场效应管组成的电流源

合集下载

场效应管用法

场效应管用法

场效应管用法
以下是 8 条关于场效应管用法的内容:
1. 嘿,你知道场效应管能当开关用吗?就像我们家里的电灯开关一样,轻轻一按,灯就亮或灭。

比如说在一个电机控制电路里,场效应管就能精准地控制电机的启动和停止呢,是不是很神奇呀!
2. 哇塞,场效应管还能用来放大信号哦!这就好比把一个小小的声音变大好多倍。

像在音响系统中,场效应管就能让我们听到更清晰、更响亮的声音,这可太棒啦!
3. 嘿呀,场效应管做电流源那也是杠杠的!可以想象成它是一个稳定的水源,源源不断地提供特定大小的电流呢。

在一些需要稳定电流的电路里,它的作用可大了,你说厉害不厉害?
4. 天哪,场效应管能实现阻抗变换呢!这不就像一个神奇的转换器,把一种阻抗变成另一种。

比如在一些信号传输的场合,它就能很好地完成这个任务,简直妙不可言啊!
5. 你看哦,场效应管还能用来做电压控制呢!就好像你通过遥控来控制电视音量一样。

在一些自动控制的系统里,用它来控制电压,那效果可太好啦,真让人惊叹不已呢!
6. 哎呦喂,场效应管做恒流源也很在行呀!想象一下,它就像个坚定的卫士,始终保持电流不变呢。

在一些对电流稳定性要求高的地方,它可发挥大作用啦,是不是很牛?
7. 嘿哟,场效应管在模拟电路里可重要啦!它就像一个出色的演员,在各种场景里都能大放异彩。

你能在好多复杂的电路里发现它的身影,这多了不起呀!
8. 哇哦,场效应管能用来做逻辑门呢!就和我们玩的逻辑游戏一样有趣。

在数字电路中,它可是重要的组成部分,这真的太有意思啦!
我的观点结论就是:场效应管的用法真的超多,而且都超级实用,每种用法都有其独特的魅力和价值!。

场效应管

场效应管

一、复习引入三极管是电流控制型器件,使用时信号源必须提供一定的电流,因此输入电阻较低,一般在几百~几千欧左右。

场效应管是一种由输入电压控制其输出电流大小的半导体器件,所以是电压控制型器件;使用时不需要信号源提供电流,因此输入电阻很高(最高可达1015Ω),这是场效应最突出的优点;此外,还具有噪声低、热稳定性好、抗辐射能力强、功耗低优点,因此得到了广泛的应用。

按结构的不同,场效应管可分为绝缘栅型场效管(IGFET)和结型场效应管(JFET)两大类,它们都只有一种载流子(多数载流子)参与导电,故又称为单极型三极管。

二、新授(一)N沟道增强型绝缘栅场效应管MOSFET1.结构和符号图1(a)是N沟道增强型绝缘栅场效应管的结构示意图,它以一块掺杂浓度较低的P型硅片作为衬底,利用扩散工艺在P型衬底上面的左右两侧制成两个高掺杂的N 区,并用金属铝在两个N区分别引出电极,分别作为源极s和漏极d ;然后在P型硅片表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏源极之间的绝缘层上再喷一层金属铝作为栅极g,另外在衬底引出衬底引线B(它通常在管内与源极s相连接)。

可见这种管子的栅极与源极、漏极是绝缘的,故称绝缘栅场效应管。

这种管子由金属、氧化物和半导体制成,故称为MOSFET,简称MOS管。

不难理解,P沟道增强型MOS管是在抵掺杂的N型硅片的衬底上扩散两个高掺杂的P区而制成。

(a)N沟道结构示意图(b) N沟道符号(c)P沟道符号图1 N沟道增强型MOS管的结构与符号图1 (b)、(c)分别为N沟道、P沟道增强型MOS管的电路符号。

2.工作原理与特性曲线以N沟道增强型MOS管为例讨论其工作原理。

(1)工作原理工作时,N沟道增强型MOS管的栅源电压u GS和漏源电压u DS均为正向电压。

当u GS=0时,漏极与源极之间无导电沟道,是两个背靠的PN结,故即使加上u DS,也无漏极电流,i D=0,如图2(a)当u GS>0且u DS较小时,在u GS作用下,在栅极下面的二氧化硅层中产生了指向P型衬底,且垂直于衬底的电场,这个电场排斥靠近二氧化硅层的P型衬底中的空穴(多子),同时吸引P型衬底中的电子(少子)向二氧化硅层方向运动。

