含有故障的齿轮系统扭转振动分析

含有故障的齿轮系统扭转振动分析
含有故障的齿轮系统扭转振动分析

第22卷 第4期2007年12月 北京机械工业学院学报

Journa l of Be ijing Institute o fM ach i nery

V o.l22N o.4

D ec.2007

文章编号:1008-1658(2007)04-0013-05

含有故障的齿轮系统扭转振动分析

朱艳芬1,陈恩利1,申永军1,王翠艳2

(1.石家庄铁道学院 机械工程分院,石家庄050043;2.石家庄铁道学院 工程训练中心,石家庄050043)

摘 要:建立了故障单自由度齿轮系统扭转振动的数学模型,采用加入脉冲的形式进行故障模拟,并利用数值方法进行对该模型进行仿真,进行定性研究。作出了系统模型的幅频响应曲线,与无故障时的曲线相比较,发现在低速时脉冲对系统的影响较大。另外,还对该模型进行了参数研究,分别比较了在不同阻尼比和不同激振力情况下的脉冲对系统幅频曲线的影响。

关 键 词:单自由度直齿轮系统;扭转振动;数值方法;幅频响应曲线;参数研究

中图分类号:TH113 文献标识码:A

Analysis of torsional vibration of a spur gear system w ith faults

ZHU Y an-fen1,C H E N Een-li1,SH E N Yong-jun1,WANG Cu-i yan2

(1.Schoo l ofM echan i calEng i neeri ng,Shiji az huang Rail w ay Ins tit u te,Sh iji az huang050043;

2.Eng i neeri ng Tra i n i ng C enter,Sh iji az hu ang Rail w ay I n stitute,Sh ijiazhuang050043)

Abstract:The torsional v i b ration m odel o f the spur sing le-DOF gear syste m w it h fau lts is bu il,t and the for m o f the pulses is adop ted to si m u late the faults.Th i s m ode l is ca lculated by usi n g the num erica l m ethod.The response o f the m ode l is ana lyzed,and the Am p litude frequency Curves are p l o tted,and t h e greater fl u ence of the pu lse is found in the lo w frequency.The para m eters of the mode l are researched, and the Am plitude-frequency Curves under vari o us da m pi n g ratio and under vari o us exc iting-v ibration force are co m pared respectively.

Key w ords:spur si n gle-DOF gear syste m;torsi o na l v ibration;num erica lm ethod;t h e Am plitude-fre-quency Curves;para m eters study

齿轮作为机械系统中的重要传动装置,在机械、化工、航天等行业的装备中起着非常关键的作用。为了满足航空、航天及机器人等技术发展的需要,采用传统的线性分析和控制理论已难以满足这一要求。由于零部件间的间隙、运动负重的摩擦及时变刚度等因素,实际的齿轮传动系统都是非线性系统,传统的线性分析和控制是对其进行的一种近似处理,只有对齿轮传动系统实施非线性分析和非线性控制才能获得精度高、振动小和噪声低等性能的齿轮传动系统。齿轮的工作状态正常与否对运动和动力的传输具有重要的影响[1]。因此,研究齿轮系统的动力学与故障诊断具有重要的理论价值和工程意义。

关于带故障的齿轮系统动力学建模及动力学分析则见于Parey的文章[2],其中的缺陷主要包括摩擦、磨损、点蚀和剥落等,介绍了带有故障的各种齿轮动力学模型等,另外,Kuang[3]等人建立了考虑齿面磨损的齿轮动力学方程,齿面磨损会影响啮合过程中的齿面轮廓,从而会影响到啮合刚度、阻尼力以及摩擦力等,这样将会使得系统的方程非常复杂。

本文从单自由度齿轮系统入手,经过模型简化,模拟了齿轮系统故障引起的刚度变化后的齿轮模型,并定性地分析了其动力学特性。

1故障单自由度齿轮系统理论模型

首先建立正常直齿轮副扭转振动的数学模型。扭转振动模型是仅考虑系统扭转振动的模型,在齿轮系统的振动分析中,若不考虑传动轴的横向和轴向弹性变形以及支承系统的弹性变形,则可将系统简化成纯扭转的振动系统,在实际工程中许多复杂

收稿日期:2007-09-04

基金项目:国家自然科学基金资助项目(10602038)

作者简介:朱艳芬(1976-),女,河北藁城人,石家庄铁道学院机械工程分院硕士研究生,主要从事机械系统动力学控制等研究。

北京机械工业学院学报

第22卷

的动力学系统都将简化为弹簧质量系统。如图1所示,做如下假设:认为传动轴和轴承均为刚性,忽略齿轮的各项误差,包括制造误差和安装误差,根据牛顿第二定律,主动轮和从动轮的运动微分方程分别为

[4]

:

I a d 2

q a d t

2+c(R a

d q a d t -R b d q b

d t )R a +R a K ( t )f(R a q a -R b q b )=T a

(1)

I b d 2

q a d t

2-c(R a d q a d t -R b d q b

d t )R b -R b K ( t )f (R a q a -R b q b )=-T b

(2)

其中:I a 主动轮的转动惯量;I b 从动轮的转动惯量; a 主动轮的角位移; b 从动轮的角位移;R a 主动轮的基圆半径;R b 从动轮的基圆半径;T a 主动轮所受扭矩;T b 从动轮所受扭矩; t 时间;c 齿轮啮合的粘性阻尼系数。

图1 单自由度直齿轮副模型

引入新变量 x =R a a -R b b ,式(1)和式(2)可以改写为

[5,6]

m d 2 x d t

2+c d

x d t +k (1+2 cos t)f ( x )= F (3)

其中m =I a I b

I b R 2a +I a R 2b

为等效质量,间隙函数

f ( x )= x -b x >b

0-b x b x +b x <-b ,传递的载荷 F =T a R a =T b

R b

,

时变刚度为K ( t )=k (1+2e cos t ),2b 为齿轮间隙长度[7]

对方程(2)进行无量纲化处理,令:x =

x b

, n =k

m

,t = n t , =

c 2m n , = n ,f 0

=

F bk

方程(2)可以改写为d 2x d t

2+2e m d x

d t +(1+2

e cos t)

f (x )=f 0(4)

式(3)中 为阻尼比, 为刚度系数,反映间隙

的非线性函数为

f (x )=

x -1

x >10

-1

x +1x -1

在建立正常齿轮系统数学模型的基础上,设齿轮系统按照每周期平均受到10个脉冲的作用,这些脉冲可以近似模拟齿轮的磨损、点蚀等故障,这些故障的存在会影响到齿轮的刚度系数,因而把这些脉

冲加在系统的时变刚度系数上,即式(3)中的时变刚度系数变为(1+Ag (t)+2 cos t),其中A 取小于1的负值,其绝对值表示齿面受到故障程度的相对大小,而g (t)为周期脉冲函数,定义为

g (t)=

1t/(2 / )/10为整数0t /(2 / )/10不为整数

则方程(4)变为d 2

x d t

2+2e m d x

d t +(1+Ag (t)+2

e cos t)f(x )=

f 0

(5)

