—X)相 互处于(在苯环中)对位时,由于两个取代 基效应相反,产生协同作用,故λmax产生 显著的向红位移。效应相反的两个取代基若 相互处于间位或邻位时,则二取代物的光谱 与各单取代物的区别是很小的。

紫外可见吸收光谱分析

紫外可见吸收光谱分析

朗伯-比耳定律,是通过研究光在溶液中的吸收规律 获得的。显示了入射强度为I0的光在通过长度为b, 截面积为s的吸光体的示意图。
dx
I0
I
x0
x
x b
先考察吸收层厚度为dx的小体积单元内的吸收情况。
光强为 I x 的光束通过小体积单元吸收层后,减弱了dI x
dIx /Ix 表示吸收率。
根据量子理论,光束强度可以看作是单位时间、单位 体积内通过光子的总数,
dIx
/ Ix
可以看作是光束通过吸收介质时每个光子被 物质分子吸收的平均概率
从另一方面说,只有在近似分子尺寸的范围内,物质 分子与光子相互碰撞时才有可能捕获光子。
dx
I0
I
x0
x
x b
由于小体积单元无限小,因此在其中吸光的分子截面
积ds对总辐照截面积s之比 ds s 可以视为物质分子捕获光子的概念。
dI x Ix
ds s
若吸收介质内含有多种吸光分子,每一种吸光分子
都要对光吸收做出贡献,总吸收截面就等于各吸光
分子的吸收截面之和:
m
ds aidni
i1
a i 是在小单元体积中第i种吸光分子对指定频率的光
子的吸收截面,
dni是在小单元体积中第i种吸光分子m 的数目,m是能
吸光的分子的种类。因此:
紫外-可见吸收光谱法
物质对光的吸收具有选择性,当改变通过某一物质的 入射光的波长,并且记录该物质在每一波长处的吸光 度时,这样就可以获得该物质的吸收光谱。
由于分子中电子能级的范围刚好在紫外-可见光(200800nm)波段,因此当入射光的波长在200-800nm时, 所获得的吸收光谱就是紫外-可见吸收光谱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LOGO
LOGO
3.2.3 溶剂对紫外吸收光谱的影响
紫外吸收光谱中常用己烷、庚烷、
CH3
环己烷、二氧杂己烷、水、乙醇等
(1)200-400nm 无吸收峰。饱和化合物,单烯。 (2) 270-350 nm有吸收峰(ε=10-100)醛酮 ;n→π* 跃迁产生
的R 带。 (3) 250-300 nm 有中等强度的吸收峰(ε=200-2000) 芳环的特征 吸收(具有精细解构的B带)。 (4) 200-250 nm有强吸收峰(ε104),表明含有一个共轭体系
3.1 概述
紫外-可见吸收光谱法
(Ultraviolet-Visible Absorption Spectrmetry) 是根据溶液中物质的分子或离子对紫外和可见光谱 区辐射能的吸收来研究物质的组成和结构的方法, 也称作紫外和可见吸收光度法。
它是以物质对光的选择性吸收为基础的分析方法。
根据物质所吸收光的波长范围不同,分光光度分析 法又可以分为紫外、可见及红外分光光度法。
溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
二氧杂环己烷
/nm 177 178 204 214 186 339,665 280 300,665 270
max
13000 10000 41 60 1000 150000 22 100 12
跃迁类型
* * n* n*
n*,n*
n*, n* n* n*
由此可以看到:紫外-可见吸收光谱中包含有分子中 存在的化学键信息。其吸收峰的位置与分子中特定的 功能基团密切相关,是有机化合物、无机配位化合物 、生物分子的有效定性、定量分析手段。
LOGO
吸收光谱示意图 1 吸收峰 2. 谷 3. 肩峰 4. 末端吸收
LOGO
3.2.2 有机化合物结构与紫外信息的关系
• D. n→π* 跃迁一般在近紫外区(200 ~ 400 nm), 吸光强度较小。能量最小,含杂原子不饱和基团 (—C ≡N ,C= O ) 跃迁能量大小:
σ→ σ* > n → σ* > π→ π* > n→ π*
一些常见生色团的吸收特性