场效应管

场效应管
特点:(1)当vGS 为定值
D (mA) 可变电阻区
i
uGS= 0V uGS = -1V uGS = -2V uGS= -3V
u
DS
时,iD 是 vDS 的线性函数,
管子的漏源间呈现为线
性电阻,且其阻值受 vGS
控制。 (2)管压降vDS 很小。
沟道未 夹断
用途:做压控线性电阻和无触点的、闭合状态
的电子开关。
gm
VDS
2、 极间电容: Cgs和Cgd约为1~3pF,和 Cds约为
0.1~1pF。高频应用时,应考虑极间电容的影响。
vDS 3、 输出电阻rd:rd iD
三、极限参数
VGS
1、 最大漏极电流IDM:管子正常工作时漏极电流 的上限值。
2、 最大耗散功率 PDM :决定于管子允许的温升。
3、当vGD< VGS(off)时,vGS对iD的控制作用
当vGD = vGS - vDS <VGS(off) 时,即vDS > vGS VGS(off) > 0,导电沟道夹断, iD 不随vDS 变化 ; 但vGS 越小,即|vGS| 越大,沟道电阻越大,对同 样的vDS , iD 的值越小。所以,此时可以通过改变
③ 场效应管的输入电阻远大于晶体管的输入电
阻,其温度稳定性好、抗辐射能力强、噪声系数小,
但易受静电影响。
④ 场效应管的漏极和源极可以互换,而互换后 特性变化不大;晶体管的集电极和发射极互换后特 性相差很大,只有在特殊情况下才互换使用。但要 注意的是,场效应管的某些产品在出厂时,已将衬 底和源极连接在一起,此时,漏极和源极不可以互 换使用。
JFET 结型
9.2 结型场效应管
一、结型场效应管的结构

场效应管

场效应管

MOS管分为四种类型:N沟道耗尽型管、N沟道增强型管、P沟道耗尽型管和 P沟道增强型管。
MOS管的特点
输入阻抗高、栅源电压可正可负、耐高温、易 集成。
N沟道增强型绝缘栅场效应管 (1)结构与符号 增强型的特点
1. 工作原理
绝缘栅场效应管利用 UGS 来控制“感应电荷”
的多少,改变由这些“感应电荷”形成的导电沟道的
一、结型场效应管(JFET)
1 结构与工作原理 (1)构成 结型场效应管又有N沟道和P沟道两种类型。
N沟道结型场效应管的结构示意图
结型场效应管的符号
(a)N沟道管
(b) P沟道管
(2)工作原理 N· JFET的结构及符号
在同一块N型半导体上制作两 个高掺杂的P区,并将它们连 接在一起,引出的电极称为栅 极G,N型半导体的两端引出 两个电极,一个称为漏极D, 一个称为源极S。P区与N区交 界面形成耗尽层,漏极和源极 间的非耗尽层区域称为导电沟 道。
直流输入电阻 RGS :其等于栅源电压与栅极电流之比,结型管的 RGS 大于10^7 欧,而MOS管的大于10^9欧。
二、交流参数
1. 低频跨导 gm 用以描述栅源之间的电压 UGS 对漏极电流 ID 的控 制作用。 ΔI D gm ΔU GS U DS 常数 单位:ID 毫安(mA);UGS 伏(V);gm 毫西门子(mS)
绝缘栅
B端为衬底,与源极短接在一起。
N沟道耗尽型MOS管的结构与符号
(2)N沟道的形成 N沟道的形成与外电场对N沟道的影响 控制原理分四种情况讨论:
① uGS 0时,来源于外电场UGS正极的正电荷使SiO2中原有的正电荷数目增加, 由于静电感应,N沟道中的电子随之作同等数量的增加,沟道变宽,沟道电阻减 小,漏电流成指数规律的增加。

场效应管(建议看)

场效应管(建议看)
iD
0V –1V –2V uGS = – 3 V
uDS
IDSS
可 变 电 阻 区
预夹断轨迹,uGD=UGS(off)
恒 流 区
击 穿 区
i D gm U GS
夹断电压
夹断区(截止区)
夹断电压为负
∴栅源电压越负,电流iD越小。
①夹断区: i D 0 UGS<UGS(off) ②可变电阻区(预夹断轨迹左边区域):
之间的函数关系,即
iD f (uGS ) |U DS 常数
N沟道结型场效应管UGS=0时,存在导电沟道,电流最大;
栅源之间加负向电压UGS<0直至沟道消失,电流为零。
UGS=0V -1V -2V -3V 夹断电压
U GS ( off ) 0
栅源电压越负,电流越小 恒流区条件:
U GS U GS (off )
3、特性曲线与电流方程
转移特性 输出特性曲线
N沟道增强型MOS管在UGS=0时,无导电沟道,电流为零。
UGS加正向电压至开启电压后,电流随UGS的增大而增大。
VDS 为正的
6V 5V 4V 3V 开启电压
U GS ( th ) 0
栅源电压越正,电流越大 恒流区条件:
U GS U GS (th )
增强型N沟道
耗尽型N沟道
增强型P沟道 耗尽型P沟道
说明:
1、栅极用短线和沟道隔开,表示绝缘栅; 2、箭头:由P区指向N区; 3、虚线:增强型MOS管; 实线:耗尽型MOS管。
二、N沟道增强型MOS管的工作原理
在通常情况下,源极一般都与衬底相连,即UBS=0。 为保证N沟道增强型MOS管正常工作,应保证: ① UGS=0时,漏源之间是两只背向的PN结,不管UDS 极性 如何,其中总有一个PN结反偏,所以不存在导电 沟道。UGS必须大于0(UGS>0)管子才能工作。 ②漏极对源极的电压UDS必须为正值(UDS>0)。这样在漏 极电压作用下,源区电子沿导电沟道行进到漏区,产 生自漏极流向源极的电流。