其中 f (x )=

x -1

x >10

-1

g (t)=

1t /(2 / )/10为整数0

t/(2 / )/10不为整数

2基于数值方法的幅频特性分析

根据文献[8]为方程(5)选取参数: =0.05,f 0=0.9。另外取 =0.1。利用数值方法,采用

MATLAB 对方程(5)进行求解计算,利用4-5阶变步长Runge -Ku tta 法积分足够长时间,使齿轮系统达到稳态,取出解的最大、最小值,做出位移-频率曲线,进行幅频特性的研究。2.1

首先考虑正常齿轮系统,即取A =0

利用以上数值方法,得到无故障齿轮系统典型的幅频曲线,如图2和图3所示。

14

第4期 朱艳芬等:含有故障的齿轮系统扭转振动分析

图2 幅频曲线X

ma x

- 图图3 幅频曲线X m i n- 图2.2作出当脉冲A=-0.5时的幅频曲线,并与A=0进行比较。

图4 幅频曲线X

ma x

- 图图5 幅频曲线X m i n- 图如图4和图5所示,其中实线代表故障A=-0.5,点滑线表示无故障状态。

图6 幅频曲线低速段比较X

m ax - 图图7 幅频曲线低速段比较X m in- 图

15

北京机械工业学院学报 第22卷

由幅频曲线可以看出,加入脉冲后与正常齿轮比较,在低速阶段影响比较明显(如图6和图7),可以看到,由于故障的存在,低速时段的峰明显增多,齿轮系统易于出现各阶高阶超谐响应和亚谐响应,使系统的响应更加复杂。

另外可以发现在共振区域( =1附近),加入脉冲的齿轮系统会在比正常齿轮更为低的频率发生双边碰撞。3研究参数对故障齿轮系统幅频曲线的影响

3.1阻尼比的影响

首先固定 =0.05和f0=0.9,分别取 =0.1, 0.8和1.2,A=-0.5,所得结果如图8和图9,其中实线表示 =0.1,点线表示 =0.8,点滑线表示 =1.2。考虑到脉冲对低速时齿轮系统的影响,因此也取低速段进行比较,如图10和图11。

图8 幅频曲线X

m ax

- 图图9 幅频曲线X m in- 图

图10 低速时 =0.1,0.8和1.2X

m ax

- 图图11 低速时 =0.1,0.8和1.2X m i n- 图

分析幅频曲线,由图可以看出:随着阻尼比的增大,系统响应的最大值逐渐减小,而最小值逐渐增大,当阻尼比增大到一定值时,双边碰撞的现象消失,阻尼比继续增大,齿轮系统的单边碰撞也会随之消失,系统响应的无量纲幅值恒大于1,由此可见增加阻尼可以控制齿轮系统的碰撞行为。在低速阶段,受脉冲的影响较大,尤其在谐波附近,随着阻尼比的增大,谐波的峰值明显降低。

3.2激振力对幅频曲线曲线的影响

固定 =0.05和 =0.1,分别取f0=0.9,6,12,实线表示f0=12,点线表示f0=0.9,点滑线表示f0 =6,结果如图12和图13。

16

第4期 朱艳芬等:含有故障的齿轮系统扭转振动分析

图12 f

=0.9,6和12X m ax- 图图13 f0=0.9,6和12X m i n- 图

很明显,随着激振力幅值的增加,系统响应的最大值和最小值都增大,当激振力幅值增大到一定值时,双边碰撞现象消失,激振力继续增大,单边碰撞现象也消失。同样可见系统的碰撞行为也可以通过改变系统的激振力的幅值大小进行控制。这些结论与文献[5]结论是一致的。同样,在低速阶段的影响也是比较大的,但脉冲的加入对曲线整体的走势没有太大的影响。

4结论

利用数值方法定性地研究了含有故障的齿轮系统的非线性扭转振动特性,通过加入脉冲模拟故障。仿真的结果表明,脉冲对低频时的影响较大。另外,还进行了参数变化研究。发现改变激振力和阻尼比的大小都可以对齿轮的碰撞行为进行控制。

本文所做的工作是在认为传动轴和轴承均为刚性、忽略齿轮的各种误差等假设下进行的,若考虑以上因素,分析将更为复杂,基于以上原因,今后将进一步对受脉冲作用影响较大的低速阶段进行更深入的研究,以便得出齿轮系统在各种复杂情况下的碰撞行为。

参考文献:

[1]李润方,王建军.齿轮系统动力学 振动、冲

击与噪声[M].北京:科学出版社,1997

[2]Parey A,Tandon N.Spur gear dyna m ic m ode l i n-

clud i n g defects:A revie w[J].The Shock and V-i

bration D iges,t2003,35(6):465-478

[3]Kuang J H,Lin A D.The e ffect of tooth w ear on

the v i b rati o n spectr um o f a spur gear pa ir[J].

AS ME Jour nal o f V ibration and A coustics,2001

(123):311-317

[4]K ahra m an A,B lankenship G W.Exper i m ents on

non li n ear dyna m ic behav i o r o f an osc illator w ith

clearance and per i o dica ll y ti m e-var y ing para m e-

ters[J].AS ME Journa l of Applied M echanics,

1997,64(3):217-226

[5]申永军.齿轮系统的非线性动力学与故障诊断

研究[D].北京:北京交通大学机械与电子控制工程学院,2005

[6]Yong j u n Shen,Shaopu Yang,X iandong Liu.Non-

linear dyna m ics o f a spur gear pa ir w ith ti m e-var-y i n g stiff n ess and bac k lash based on i n cre m enta l har m on ic balance m ethod[J].Inter national Jour-nal ofM echan ica l Science,2006,48(11):1256-

1263

[7]N atsiavas S,Theodossi a des S,Goudas I.Dyna m ic

analysis of p iece w ise li n ear osc illators w ith ti m e periodic coe fficients[J].Internati o na l Jour nal o f Non-L i n ear M echan ics,2000(35):53-68