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
3.2 有机化合物的紫外-可见吸收光谱
3.2.1 分子吸收光谱与电子跃迁
价电子: σ电子 → 饱和的键 π电子 → 不饱和的π键 n 电子 → 孤对电子
分子中分子轨道有成键轨道与 反键轨道:它们的能级高低为:
σ<π<n<π*<σ*
分子的电子能级和跃迁
A.σ→σ* 跃迁主要发生在真空紫外区。 饱和烃只能发生σ→σ* 跃迁。 饱和烃(甲烷,乙烷)能量很高,λ<150nm(远紫
LOGO
(2)助色团:本身无紫外吸收,但可以使生色团吸收峰加 强同时使吸收峰长移的基团。 对有机化合物,一些含有n电子的基团,主要为连有杂原 子的饱和基团 例:—OH,—OR,—NH—,—NR2—,—X
注:它们本身没有生色功能(不能吸收λ>200nm的光) ,但当它们与生色团相连时,就会发生n—π共轭作用, 增强生色团的生色能力(吸收波长向长波方向移动,且吸 收强度增加),这样的基团称为助色团。
(K)带。 共轭二烯:K带(230 nm); 不饱和醛酮:K带230 nm ;R带310-330 nm, 260nm,300 nm,330 nm有强吸收峰,3,4,5个双键的共轭体系。
LOGO
3.2.3紫外吸收光谱中常用的术语
❖ (1)生色团:能吸收紫外-可见光的基团叫生色团。
最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生
紫外光为波长10~400nm的电磁辐射
紫外光
远紫外光为波长10~200nm
近紫外光波长为200~400nm
可见光是指波长为400~780nm的电磁辐射。 它可以被人们的肉眼所感觉
紫外-可见吸收光谱分析的理论基础:不同物质具有不同的分子
结构,对不同波长的光会产生选择性吸收,因而会有不同的
吸收光谱。
LOGO
LOGO
(3)红移和蓝移
由于化合物结构变化(共轭、引入助色团取代 基)或采用不同溶剂后:
吸收峰位置向长波方向的移动,叫红移吸收峰位置向短波方向移动,叫源自移(4)增色效应和减色效应
增色效应:吸收强度增强的效应
减色效应:吸收强度减弱的效应
(5)强带和弱带:
εmax > 105 εmin < 103
→ 强带 → 弱带
3.2 紫外吸收光谱法的基本特点 一、分子吸收光谱 1、分子吸收光谱的产生:由分子能级间的跃迁引起
E分 E电 E振 E转
能级差 E h h c
能级:电子能级、振动能级、转动能级 跃迁:电子受激发,从低能级转移到高能级的过程
LOGO
2.分子吸收光谱的分类:
分子内运动涉及三种跃迁能级,所需能量大小顺序
E电 E振 E转
E电 1 ~ 20ev 0.06 ~ 1.25m
紫外 可见吸收光谱
E振 0.05 ~ 1ev 25 ~ 1.25m
红外吸收光谱
E转 0.005 ~ 0.05ev 250 ~ 25m
远红外吸收光谱
LOGO
3.紫外-可见吸收光谱的产生
由于分子吸收中每个电子能级上耦合有许 多的振-转能级,所以处于紫外-可见光区的 电子跃迁而产生的吸收光谱具有 “带状吸 收” 的特点。
的。这两种跃迁均要求有机物分子中含有不饱和基团。这类
含有π键的不饱和基团称为生色团。简单的生色团由双键或
叁键体系组成,如乙烯基、羰基、亚硝基、偶氮基—N= N—、乙炔基、腈基—C㆔N等。 注:当出现几个发色团共轭,则几个发色团所产生的吸收带 将消失,代之出现新的共轭吸收带,其波长将比单个发色团 的吸收波长长,强度也增强。
外区)
B. n→σ* 跃迁吸收波长仍然在(150 ~250nm)范围,因 此在紫外区不易观察到这类跃迁。 能量较大,λ在150~250nm(真空紫外区)。 含有未共用电子对(即n电子)的原子如:含杂原子 饱和基团(—OH,—NH2)都可以发生 n→σ* 跃迁。
• C.π→π* 跃迁吸收的波长较长,孤立的跃迁一般在 ~200nm左右。体系共轭,E更小,λ更大、能量较 小,含有不饱和键如碳-碳双键、碳-碳三键、氮-氮 双键、碳-氧双键等的有机化合物。
相关文档
最新文档