恒流源工作原理

恒流源工作原理

恒流源工作原理
恒流源是一种电子元件,其主要功能是提供稳定的电流输出。

在许多电路中,需要确保电流始终保持恒定,这就需要借助恒流源来实现。

恒流源的工作原理非常简单,但却非常重要。

恒流源通常由一个电流源和一个电阻组成。

电流源会向电路提供恒定的电流,而电阻则起到限制电流的作用。

当电路中的电阻值发生变化时,恒流源会自动调整输出电压,以确保电流保持恒定。

这种自调节的特性使得恒流源在许多电子设备中得到广泛应用。

在实际电路中,恒流源可以通过不同的方式实现。

其中一种常见的方式是使用场效应管。

场效应管可以根据控制电压的变化来调节电流输出,从而实现恒流源的功能。

另一种方式是使用运算放大器。

运算放大器可以通过负反馈来调节输出电压,使得输出电流保持恒定。

除了上述方法外,还有一种常见的实现恒流源的方式是使用二极管。

二极管在正向工作时具有恒定的电压降,因此可以通过适当连接来实现恒流源的功能。

这种方法简单、成本低廉,因此在许多电子设备中得到广泛应用。

总的来说,恒流源是一种非常重要的电子元件,它可以确保电路中的电流始终保持恒定。

通过不同的实现方式,恒流源可以在各种电子设备中发挥重要作用。

在设计电路时,合理选择恒流源的类型和
参数,可以有效提高电路的稳定性和可靠性。

希望通过本文的介绍,读者对恒流源的工作原理有了更深入的了解。

模电课件 14 场效应管

模电课件 14 场效应管
§1.4 场效应管
学习目标 1.熟悉场效应管的结构、分类 2.了解场效应管的的工作原理、主要参数和应用
学习重点
1. 绝缘栅型场效应管的结构特点 2. 绝缘栅型场效应管的特性曲线
§1.4 场效应管
场效应管(FET)是利用输入回路的电场效应来 控制输出回路电流的一种半导体器件,由于它仅靠一 种载流子导电,又称单极型晶体管。
符号
(2)工作原理 ①当加uDS时,若 uGS=0
两个PN结背靠背,不存在导电沟道,即iD=0;
2020/1/12
模电课件
②uDS=0,uGS>0
uGS排斥SiO2附近的空穴,剩 下不能移动的离子,形成耗尽 层;
uDSuGSS源自GDN+
N+
P型衬底
随着uGS增大, 衬底的自由电子吸引到耗尽层与绝缘层之间,形成一个 N型薄层,即反型层,也是d-s之间的导电沟道;
较大
不受静电影响
几兆欧以上 漏极与源极可以互换 使用
较小
易受静电影响
2020/1/12
模电课件
参考资料:
晶体管噪声
在晶体管内,载流子的不规则运动引起不规则变化的电流起伏,因而产生不规 则变化的电压起伏,这种不规则变化的电流和电压形成晶体管的噪声。晶体管噪声 是晶体管的重要参数。
晶体管按工作原理可分为两大类,一类是双极型晶体管;另一类是单极型晶体 管,即场效应晶体管(FET)。
输出特性曲线
uDS(V)
总结:N沟道增强型
2020/1/12
导电沟道是N型,所以衬底是P型。
增强型:uGS 0,没沟道, 要 产 生 沟 道 , 必 须 加 足够 高uGS
iD 三段:表uGS 0, 沟道没,