[8]Kahra m an A,S i n gh R.Non-linear dyna m ics of a

spur gear pair[J].Jour na l of Sound and V ibra-

ti o n,1990,142(1):49-75

17

齿轮故障诊断

第1章齿轮箱失效比重及失效形式 齿轮箱在机械设备中扮演着非常重要的角色,通常情况下,原动机输出的转矩和转速不能直接用于执行元件执行操作,需要进行转矩放大和降低转速,通常使用的传动设备有齿轮减速箱、带传动、链传动等,由于齿轮箱传动瞬时传动比恒定、传动效率高、工作可靠、使用寿命长、结构紧凑、适用范围从1W到数万KW等优点,所以齿轮箱传动是机械传动系统中运用最广泛的一种传动形式。 1.1 齿轮箱失效原因及比重 机械设备中的齿轮箱从装配投入使用开始,除了设备维护以外,齿轮箱都需要保持一个稳定的运行状态,长期的高负荷运转使齿轮箱的故障率非常大,在机械设备中,造成齿轮箱故障的原因及失效比重如下表所示: 由此可见,齿轮箱失效主要的原因是维护和操作不当,相邻的零件故障也会造成齿轮箱的故障,设计不合理也是严重影响齿轮箱使用的重要因素,为保障机械设备在运行中稳定可靠,除了合理设计齿轮箱外,正确选择相邻零件、合理操作维护是保障稳定运行的重要手段。当出现故障时,能够准确找出故障是对齿轮箱维护的重要前提,因此,掌握齿轮箱故障诊断技术非常重要。 1.2 齿轮箱失效零件及失效比重 在齿轮箱中,失效的主要零件及失效比重如下表所示:

由此可见,齿轮失效是造成齿轮箱失效的主要原因,由于制造误差、装配不当或在不适当的条件(如载荷、润滑等)下使用,齿轮常发生损伤,从而导致机械设备不能够用稳定运行,甚至发生生产安全事故。 1.3 齿轮的主要失效形式 齿轮的主要失效形式有四种:轮齿断裂、齿面磨损、齿面疲劳、齿面塑性变形。 1.31 轮齿折断 齿轮副在啮合传递运动时,主动轮的作用力和从动轮的反作用力都通过接触点分别作用在对方轮齿上,最危险的情况是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个悬臂梁,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根处产生过负荷断裂。即使不存在冲击过载的受力工况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生疲劳断裂。 轮齿的断裂是齿轮的最严重的故障,常因此造成设备停机,在齿轮故障中,轮齿折断概率为41%。 1.32 齿面磨损 (1)粘着磨损在低速、重载、高温、齿面粗糙度差、供油不足或油粘度太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有利于防止粘着磨损的发生。 (2)磨粒磨损与划痕含有杂质颗粒以及在开式齿轮传动中的外来砂粒或在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。 (3)腐蚀磨损由于润滑油中的一些化学物质如酸、碱或水等污染物与齿面发生化学反应造成金属的腐蚀而导致齿面损伤。 (4)烧伤烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几微米厚表面层重新淬火,出现白层。损伤的表面容易产生疲劳裂纹。 (5)齿面胶合大功率软齿面或高速重载的齿轮传动,当润滑条件不良时易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿面上而在此齿面上

齿轮箱中齿轮故障的振动分析与诊断 张尊建

齿轮箱中齿轮故障的振动分析与诊断张尊建 发表时间:2018-01-03T20:53:20.910Z 来源:《基层建设》2017年第28期作者:张尊建 [导读] 摘要:近年来,齿轮箱中齿轮故障振动分析与诊断问题得到了业内的广泛关注,研究其相关课题有着重要意义。 身份证号码:32032219830328XXXX 江苏南京 210012 摘要:近年来,齿轮箱中齿轮故障振动分析与诊断问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了DANA6000系列齿轮箱的故障,并结合相关实践经验,分别从多个角度与方面就DANA6000系列齿轮箱的日常保养展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:齿轮箱;齿轮故障;振动;诊断 1 前言 作为一项实际要求较高的实践性工作,齿轮箱中齿轮故障振动分析的特殊性不言而喻。该项课题的研究,将会更好地提升对齿轮故障的分析与掌控力度,从而通过合理化的措施与途径,进一步优化其振动分析与诊断工作的最终整体效果。 2 概述 发动机的物理特性决定了齿轮箱的存在,通过改变齿轮箱的档位,使得发动机工作时的转速与车轮转速产生不同的转速比,保证发动机始终处在其最佳的动力性能状态下。由于近几年科技的不断进步,齿轮箱的结构创新不断引入机电液一体化设计思路,导致齿轮箱的问题越来越复杂,因此作为车辆传动系统中不可或缺的一环,我们学会分析处理齿轮箱的故障情况就显得尤为重要。 铜冠矿山建设股份有限公司采用的大型矿用卡车多为阿特拉斯公司生产的MT2010型卡车,与其配套使用的齿轮箱型号为DANA6000系列,该系列的动力换档齿轮箱拥有功能强大的设计,达到了最严格的工程机械领域的工作效率标准,具有可靠性和耐用性,使用时与德纳公司先进的电子控制系统的组合,最终完美体现在车辆的运营效率上。该款齿轮箱的传动比如下表1所示,常规额定值如表2所示。 DANA6000系列齿轮箱的特征和优点主要体现在这几个方面:(1)前进和后退都有4个档位;(2)自动换档时,齿轮会精确的变化,以配合特定工况下的速度和负载情况;(3)前后轴可以脱离,从而使车辆自行调整以适应各种地形和崎岖的路面;(4)各个离合器可各自断开,提高运行效率;(5)微电控制系统调节换档,提高车辆使用寿命和燃油效率;(6)在发动机故障的情况下,应急转向泵提供持续的转向动力。 3 DANA6000系列齿轮箱的故障分析 DANA6000系列齿轮箱是平行六轴式常啮合齿轮式动力齿轮箱,它的前进档位和后退档位各有4个,可在不切断动力的情况下进行升降挡操作,通过电液控制系统操控带有湿式摩擦片的离合器来实现,此外出于便于日常拆卸、维修和保养的目的,其设计制造时将换挡离合布置在齿轮箱箱体之外。该系列齿轮箱装配的MT2010型矿用卡车承担了冬瓜山铜矿巷道采掘矸石运输的主要任务,由于井下恶劣的工作环境,保养不到位,长时间高负荷工作等因素,齿轮箱会发生各种各样的故障情况,常见的故障现象以及排除方法如下。 (1)发动机正常运转但不能行驶:①档位按钮失灵→检查挡位选择器的电路及挡位的准确性;②齿轮箱内油位过低→按要求补充新油;③油泵损坏或渗漏造成供油不足→更换新件,检查密封面及油封。 (2)挡位选择器不工作、挡位不清或跳挡、掉挡:①选择器保险丝处接触不良或保险丝断→检查、更换保险丝;②各电缆插口接触不良→检查各插口处的接触情况;③挡位选择器内部故障→修理或更换当前挡位选择器;④车辆电气系统故障或电压不稳→检查车辆电气系统,测量电压(理论值为24V)。 注:车辆挡位时有时无、跳挡、掉挡等现象也可能是电磁阀阀内的阀芯卡滞造成的。 (3)润滑油油温过高:①齿轮箱内的油位过高或过低→按要求注油;②透气帽堵塞→检查透气帽;③离合器打滑→检查离合器油压;④制动器抱死或拖带严重→检查并进行调整;⑤轴承烧损、油路不畅→更换烧损零件、检查油路及油泵;⑥离合器打滑或烧损→检查工作压力,更换烧损零件;⑦长期重负荷工作→暂停作业,待冷却后再行工作;⑧冷却器损坏→检查冷却器(正常情况下润滑油在冷却器内的进出油口的温差在10℃左右);⑨车辆内其他零部件过热经热传导后导致变速器过热→检查其他零部件(桥、发动机等)是否正常。(4)驱动力不足:①变矩器入口油压低→检查齿轮箱油位;更换或清洗滤清器及粗滤网;检查操纵阀中的压力控制阀及控制压力阀是否正常;②离合器打滑→检查各离合器油压及活塞油封并且检查有无过载现象,这种现象多数是由于离合器片有烧损引起。 (5)控制压力偏低、不稳或表跳:①操纵阀的阀芯卡滞→清洗或更换操纵阀;②油泵吸空→检查油位、各油道及滤网有无堵塞,确定原因后做出相应处理方法;③油泵失效→更换新件;④离合器活塞油封严重漏油→更换油封,重新安装调试。 (6)车辆行驶过程中,齿轮箱位置有异常响声:零件磨损过大造成剥落,或者是安装齿轮箱不到位引起→检查连接螺栓位置。 4 DANA6000系列齿轮箱的日常保养 齿轮箱的故障问题主要来源之一就是日常保养维护不到位,不及时,因此,工作人员能否做好齿轮箱的日常保养工作就显得很关键,齿轮箱的养护工作主要体现在以下几个方面:(1)及时进行油位检查决定是否加油,且加油要适量,油液种类要符合要求;(2)定期跟换齿轮箱油液和滤油器等,防止造成,油温升高,齿轮箱离合器卡死等故障;(3)定期更换纸垫,密封圈等易耗件,防止油液泄露等問题;(4)工作前做好齿轮箱的检漏以及检查连接件缺失问题,莫让小故障变成大问题;(5)避免长时间,高负载工作;(6)定期进行清洗保养。 作为一款井下工作车辆的关键部件,恶劣的工作环境,高负荷的生产任务,有效地维护手段和设备等因素严重影响齿轮箱的使用寿命,齿轮箱的故障问题可能层出不穷。检修人员需要掌握必备的故障分析能力以及维修技巧以应对工作中出现的问题,但是我们不能寄希望于大修,深度检查来解决问题,培养驾驶员的良好操作习惯,切实做好日常保养,积极改善路面状况等因素更加重要。 箱体的生产规划针对齿轮箱箱体加工生产部门的规划工作是真整个生产线中最为重要的环节。齿轮箱体作为齿轮箱整体构造中零部件最繁杂,尺寸最多变、加工耗时最长以及最容易出现质量问题的重要部分,其整体的规划组成尤为重要,所以在这个部分中,设计人员应根据其生产的齿轮箱特征进行针对该箱壳体生产的工作。首先,将针对箱壳体的生产分为粗加工部分和细加工部分,其具体施工工艺如下图二: 齿轮箱加工区域物流的规划设计根据齿轮箱的箱体生产规划,科学且合理的设置加工区的物流配套规划模式,能够在很大程度上提高