电子电工学——模拟电子技术 第五章 场效应管放大电路

电子电工学——模拟电子技术 第五章 场效应管放大电路
1. 最大漏极电流IDM
场效应管正常工作时漏极电流的上限值。
2. 最大耗散功率PDM
由场效应管允许的温升决定。
3. 最大漏源电压V(BR)DS 当漏极电流ID 急剧上升产生雪崩击穿时的vDS值。
4. 最大栅源电压V(BR)GS
是指栅源间反向电流开始急剧上升时的vGS值。
5.2 MOSFET放大电路
场效应管是电压控制器件,改变栅源电压vGS的大小,就可以控制漏极 电流iD,因此,场效应管和BJT一样能实现信号的控制用场效应管也 可以组成放大电路。
场效应管放大电路也有三种组态,即共源极、共栅极和共漏极电路。
由于场效应管具有输入阻抗高等特点,其电路的某些性能指标优于三极 管放大电路。最后我们可以通过比较来总结如何根据需要来选择BJT还
vGS<0沟道变窄,在vDS作用下,iD 减小。vGS=VP(夹断电压,截止电 压)时,iD=0 。
可以在正或负的栅源电压下工作,
基本无栅流。
2.特性曲线与特性方程
在可变电阻区 iD
Kn
2vGS
VP vDS
v
2 DS
在饱和区iD
I DSS 1
vGS VP
2
I DSS KnVP2称为饱和漏极电流
4. 直流输入电阻RGS
输入电阻很高。一般在107以上。
二、交流参数
1. 低频互导gm 用以描述栅源电压VGS对漏极电流ID的控制作用。
gm
iD vGS
VDS 常数
2. 输出电阻 rds 说明VDS对ID的影响。
rds
vDS iD
VGS 常数
3. 极间电容
极间电容愈小,则管子的高频性能愈好。
三、极限参数
D iD = 0

模拟电路场效应管及其基本放大电路

模拟电路场效应管及其基本放大电路

UGS(off)
信息技术学院
3. 特性
(1)转移特性
在恒流区
uGS 2 iD I DSS (1 ) U GS(off)
漏极饱 和电流
(U GS (off ) uGS 0)
夹断 电压
信息技术学院
(2)输出特性
iD f (uDS ) U GS 常量
IDSS g-s电压 控制d-s的 等效电阻
信息技术学院
P 沟道场效应管 D
P 沟道场效应管是在 P 型 硅棒的两侧做成高掺杂的 N 型区(N+),导电沟道为 P 型, 多数载流子为空穴。 d
P G
N+ 型 沟 道 N+
g
S
s 符号
信息技术学院
2. 工作原理
(1)栅-源电压对导电沟道宽度的控制作用
uDS=0
UGS(off)
沟道最宽 (a)uGS = 0
2)耗尽型MOS管
夹断 电压
信息技术学院
各类场效应管的符号和特性曲线
种类 结型 N 沟 道 符号 D 转移特性 ID /mA IDSS 漏极特性 UGS= 0V
ID
-
G
S D
UGS(off) O
UGS
O + + + ID O
o
UDS
ID
结型
P 沟 道
O UGS(off) UGS
G
IDSS
S D B
iD f (uGS ) U DS 常量
当场效应管工作在恒流区时,由于输出特性曲线可近似为横轴的一组平行 线,所以可用一条转移特性曲线代替恒流区的所有曲线。输出特性曲线的 恒流区中做横轴的垂线,读出垂线与各曲线交点的坐标值,建立uGS,iD坐 标系,连接各点所得的曲线就是转移特性曲线。

第3章:场效应管详解

第3章:场效应管详解
第三章
3.0
场效应管
概述
3.1
3.2
MOS场效应管
结型场效应管
3.0 概 述
场效应管是一种利用电场效应来控制电流的半导
体器件,也是一种具有正向受控作用的半导体器件。
它体积小、工艺简单,器件特性便于控制,是目前制 造大规模集成电路的主要有源器件。
场效应管与三极管主要区别:
• 场效应管输入电阻远大于三极管输入电阻。
由于MOS管COX很小,因此当带电物体(或人) 靠近金属栅极时,感生电荷在SiO2绝缘层中将产生
很大的电压VGS(=Q /COX),使绝缘层击穿,造成
MOS管永久性损坏。
MOS管保护措施:
分立的MOS管:各极引线短接、烙铁外壳接地。 MOS集成电路:
D1
T
D2
D1 D2一方面限制VGS间 最大电压,同时对感 生 电荷起旁路作用。
VGS > VGS(th) 条件: V DS > VGS–VGS(th) 特点:
0
VDS /V
ID只受VGS控制,而与VDS近似无关,表现出类 似三极管的正向受控作用。 考虑到沟道长度调制效应,输出特性曲线随 VDS的增加略有上翘。
注意:饱和区(又称有源区)对应三极管的放大区。
数学模型:
工作在饱和区时, MOS 管的正向受控作用,服 从平方律关系式: n COXW ID (VGS VGS(th) ) 2 2l 若考虑沟道长度调制效应,则ID的修正方程:
• 场效应管是单极型器件(三极管是双极型器件)。
• 场效应管受温度的影响小(只有多子漂移运动形成电流)。
一、场效应管的种类
绝缘栅型场效应管MOSFET 按结构不同分为 N沟道 结型场效应管JFET P沟道 N沟道 耗尽型(DMOS) P沟道