基于振动分析的内燃机故障诊断分析示范文本

基于振动分析的内燃机故障诊断分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

基于振动分析的内燃机故障诊断分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 鉴于内燃机在结构和工作原理上比较的复杂,而且激 励源和零部件也非常的多,因此,当内燃机出现了故障的 时候,一般症状都比较复杂,故障信号也比较难检测,在 进行诊断的时候便非常的困难。本文主要是从振动的角度 对内燃机的故障进行了分析,首先,分析了内燃机的振动 结构和振动特性,然后从振动分析的角度,探讨了如何对 内燃机发生的故障进行诊断的问题。 内燃机在工业、农业等所需的机械设备中,属于比较 重要的机械之一,尤其是在船舶、石油钻井、铁路、汽车 以及农业等方面得到了广泛的应用。从某种意义上来说, 内燃机运行状态的优劣,直接的关系着整个机组的运行状

态。所以,提高对内燃机运行状态的检测水平和故障诊断率,对于系统的安全、稳定运行来说,意义重大。下面就从振动分析的角度,对内燃机的结构和振动特性以及故障的诊断问题等进行分析。 内燃机的振动结构和振动特性 由于内燃机在运行的时候,在各种力的激励下,很容易产生振动的现象,再经过不同的传递路径传递到内燃机的表面。因此,当内燃机的零件产生变化的时候,内燃机的表面振动现象也会呈现出不同的振动特性。在此基础上,专家们研究出了在从内燃机的振动特性进行内燃机故障的诊断。 内燃机属于热能动力机械范畴,在人们长期的实践和创新中,内燃机的主运动系统已经形成了由连杆、活塞和曲轴组成的结构可靠、生命力强的曲柄连杆结构为主的系统。再加上其他的辅助系统,便组成了内燃机的结构。按

有限元与机械振动及故障诊断的关系

有限单元法与机械振动及故障诊断的关系 随着机械向轻量化方向发展,构件的柔度加大;随着机械向高速化方向发展,惯性力急剧增大。在这种情况下,构件的弹性变形可能给机械的运动输出带来误差。在高速、精密机械设计中,为了保证机械的精确度和稳定性,就必须计入这种弹性变形对精度的影响。机械系统柔度加大,系统固有频率下降;而机械运转速度提高,激振频率上升,这种变化使许多机械出现较强振动现象的危险增加了,而振动既破坏机械的运动精度,又影响构件的的疲劳强度,并加剧运动副中的磨损,因此,出现了计入构件弹性的动力分析方法,即弹性动力分析,很多大型机械系统的振动也被分析研究,并为机械故障诊断奠定了理论基础。构件产生振动时,其变形和受力状况非常复杂,弹性动力学给出的微分方程导不出解析解,有限单元法是一种非常有效的数值分析方法,所得的解可以足够逼近于精确值,它使弹性动力学获得了新的、巨大的生命力。 有限单元法的基本思想是将一个连续弹性体看成是由若干个基本单元在节点彼此相连接的组合体,从而使一个无限自由度的连续问题变成一个有限自由度的离散系统问题。有限元求解问题的基本步骤通常为: 第一步:待求解域离散化:将求解域或连续体近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第二步:选择插值函数:选择适当的插值函数以表达单元内的场变量的变化规律。场变量可以是标量、向量或者高阶张量。常数多项式为场变量的近似表达式,多项式的阶数取决于单元的节点数、节点的自由度数,以及单元间边界的变量协调性等。场变量及其导数都可以作为节点的未知量。 第三步:形成单元性质的矩阵方程:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成刚度矩阵。 第四步:形成整体系统的矩阵方程:将单元总装形成离散域的总矩阵方程,反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数连续性建立在结点处。 第五步:约束处理求解系统方程:利用系统矩阵方程建立求解方程组,引入边界条件,即约束处理,求解出结点上的未知场变量。 运用有限单元法可获得足够逼近于精确值的解,从而可获得反映设备实际运行状况的振动信号,其时域、频域和幅值域分析结果对于机器故障的准确判断具有重要意义。因此,在机械日益轻量化、高速化的趋势下,有限单元法显得极为重要,而准确的机械振动分析及故障诊断,更需要以有限单元法为支撑。