场效应管

场效应管


2. 耗尽型绝缘栅场效应管
如果MOS管在制造时导电沟道就已形成,称为 耗尽型场效应管。
(1 ) N沟道耗尽型管 SiO2绝缘层中 掺有正离子
符号: D
G S N沟道 G
D
预埋了N型 导电沟道
S P沟道
2.7.1 场效应管的主要参数
(1) 开启电压 UGS(th):是增强型MOS管的参数 (2) 夹断电压 UGS(off): 是结型和耗尽型 (3) 饱和漏电流 IDSS: MOS管的参数
A
U DD
u DS
u GS
u DS u GS U GS(off)
(c)
(d)
u DS uGS U GS(off)
沟道预夹断
沟道夹断
综上分析可知
• 沟道中只有一种类型的多数载流子参与导电, 所以场效应管也称为单极型三极管。
• JFET栅极与沟道间的PN结是反向偏置的,因 此iG0,输入电阻很高。 • JFET是电压控制电流器件,iD受uGS控制。 • 预夹断前iD与uDS呈近似线性关系;预夹断后, iD趋于饱和。
(2)转移特性曲线
转移特性是指在漏源电压uDS为某一常数时,uGS与iD之间的关系。
iD f (uGS ) u
DS 常数
在FET输出特性的饱和区(UGS(off)≤uGS≤0内),iD随uGS的增加 (负数减小)近似按平方上升。 i mA
D
漏极饱 和电流
I DSS
C B A
D
6 5 4 3 2 1
Rg1 Rg2
Rg2 Rg1 Rg2
VDD
U S I D RS
VDD I D RS
将已知的UGS(off)、IDSS代入方程 ,可求得静态时漏极电流ID 和栅源电压UGS。引入Rg3有利于 提高输入电阻。

第4讲晶体三极管及场效应管

第4讲晶体三极管及场效应管

2. 绝缘栅型场效应管
增强型管
大到一定 值才开启
高掺杂 耗尽层 空穴
衬底 SiO2绝缘层
反型层
uGS增大,反型层(导电沟道)将变厚变长。当 反型层将两个N区相接时,形成导电沟道。
动画演示
增强型MOS管uDS对iD的影响
刚出现夹断
iD随uDS的增 大而增大,可
uGD=UGS(th), 预夹断
变电阻区
夹断 电压
在恒流区iD时 ID, O(UuGGSS(th)1)2 式中 IDO为uGS2UGS(t时 h) 的 iD
3. 场效应管的分类 工作在恒流区时g-s、d-s间的电压极性
结型PN沟 沟道 道((uuGGS> S<00, ,uuDDS< S>00)) 场效应管 绝缘栅型 耗 增尽 强型 型 PPN N沟 沟 沟 沟道 道 道 道((((uuuuG GG GSS< 极 SS> 极00, 性 , 性uu任 D任 DS< S> 意 意 00)u)u, , DDS< S>00))


低频跨导:
夹断区(截止区)
iD几乎仅决 定于uGS
击 穿 区
夹断电压
gm
iD uGS
UDS常量
不同型号的管子UGS(off)、IDSS 将不同。
动画演示Байду номын сангаас
(1)可变电阻区
i
是uDS较小,管子尚未预夹断时
的工作区域。虚线为不同uGS是预夹
断点的轨迹,故虚线上各点
uGD=UGS(off),则虚线上各点对应的 uDS=uGS-UGS(off)。
uDS的增大几乎全部用 来克服夹断区的电阻
iD几乎仅仅 受控于uGS,恒 流区
用场效应管组成放大电路时应使之工作在恒流区。N 沟道增强型MOS管工作在恒流区的条件是什么?