齿轮的固有频率振动 (DEMO)

齿轮的固有频率振动 固有频率振动是指齿轮受到外界持续传动力的作用,产生的瞬态自由振动,并带来噪声。齿轮将以多个固有频率振动,但测量时.具有高阶固有频率的振动多数在很短时间内就消失,只剩下基本的低阶固有频率振动。 齿轮在正常和异常状态下都将产生固有频率振动,根据齿轮振动形态的变化、就能对齿轮作出故障判断。所以,对齿轮进行故障诊断时,必须分析固有振动频率。一对直齿圆柱齿轮的固有振动频率就可由下列最典型的计算式求得: 齿轮的固有振动频率多为1—10kHz的高频,当这种高频振动传递到齿轮箱等机件时,高频冲击振动已衰减,多数情况下只能测到齿轮的啮合频率。实际的自由振动频率比固有振动频率稍低。 (2)若对不对中进行诊断.应分析的频率为fm f;若对不平衡进 r 行诊断,应分析的频率为轴频 f,;若对齿轮磨损进行诊断.应对啮 r 合频率fm的倍频进行分析; 制定正常频谱作为判断标准时,还必须根据齿轮装置过去的实际统计资料,以确定各种状态的实测值与正常值的倍数比。对于低频振动.通常将判断标准定为:实测值达到正常值的1.5—2倍时为注意区,达4倍时为异常区。对于高频振动,据实验结果指出:当实测值达3倍时定为注意区,6倍左右定为异常区。 应该指出的是,利用振动加速度所测定的l—10kHz频率是机械局部共振频域.除齿轮以外,轴承、电机等也会发生同样频率的振动。

特别是使用滚动轴承时,易发生误诊为滚动轴承异常的情况。但因齿轮的固有振动频率比滚动轴承要低一些,所以,合理选择测定齿轮振动的频域,能将齿轮和滚动轴承的异常振动区分开来,以免发生误诊断。 在进行频谱分析时,要避免错误地将不相关的频率成分与故障联系在一起。这就要求从事诊断的人员不仅要熟悉仪器的操作使用,还要深入掌握齿轮装置的结构特点和主要参数。诊断人员应该了解的内容包括:系统的共振频率、齿轮的材料、热处理工艺、轴承的结构、齿轮的齿数和模数、齿轮运行的历史情况、同类产品的主要失效形式等等。

工程车辆传动系统扭转振动特性研究与分析

1工程车辆扭转振动动力学模型的建立 工程车辆传动系统一端通过离合器与发动机相连,输出端通过轮胎与工程车辆平动质量相连,组成了一个多质量的弹性扭转振动系统。在计算整个系统的固有频率和振型时,通常可忽略系统的阻尼,将整个传动系统看成是由多个刚性圆盘通过弹性轴连接的无阻尼振动系统。现在某型装备四缸柴油机的中型装载机传动系统为例,其扭转振动力学模型如图1-1所示。 1.1 当量转动惯量的计算 当量转动惯量J 是指将传动系统中与发动机曲轴不同转速旋转的零部件的转动惯量换算成与曲轴同转速旋转下的转动惯量,这种换算方法的原理是能量守恒。设传动轴的转动惯量为J,实际转速为ω曲轴转速为0ω,则将传动轴换算成曲轴转速0ω的当量转动惯量为 2 2 2 0212121??? ? ??=???? ??==g d d i J J J J J ω ωωω 式中,g i 为变速器的传动比。 1.2当量扭转刚度的计算 设两圆盘之间弹性轴的当量扭转刚度为d K ,则可以根据弹性变形量守恒的原理将系统中的时间扭转刚度K 换算过来。现以后桥半轴为例,相应的当量扭转刚度为 2 01??? ? ??=i i K K g d

式中,0i 为主减速器的传动比。 2传动系统扭转动力学方程 根据图1-1所示的简化的传动系统模型,可建立系统动力学方程组为 -0-)-)()(-----111010111111101010991010343332233232221122121111=+=+-=-+-=+=+)()(()()() (。。。。。。。。 。。 θθθθθθθθθθθθθθθθθθθθθK J K K J T K K J T K K J T K J (1) 方程组(1)中,111-θθ分别为对应质量的扭转角位移;41-T T 分别为发动机1-4缸的有效输出转矩。 为了简单起见,可以将(1)改为矩阵形式的动力学方程一般式,即 T K C J =++θθθ。 。。 式中,当量转动惯量矩阵??????? ? ????? ?? ?=111021 00J J J J J 阻尼矩阵C=[0];刚度矩阵; 圆盘的角位移矩阵[]T 114321 0θθθθθθ =。 一般以发动机振动激励为系统输入矩阵,则 []T T T T T T 004 321 = 2.1扭转系统固有特性的分析 这里的固有特性是指固有频率和主振型,多自由度系统的固有频率和主振型可以根据系统的无阻尼自由振动方程得到,即 0=+θθK J 。。 (2) 假设方程的解为 t n i e ωθA = (3) 式中,A 为系统自由振动时的振幅列向量,[]T m m m m A A A A A 1132 1 =。

基于振动信号的齿轮故障诊断方法研究

本科生毕业设计(论文)任务书 设计(论文)题目:基于振动信号的齿轮故障诊断方法研究 学院:信息科学与技术学院专业:通信工程班级:通信0801 学生:XXX 指导教师(含职称):XXX(副教授)专业负责人:XXX 1.设计(论文)的主要任务及目标 (1)查阅齿轮振动信号特征提取相关资料,写出文献综述,开题报告等。 (2)运用所掌握的振动信号提取方法,运用matlab仿真齿轮的原始故障信号。2.设计(论文)的基本要求和内容 (1)查阅资料,了解该领域的历史,现况,发展及问题,写出文献综述。 (2)掌握齿轮故障信号的小波分析,时频域分析,EMD分析,完成中期检查。 (3)运用matlab进行信号处理仿真,并写出毕业论文。 (4)在完成上述工作的基础上,准备毕业论文答辩。 摘要 随着科学技术的不断发展,机械设备向着高性能、高自动化、高效率和高可靠性的方向发展。齿轮箱因为具有传动比固定、传动转矩大、结构紧凑等优点,因此齿轮箱是用于改变转速和传递动力的最常用的传动部件,是机械设备的一个重要组成部分,也是最容易发生故障的一个部件。而在机械设备中,齿轮的使用频率很高,因此齿轮的故障诊断技术对机器的使用质量和使用寿命都起了非常重要的作用。本文从时域、频域,时频域和经验模式分解进行了齿轮故障诊断的方法研究。时域分析主要应用时域特征参数分析方法进行故障特征参数的提取,频域分析主要通过快速傅里叶变化,从频谱图上进行齿轮正常状态和故障状态振动信号的对比分析。时频域分析主要是通过一维三层离散小波变换,把原始信号细化为三层,每层又分为高频信号和低频信号。经验模式分解主要是在齿轮故障振动信号中的实际应用,对采集到齿轮四种状态下的振动信号通过EMD分解,提取了故障信号的特征信息,为识别故障类型提供了有效的分析手段。故障信息特征提取是齿轮故障诊断中最关键、最重要的问题之一,它直接关系到齿轮故障诊断的准确性和早期故障预报的可靠性。 关键词:齿轮;故障诊断;小波变换;经验模式分解

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

传动系统振动

汽车动力传动系振动分析 [ 摘要]综述了车辆动力传动系振动的研究进展从振动的角度看,车辆动力传动系可分为 弯曲振动系统和扭转振动系统目前主要采用试验模态分析和有限元等研究方法对动力传动系弯曲振动特性进行研究,建立了较为理想的弯曲振动分析模型在动力传动系扭转振动的 研究方面,许多学者对此进行了有益探索研究,并取得了一定的进展但限于分析条件,车辆 动力传动系弯曲、扭转振动耦合的研究尚不十分完善,尤其在国内,这一研究尚处于起步阶段因此,在动力传动系弯曲、扭转振动的研究已相对成熟的基础上,动力传动系的弯曲、扭 转振动耦合对其振动特性影响的研究将是今后一段时间的主要研究内容车辆是一个复杂的振动系统,它是由多个具有固有振动特性的子系统组成,作为子系统之一 的动力传动系,即包括动力总成、传动轴、驱动桥总成组成的系统是车辆振动和噪声的重要激励源从振动的角度看,车辆动力传动系可分为两个振动系统:弯曲振动系统和扭转振动系 统车辆动力传动系的弯曲振动系统和扭转振动系统不仅有各自的固有振动特性,而且还存 在一定程度的振动耦合这些不同形式的振动及其耦合,是影响车辆行驶平顺性,乘坐舒适性及动力传动系零部件使用寿命的主要原因之一,因此对车辆动力传动系的整体振动进行深入细致的研究,显得十分必要 1 动力传动系弯曲振动研究车辆动力传动系弯曲振动在很大的频率段内对车辆振动和噪声有着重要影响,动力传动系低频段内的刚体振动直接影响车辆的乘坐舒适性, 而较高频段内的弹性振动将会引起车辆 的结构共振和声学共振近年来,随着对提高乘坐舒适性、减小汽车振动要求的提高,对动力传动系弯曲振动特性的进一步研究,已显得十分迫切,国内外对动力传动系弯曲振动的研究 起步较早,在理论研究方面取得一定进展,试验研究也较为成熟建立由离散的集中质量、弹 簧、阻尼器组成的力学模型是对动力传动系弯曲振动特性进行研究分析的一种行之有效的方法後藤进[1 ]建立了具有1 1个自由度的动力传动系的弯曲振动力学模型,并通过试验验证 试验结果和计算结果取得较好一致文献[2 ]也建立了动力传动系弯曲振动多自由度力学模型,指出系统的弯曲振动是由发动机运动部件往复惯性力、传动轴的不平衡等引起的, 并通 过实验测定有关参数值,计算系统的固有频率、振型隋军[3、4]建立包括动力总成及传动轴的 5 个自由度的弯曲振动力学模型,计算系统的固有振动特性和响应, 指出动力总成的弯 曲振动是汽车飞轮壳损坏的主要原因这种建模方法及其实用性已为大量的计算和试验分析结果所证实,并且已总结出了确定模型集中质量、弹性和阻尼的一般原则,能有效地用于分析解决车辆动力传动系弯曲振动问题日臻完善的试验模态分析技术,在动力传动系弯曲振动特性的研究中得到广泛应用试验模态分析在动力传动系弯曲振动特性研究中的应用, 经历了从单个总成发展到多个总成直至整个动力传动系的过程隋军[4] 、张建文[5]对动力传动 系动力总成进行了试验模态分析,认为动力总成的弯曲振动是造成汽车离合器壳开裂的主 要原因余龄[6] 利用试验模态分析技术测定了包括动力总成及传动轴的组合系统的一阶弯曲振动频率,张金换[7]则通过模态试验分析研究动力传动系传动轴的临界转速孙方宁[8, 9] 、俄延华[1 0 ] 在整车条件下,对动力传动系弯曲振动进行模态试验,得到整个动力传动系弯曲 振动的模态参数高云凯[1 1 ] 在台架及整车条件下,对汽车动力总成弯曲振动试验模态分析中的非线性特性进行研究,结果表明这一非线性特性仅存在于整车条件下的试验模态分析 试验模态分析具有快速、简便地识别结构固有特性的特点,但其精度主要取决于试验者的经 验和所使用的测试仪器、分析程序模态综合法是对动力传动系弯曲振动进行分析的有效方法,其基本思想是将动力传动系分为若干个子系统,在完成对各子系统的模态分析后, 建立 自由模态的综合方程,再利用平衡条件和约束条件将自由度简化,最后获得一个自由度大为

振动检测与故障诊断技术

振动检测是状态检测的手段之一,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 1、机械振动检测技术 机械运动消耗的能量除了做有用功外,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,如果出现非正常的振动,说明机械发生故障。这些振动信号包含了机械内部运动部件各种变化信息。分辨正常振动和非正常振动,采集振动参数,运用信号处理技术,提取特征信息,判断机械运行的技术状态,这就是振动检测。 所以由此看来,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 2、振动监测参数与标准 振动测量的方位选择 a、测量位置(测点)。 测量的位置选择在振动的敏感点,传感器安装方便,对振动信号干扰小的位置,如轴承的附近部位。 b、测量方向。 由于不同的故障引起的振动方向不同,一般测量互相垂直的三个方向的振动,即轴向(A向)、径向(H 向、水平方向)和垂直方向(v向)。例如对中不良引起轴向振动;转子不平衡引起径向振动;机座松动引起垂直方向振动。高频或随机振动测量径向,而低频振动要测量三个方向。总之测量方向和数量应全面描述设备的振动状态。 测量参数的选择 测量振动可用位移、速度和加速度三个参数表述。这三个参量代表了不同类型振动的特点,对不同类型振动的敏感性也不同。 a、振动位移 选择使用在低频段的振动测量(<10HZ),振动位移传感器对低频段的振动灵敏。在低频段的振动,振动速度较小,可能振动位移很大,如果振动产生的应力超过材料的许用应力,就可能发生破坏性的故障。b、振动速度 选择使用在中频段的振动测量(10~1000hz)。在大多数情况下转动机械零件所承受的附加载荷是循环载荷,零件的主要失效形式是疲劳破坏,疲劳强度的寿命取决于受力变形和循环速度,既和振动位移与频率有关,振动速度又是这两个参数的函数,振动能量与振动速度的平方成正比。所以将振动速度作为衡量振动严重程度的主要指标。 c、振动加速度 选择使用在高频段的振动测量(>1000hz)。当振动频率大于1000hz时,动载荷表现为冲击载荷,冲击动能转化为应变能,使材料发生脆性破坏。多用于滚动轴承的检测。 以上三这三个参量可以互为辅助性的补充和参考。 振动判定标准 a、绝对判断标准。此类标准是对某机器长期使用、维修、测试的经验总结,由行业协会或国家制订图表形式的标准。使用时测出的振动值与相同部位的判断标准的数值相比较来做出判断。一般这类标准是针对某些类型重要回转机械而制订的。例如国际通用标准ISO02372和ISO3945。 b、相对判断标准。对于同一设备的同一部位定期进行检测,按时间先后作出比较,以初始的正常值为标准,以实测振动值超过正常值的多少来判断。