mos管g极和s极短接的作用

mos管g极和s极短接的作用

mos管g极和s极短接的作用mos管是一种常用的电子元件,它由g极、d极和s极组成。

当g 极和s极短接时,会产生一些特殊的作用。

本文将讨论这种作用及其应用领域。

让我们了解一下mos管的基本结构。

mos管是一种金属-氧化物-半导体场效应管,它通过控制g极电压来控制d极电流。

当g极和s极短接时,可以发生以下几种作用:1. 零电流模式:当g极和s极短接时,mos管处于关闭状态,不会通过任何电流。

这种模式常用于数字电路中的逻辑门实现。

2. 零电压模式:当g极和s极短接时,mos管的d极电压接近于零,这使得mos管可以被用作电阻。

这种模式常用于模拟电路中的可变电阻器。

3. 零电阻模式:当g极和s极短接时,mos管的内部电阻非常小,可以忽略不计。

这使得mos管可以用作开关,从而控制电路的通断。

这种模式常用于功率放大器和开关电源等应用中。

除了以上几种基本作用外,mos管的g极和s极短接还可以产生其他一些特殊的作用。

1. 高频放大器:当mos管的g极和s极短接时,可以实现较高的频率响应。

这使得mos管成为高频放大器中的重要元件。

2. 电压控制振荡器:当mos管的g极和s极短接时,可以通过改变g极电压来控制振荡器的频率。

这种应用广泛用于无线通信系统中的频率合成器。

3. 电流源:当mos管的g极和s极短接时,可以将mos管用作电流源,提供稳定的电流输出。

这种应用常见于模拟电路中的偏置电流源。

4. 双极性逻辑门:当mos管的g极和s极短接时,可以实现双极性逻辑门的功能。

这种逻辑门可以处理正逻辑和反逻辑的信号,具有更灵活的应用性。

总结起来,mos管的g极和s极短接可以产生多种作用,包括零电流模式、零电压模式、零电阻模式等。

此外,通过改变g极电压,还可以实现高频放大器、电压控制振荡器、电流源和双极性逻辑门等功能。

这些作用广泛应用于各个领域,包括数字电路、模拟电路、无线通信系统等。

在实际应用中,我们可以根据具体需求选择合适的mos管类型和工作模式。

场效应管及其基本放大电路

场效应管及其基本放大电路

场效应管及其基本放大电路3.2.3.1 场效应管( FET )1.场效应管的特色场效应管出生于 20 世纪 60 年月,它主要拥有以下特色:①它几乎仅靠半导体中的多半载流子导电,故又称为单级型晶体管。

②场效应管是利用输入回路的电场效应来控制输出回路的电流,并以此命名。

③输入回路的内阻高达 107 -1012Ω;此外还拥有噪声低、热稳固性好、抗辐射能力强、耗电小,体积小、重量轻、寿命长等特色,因此宽泛地应用于各样电子电路中。

场效应管分为结型和绝缘栅型两种不一样的构造,下边分别加以介绍。

2.结型场效应管⑴结型场效应管的符号和N 沟道结型场效应管的构造结型场效应管(JFET)有 N 沟道和 P 沟道两种种类,图3-62(a) 所示为它们的符号。

N沟道结型场效应管的构造如图 3-62(b) 所示。

它在同一块 N型半导体上制作两个高混杂的P 区,并将它们连结在一同,引出电极,称为栅极 G; N 型半导体的两头分别引出两个电极,一个称为漏极 D,一个称为源极 S。

P 区与 N 区交界面形成耗尽层,漏极与源极间的非耗尽层地区称为导电沟道。

(a) 符号(b)N 沟道管的构造表示图图 3-62 结型场效应管的符号和构造表示图⑵结型场效应管的工作原理为使 N沟道结型场效应管正常工作,应在其栅 - 源之间加负向电压(即U GS0),以保证耗尽层蒙受反向电压;在漏- 源之间加正向电压u DS , 以形成漏极电流i D。