含有故障的齿轮系统扭转振动分析

第22卷 第4期2007年12月 北京机械工业学院学报 Journa l of Be ijing Institute o fM ach i nery V o.l22N o.4 D ec.2007 文章编号:1008-1658(2007)04-0013-05 含有故障的齿轮系统扭转振动分析 朱艳芬1,陈恩利1,申永军1,王翠艳2 (1.石家庄铁道学院 机械工程分院,石家庄050043;2.石家庄铁道学院 工程训练中心,石家庄050043) 摘 要:建立了故障单自由度齿轮系统扭转振动的数学模型,采用加入脉冲的形式进行故障模拟,并利用数值方法进行对该模型进行仿真,进行定性研究。作出了系统模型的幅频响应曲线,与无故障时的曲线相比较,发现在低速时脉冲对系统的影响较大。另外,还对该模型进行了参数研究,分别比较了在不同阻尼比和不同激振力情况下的脉冲对系统幅频曲线的影响。 关 键 词:单自由度直齿轮系统;扭转振动;数值方法;幅频响应曲线;参数研究 中图分类号:TH113 文献标识码:A Analysis of torsional vibration of a spur gear system w ith faults ZHU Y an-fen1,C H E N Een-li1,SH E N Yong-jun1,WANG Cu-i yan2 (1.Schoo l ofM echan i calEng i neeri ng,Shiji az huang Rail w ay Ins tit u te,Sh iji az huang050043; 2.Eng i neeri ng Tra i n i ng C enter,Sh iji az hu ang Rail w ay I n stitute,Sh ijiazhuang050043) Abstract:The torsional v i b ration m odel o f the spur sing le-DOF gear syste m w it h fau lts is bu il,t and the for m o f the pulses is adop ted to si m u late the faults.Th i s m ode l is ca lculated by usi n g the num erica l m ethod.The response o f the m ode l is ana lyzed,and the Am p litude frequency Curves are p l o tted,and t h e greater fl u ence of the pu lse is found in the lo w frequency.The para m eters of the mode l are researched, and the Am plitude-frequency Curves under vari o us da m pi n g ratio and under vari o us exc iting-v ibration force are co m pared respectively. Key w ords:spur si n gle-DOF gear syste m;torsi o na l v ibration;num erica lm ethod;t h e Am plitude-fre-quency Curves;para m eters study 齿轮作为机械系统中的重要传动装置,在机械、化工、航天等行业的装备中起着非常关键的作用。为了满足航空、航天及机器人等技术发展的需要,采用传统的线性分析和控制理论已难以满足这一要求。由于零部件间的间隙、运动负重的摩擦及时变刚度等因素,实际的齿轮传动系统都是非线性系统,传统的线性分析和控制是对其进行的一种近似处理,只有对齿轮传动系统实施非线性分析和非线性控制才能获得精度高、振动小和噪声低等性能的齿轮传动系统。齿轮的工作状态正常与否对运动和动力的传输具有重要的影响[1]。因此,研究齿轮系统的动力学与故障诊断具有重要的理论价值和工程意义。 关于带故障的齿轮系统动力学建模及动力学分析则见于Parey的文章[2],其中的缺陷主要包括摩擦、磨损、点蚀和剥落等,介绍了带有故障的各种齿轮动力学模型等,另外,Kuang[3]等人建立了考虑齿面磨损的齿轮动力学方程,齿面磨损会影响啮合过程中的齿面轮廓,从而会影响到啮合刚度、阻尼力以及摩擦力等,这样将会使得系统的方程非常复杂。 本文从单自由度齿轮系统入手,经过模型简化,模拟了齿轮系统故障引起的刚度变化后的齿轮模型,并定性地分析了其动力学特性。 1故障单自由度齿轮系统理论模型 首先建立正常直齿轮副扭转振动的数学模型。扭转振动模型是仅考虑系统扭转振动的模型,在齿轮系统的振动分析中,若不考虑传动轴的横向和轴向弹性变形以及支承系统的弹性变形,则可将系统简化成纯扭转的振动系统,在实际工程中许多复杂 收稿日期:2007-09-04 基金项目:国家自然科学基金资助项目(10602038) 作者简介:朱艳芬(1976-),女,河北藁城人,石家庄铁道学院机械工程分院硕士研究生,主要从事机械系统动力学控制等研究。

齿轮振动故障诊断与分析

机械监测与诊断技术 论文 齿轮震动故障诊断与分析 学院:机械与动力学院 姓名:刘聪 学号:2012105422 2015年11月4号

齿轮振动故障诊断与分析 一.齿轮典型故障介绍 (1)磨损 磨损包括磨粒磨损、腐蚀磨损和冲击磨损,磨粒磨损是常见的磨损形式,一般是由于齿的工作表面进入了金属微粒、尘埃和沙粒等所引起的齿面擦伤或者齿面材料脱落,是润滑不好的开式传动齿轮的主要故障类型。齿轮磨损后,齿的厚度变薄,齿廓变形,侧隙变大,会造成齿轮动载荷增大,不仅会使振动和噪音加大,而且很可能导致断齿。磨损故障大概占齿轮常见故障比例的10%。 (2)点蚀 点蚀是减速箱等闭式齿轮传动系统中极其普遍的故障类型,约占齿轮常见故障比例的31%。齿轮受啮合过程产生的循环交变应力会在表面产生微小疲劳裂纹,啮合时润滑油进入该裂纹中后被封口并受挤压产生高压,从而扩大了裂纹,最终导致齿轮表面金属的脱落形成麻点状小坑,这就是点蚀。在齿轮表面硬度低于350HBS的闭式齿轮上,点蚀现象尤为常见。点蚀的出现会加大齿轮表面的局部接触应力,导致点蚀现象的恶化,进而加剧齿轮啮合时的噪声、降低齿轮传动的精度。 (3)断齿 断齿在齿轮故障类型中是最容易发生的,占齿轮常见故障比例的41%。断齿故障有过载断齿、疲劳断齿和缺陷断齿三种,这里面又以