下边经过栅-源电压 u GS和漏-源电压 u DS对导电沟道的影响,来说明管子的工作原理。

①当 u DS=0V(即D、S短路)时, u GS对导电沟道的控制作用ⅰ当 u GS=0V时,耗尽层很窄,导电沟道很宽,如图3-63(a)所示。

ⅱ当 u GS增大时,耗尽层加宽,沟道变窄(图(b) 所示),沟道电阻增大。

ⅲ当u GS增大到某一数值时,耗尽层闭合,沟道消逝(图(c) 所示) , 沟道电阻趋于无穷大,称此时u GS的值为夹断电压U GS( off )。

4.1_MOS场效应晶体管的结构工作原理和输出特性

4.1_MOS场效应晶体管的结构工作原理和输出特性

B
N沟道增强型MOSFET的符号如
左图所示。左面的一个衬底在内部与
S
源极相连,右面的一个没有连接,使
用时需要在外部连接。 动画2-3
4.1.2 N沟道增强型MOSFET的工作原理
对N沟道增强型MOS场效应三极管的工作原理,分两个方面进行
讨论,一是栅源电压UGS对沟道会产生影响,二是漏源电压UDS也会对 沟道产生影响,从而对输出电流,即漏极电流ID产生影响。
3. N沟道增强型MOSFET的特性曲线
N沟道增强型MOSFET的转移特性曲线有两条,转移特性曲线和漏
极输出特性曲线。
1.转移特性曲线 ID/ m A
N沟道增强型MOSFET的转移特 性曲线如左图所示,它是说明栅源电
U DS 10V
压UGS对漏极电流ID的控制关系,可
4
用这个关系式来表达,这条特性曲线
S iO 2
取一块P型半导体作为衬底,用 B表示。
用氧化工艺生成一层SiO2 薄膜 绝缘层。
然后用光刻工艺腐蚀出两个孔。
扩散两个高掺杂的N型区。从而 形成两个PN结。(绿色部分)
B
从N型区引出电极,一个是漏极
D,一个是源极S。
D
B
G
G
精选可编辑ppt
S
7
D
在源极和漏极之间的绝缘层上镀
一层金属铝作为栅极G。
⑥ 最大漏极功耗PDM
最大漏极功耗可由PDM= VDS ID决定,与双极型 三极管的PCM相当。
精选可编辑ppt
25
(2)场效应三极管的型号
场效应三极管的型号, 现行有两种命名方法。其一是与 双极型三极管相同,第三位字母J代表结型场效应管,O代 表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反 型层是N沟道;C是N型硅P沟道。例如, 3DJ6D是结型N沟 道场效应三极管,3DO6C是绝缘栅型N沟道场效应三管。

放大电路计算题

放大电路计算题

放大电路计算题 练习题3一、计算分析题(每题1分)1. 图示硅三极管放大电路中,V CC =30V ,R C =10kΏ,R E =2.4 kΏ,R B =1MΏ,β=80,BEQ U =0.7V Ω=200'bb r ,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ ,,I CQ 、U CEQ 。

(2)若输入幅度为0。

1V 的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i 的相位关系;(3)求输入电阻R i 和输出电阻R o1、R o2.图号3226解:(1)Ak k VV R R U V I E B BE CC BQ μβ5.244.28110007.030)1(=Ω⨯+Ω-=++-=mA A I I BQ CQ 96.15.2480=⨯==μβV k k mA V R R I V U E C CQ CC CEQ 7.5)4.210(96.130)(=Ω+Ω⨯-=+-≈(2) Ω≈⨯+Ω=++=k mAmVI U r r E T bb be 3.196.12681200)1(Q 'β 当从u o1输出时,放大电路为共射组态,故输出电压u o1与输入电压u i 反相,且1.44.2813.11080)1(11-=Ω⨯+ΩΩ⨯-=++-==k k k R r R u u A E be C i o u ββV V A U U u im om 41.01.41.011=⨯=⨯=[][]Ω≈Ω⨯+ΩΩ=++=k k k M R r R R E be B i 6414.2813.1//1)1(//βΩ=≈k R R C o 101当从u o2输出时,放大电路为共集组态,故输出电压u o2与输入电压u i 同相,且99.04.2813.14.281)1()1(122≈Ω⨯+ΩΩ⨯=+++==k k k R r R u u A E be E o u ββ 或 12≈u A VV A U U u im om 099.099.01.022=⨯=⨯=Ω≈ΩΩ=+=16813.1//4.21//2k k r R R be E o β 输入电阻不变,为164k Ω计算的最后结果数字:I CQ =1.96mA , I BQ =24。

场效应管

场效应管

iD
d
6
4
2
可 6 变 电 恒流区 4 阻 区
2
vGS
-4 -2 0 2 0
截止区
vDS
2 4 6 8
其它类型MOS管
(2)P沟道增强型:VGS = 0时,ID = 0 开启电压小于零,所以只有当VGS < 0时管 子才能工作。
s P
g
d
P PN结
N 衬底
其它类型MOS管
(3)P沟道耗尽型:制造时在栅极绝缘层中掺有大量 的负离子,所以即使在VGS=0时,由于负离子的作用, 两个P区之间存在导电沟道(类似结型场效应管)。
ID
工作原理
(c) VDS夹端长度 场强 ID=IDSS基本不变。
ID
3. 输出特性
输出特性: 表示vGS一定时,iD与vDS之间的变化关系。
iD f (vDS ) V
GS
iD
(1) 截止区(夹断区) 如果VP= -4V, VGS= -4V以下区域就是 截止区 VGS VP ID=0
2. 工作原理
ID
(1)VGS对导电沟道的影响:
(a) VGS=0,VDS=0,ID=0
栅源之间是反偏的PN结, RGS>107,所以IG=0
工作原理
(b) 0< VGS < VP VGS 耗尽层变宽
(c) |VGS | = VP , 导电沟道被全夹断 VP(VGS(OFF) ):夹断电压
可 6 变 电 4 阻 区
V -VDS = VP GS
预夹端轨迹
V =0V GS
恒流区
V =-2V GS
截止区
2 V =-4V GS 0 2 4 6 8 10 12 vDS