疲劳断齿最为常见,它是由于齿轮工作受到周期性载荷,弯曲应力超过弯曲疲劳极限而在齿根处产生疲劳裂纹,裂纹渐渐扩大,当载荷的循环次数达到一定值时,就会致使轮齿折断。断齿是所有齿轮故障中最严重的类型,经常会导致停工停产。 (4)胶合 齿轮润滑良好时齿面间会保持一层润滑油膜作用,但是当载荷较大、齿面间压力大、工作转速高、工作表面温度较高时,润滑油膜被破坏,使金属齿面直接接触,相接触的金属材料在高温高压作用下发生粘着,相粘连的齿面由于相对滑动而被撕裂,在相对滑动方向形成划痕。齿面的胶合故障,会加剧齿面的磨损程度和速度,从而使齿轮更加快速地失效。这种故障类型占齿轮常见故障比例的10%。 (5)塑性变形 软齿面齿轮重载或者突然的重载冲击情况下,齿面容易发生塑性变形。因为重载会大幅加大齿面的摩擦力,这会导致齿轮表面的材料呈现塑性状态,使齿轮表面的金属发生塑性流动,进而造成被动轮齿面中间凸起、主动轮齿面中间凹陷。塑性变形会使齿面偏离渐开线形状,引起齿轮传动比的变化,产生附加动载荷。齿轮塑性变形和化学腐蚀、表面龟裂等其它类型的一些故障,占齿轮常见故障比例的8%。 二.齿轮振动类型及特征 即便在理想状态下,齿轮传动也会有振动产生,更何况是实际中齿轮的工作环境一般都比较恶劣,再加上齿轮的制造问题、安装问题、

振动检测与故障诊断分析

概述 对旋转设备而言,绝大多数故障都 是与机械运动或振动相密切联系的,振 动检测具有直接、实时和故障类型覆盖 范围广的特点。因此,振动检测是针对 旋转设备的各种预测性维修技术中的核 心部分,其它预测性维修技术:如红外 热像、油液分析、电气诊断等则是振动 检测技术的有效补充。 相关仪器-----测振仪 VIB05 来自中国祺迈KMPDM的VIB05多功能振动检测仪是 基于微处理器最新设计的机器状态监测仪器,具备有振动 检测,轴承状态分析和红外线温度测量功能。其操作简单, 自动指示状态报警,非常适合现场设备运行和维护人员监 测设备状态,及时发现问题,保证设备正常可靠运行。 振动测量 VIB05可测量振动速度,加速度和位移值。当保持振 动速度读数时,仪器立即比较内置的ISO10816-3振动标准,自动指示机器报警状态。 轴承状态检测 VIB05可测量轴承状态BG值和BV值,它们分别代表高频振动的加速度和振动速度有效值。当保持轴承状态读数时,仪器按内置的经验法则自动指示轴承报警状态。 振动检测仪是测量物体振动量大小的仪器,在桥梁、建筑、地震等领域有广泛的 应用。振动检测仪还可以和加速度传感器组成振动测量系统对物体加速度、速度和位 移进行测量。

VIB07 来自中国祺迈KMPDM的VIB07多功能振动检测仪是基 于微处理器最新设计的机器状态监测仪器,具备有振动检测, 轴承状态分析和红外线温度测量功能。其操作简单,自动指 示状态报警,非常适合现场设备运行和维护人员监测设备状 态,及时发现问题,保证设备正常可靠运行。 主要特点 1、测振仪设计先进,具有功耗低、性能可靠、造型美 观、使用携带极为方便的特点。 2、按国标制造,测量值与国际振动烈度标准(ISO2372)比对可直接判断设备运行状态。 3、高可靠性的环形剪切加速度传感器,性能远远优于压缩式传感器。 4、具有高低频分档功能,在振动测量时,便于识别设备故障类型。 5、备有信号输入功能,配接温度传感器,即可测量温度。 6、备有信号输出功能,选配专用耳机,兼具设备听诊器功能;配接示波器、可用来监测、记录振动信息。 7、按振动传感器与主机的连接方式分为一体式和分体式供您选择。 8、适用于各类机械的振动、温度测量。 动平衡仪-----KMBalancer现场动平衡仪 现场动平衡分析仪KMBALancer是KMPDM 祺迈公司的产品。它嵌入式计算机技术和动平衡技 术,兼备现场振动数据测量、振动分析和单双面动 平衡等诸多功能,简捷易用。是工矿企业预知保养 维修,尤其是风机、电动机等设备制造厂和振动技 术服务机构最为理想之工具。它是美国尖端科技产 品。

振动分析仪之设备状态监测与故障诊断的三个阶段

振动分析仪之设备状态监测与故障诊断的三个阶段 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测 状态监测是在设备运行中,对特定的特征信号进行检测、变换、记录、分析处理并显示、记录,是对设备进行的基础工作。检测的信号主要是机组或零部件在运行中的各种信息(振动、噪声、转速、温度压力、流量等),通过利用如机械状态分析仪VIB07这种类型仪器的把这 些信息转换为电信号或其他物理信号,送入信号处理系统中进行处理,以便得到能反映设备 运行状态的特征参数,从而实现对设备运行状态的监测和下一步诊断工作。 2.分析诊断 分析诊断实际上包括两方面的内容:信号分析处理、故障诊断。 信号分析处理的目的是把获得的信息通过一定的方法进行变换处理,从不同的角度提取 最直观、最敏感、最有用的特征信息。分析处理可用专门的振动分析仪器,如VIB07或计算 机进行,一般情况下要从多重分析域、多个角度来分析观察这些信息。分析处理方法的选择、处理过程的准确性以及表达的直观性都会对诊断结果产生较大影响。 故障诊断是在状态监测与信号分析处理的基础上进行的。进行故障诊断需要根据状态监 测与信号分析处理所提供的能反映设备运行状态的征兆或特征参数的变化情况,有时还需要 进一步与某些故障特征参数进行比较,以识别设备是在运转正常还是存在故障。如果存在故障,要诊断故障的性质和程度、产生原因或发生部位,并预测设备的性能和故障发展趋势。 这是设备诊断的第二阶段。 如VIB07振动分析仪,兼备振动分析软件CM-Trend,可软件形成具有机器振动状态数据采集,数据管理,状态报警,故障诊断和趋势分析功能的基本预测维修系统。软件为使用者 提供一个方便灵活的工作平台,使其能够管理机器状态数据,进行日程数据采集,评价机 器状态,分析机器故障并提出预测维修报告。 3.治理预防 治理预防措施是在分析诊断出设备存在异常状态,即存在故障时,就其原因、部位和危 险程度进行研究并采取治理措施和预防的办法。通常包括调整、更换、检修、改善等方面的 工作。如果经过分析认为设备在短时间内尚可继续维持运行时,那就要对故障的发展加强监测,以保证设备运行的可靠性。根据设备故障情况,治理预防措施有巡回监测、监护运行、 立即停机检修三种。 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测

相关文档
最新文档