场效应管的控制方式

场效应管的控制方式

场效应管的控制方式场效应管(Field Effect Transistor,简称FET)是一种控制电流的半导体器件,它具有多种控制方式,包括电压控制、电流控制和光控制等。

本文将以场效应管的控制方式为标题,介绍这些控制方式的原理和应用。

一、电压控制方式:电压控制是场效应管最常见的控制方式之一。

在电压控制方式下,场效应管的栅极电压(Gate Voltage)决定了其导通与否。

当栅极电压小于截止电压时,场效应管处于截止状态,导通电流极小或为零;而当栅极电压大于临界电压时,场效应管进入饱和状态,导通电流达到最大值。

因此,通过调整栅极电压的大小,可以控制场效应管的导通与截止,从而实现对电流的控制。

电压控制方式被广泛应用于各种电子设备中。

例如,场效应管可以作为开关使用,在数字电路中实现逻辑门的功能。

此外,它还可以用于放大电路中,调节电压增益。

通过控制栅极电压的大小,可以实现对信号的放大或衰减。

二、电流控制方式:电流控制是场效应管的另一种重要控制方式。

在电流控制方式下,场效应管的栅极电流(Gate Current)决定了其导通与否。

当栅极电流小于截止电流时,场效应管处于截止状态;而当栅极电流达到临界电流时,场效应管进入饱和状态,导通电流达到最大值。

因此,通过调整栅极电流的大小,可以控制场效应管的导通与截止,从而实现对电流的控制。

电流控制方式常用于精密电路中,例如仪器仪表和传感器等。

场效应管可以作为电流源使用,提供稳定的电流输出。

同时,它还可以用于电流放大电路,增强电流信号的幅度。

三、光控制方式:光控制是场效应管的一种特殊的控制方式。

在光控制方式下,场效应管的导通与否受到光照强度的影响。

光照射在场效应管的栅极上,通过光电效应,产生电子-空穴对。

当光照强度足够大时,电子-空穴对的产生会改变栅极电势,从而影响场效应管的导通特性。

光控制方式广泛应用于光电器件中。

例如,场效应管可以用于光电传感器,实现对光照强度的测量。

mos管瞬间电流过大

mos管瞬间电流过大

mos管瞬间电流过大MOS管,即金属氧化物半导体场效应管,是一种常用的电子器件,广泛应用于各个领域。

然而,由于其特殊的结构和工作原理,MOS 管在一些特定情况下可能会出现瞬间电流过大的问题,给设备带来潜在的危害。

MOS管是一种三端器件,由栅极、漏极和源极组成。

其工作原理是通过栅极电压来控制漏极-源极之间的电流。

当栅极电压高于阈值电压时,MOS管处于导通状态,电流可以从漏极流向源极;当栅极电压低于阈值电压时,MOS管处于截止状态,电流无法通过。

在实际应用中,由于各种因素的影响,MOS管可能会出现瞬间电流过大的情况。

这种情况通常发生在MOS管从截止状态切换到导通状态的瞬间。

在切换瞬间,由于MOS管内部电容的充放电过程,电流可能会短暂地达到较高的数值,这就是瞬间电流过大的原因。

瞬间电流过大可能会对电路和设备产生不良的影响。

首先,电流过大会导致MOS管内部的电压快速上升,可能引起电压峰值过高的问题,从而导致MOS管击穿或损坏。

其次,大电流通过MOS管时会产生较大的功率损耗,导致设备过热或短路等问题。

此外,瞬间电流过大还可能引起电磁干扰或电磁兼容性问题,影响设备的正常工作。

为了解决瞬间电流过大的问题,可以采取以下几种方法。

首先,可以通过改变电路设计来降低切换瞬间的电流。

比如,可以采用电流源、电阻等元器件来限制电流的上升速度,减小瞬间电流的数值。

其次,可以加入适当的滤波电路来减少电流上升的峰值。

此外,还可以通过调整MOS管的阈值电压、增加栅极电压的上升时间等方式来改善瞬间电流过大的问题。

除了采取上述措施外,合理选择MOS管的参数也是避免瞬间电流过大的重要手段。

例如,可以选择具有较低导通电阻的MOS管,以减小电流过大的风险。

此外,还可以根据具体应用场景,选择适当的MOS管型号和尺寸,以满足电流和功耗的要求。

总结起来,MOS管瞬间电流过大是由于其特殊的结构和工作原理所导致的。

瞬间电流过大可能会对电路和设备产生不良的影响,因此需要采取相应的措施来解决这一问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档