高中物理复习能量和动量经典习题例题含问题详解
高中物理动量定理题20套(带答案)含解析
【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。
高考物理复习动量与能量练习有答案
动量和能量1.如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左边拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是A.第一次碰撞后的瞬间,两球的速度大小相等B.第一次碰撞后的瞬间,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的平衡位置2.为了研究鱼所受水的阻力与其形状的关系,小明同学用石蜡做成两条质量均为m、形状不同的“A鱼”和“B鱼”,如图所示。
在高出水面H 处分别静止释放“A鱼”和“B鱼”,“A鱼”竖直下滑h A后速度减为零,“B鱼” 竖直下滑h B后速度减为零。
“鱼”在水中运动时,除受重力外还受浮力和水的阻力,已知“鱼”在水中所受浮力是其重力的10/9倍,重力加速度为g,“鱼”运动的位移远大于“鱼”的长度。
假设“鱼”运动时所受水的阻力恒定,空气阻力不计。
求:(1)“A鱼”入水瞬间的速度V A1;(2)“A鱼”在水中运动时所受阻力f A;(3)“A鱼”与“B鱼” 在水中运动时所受阻力之比f A:f B3如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高度也为h,坡道底端与台面相切。
小球A从坡道顶端由静止开始滑下,到达水平光滑的台面与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半,两球均可视为质点,忽略空气阻力,重力加速度为g。
求(1)小球A刚滑至水平台面的速度v A;(2)A、B两球的质量之比m A:m B。
【答案】:(1)错误!未找到引用源。
(2)1:3【解析】:解:(1)小球从坡道顶端滑至水平台面的过程中,由机械能守恒定律得m A gh = 错误!未找到引用源。
m A v A2解得:v A = 错误!未找到引用源。
(2)设两球碰撞后共同的速度为v,由动量守恒定律得m A v A=(m A + m B)v粘在一起的两球飞出台面后做平抛运动竖直方向:h = 错误!未找到引用源。
高中物理动量经典大题练习(含答案)
1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
高中物理圆周运动与能量、动量问题(含答案)
圆周运动与能量、动量问题1 如图所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A、B静置于光滑水平轨道上,A、B的质量分别为1.5 kg和0.5 kg.现让A以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s,碰后的速度大小变为4 m/s.当A与B碰撞后会立即粘在一起运动,g 取10 m/s2,求:(1)在A与墙壁碰撞的过程中,墙壁对A的平均作用力的大小;(2)A、B滑上圆弧轨道的最大高度.答案(1)50 N(2)0.45 m解析(1)设水平向右为正方向,当A与墙壁碰撞时根据动量定理有Ft=m A v1′-m A(-v1)解得F=50 N(2)设碰撞后A、B的共同速度为v,根据动量守恒定律有m A v1′=(m A+m B)vA、B在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得12(m A+m B)v2=(m A+m B)gh解得h=0.45 m.2 如图所示,光滑水平面上有一具有光滑曲面的静止滑块B,可视为质点的小球A从B的曲面上离地面高为h处由静止释放,且A可以平稳地由B的曲面滑至水平地面.已知A的质量为m,B 的质量为3m,重力加速度为g,试求:(1)A刚从B上滑至地面时的速度大小;(2)若A到地面后与地面上的固定挡板P碰撞,之后以原速率反弹,则A返回B的曲面上能到达的最大高度为多少?答案(1)126gh(2)14h解析(1)设A刚滑至地面时速度大小为v1,B速度大小为v2,规12定向右为正方向,由水平方向动量守恒得3m v 2-m v 1=0,由系统机械能守恒得mgh =12m v 12+12×3m v 22联立以上两式解得:v 1=126gh v 2=166gh .(2)从A 与挡板碰后开始,到A 追上B 到达最大高度h ′并具有共同速度v ,此过程根据系统水平方向动量守恒得 m v 1+3m v 2=4m v根据系统机械能守恒得 mgh =12×4m v 2+mgh ′联立解得: h ′=14h .3 如图所示,质量为m 的b 球用长h 的细绳悬挂于水平轨道BC 的出口C 处.质量也为m 的小球a ,从距BC 高h 的A 处由静止释放,沿光滑轨道ABC 下滑,在C 处与b 球正碰并与b 黏在一起.已知BC 轨道距地面的高度为0.5h ,悬挂b 球的细绳能承受的最大拉力为2.8mg 。
物理动量定理题20套(带答案)及解析
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
动量和能量的综合问题-解析版
专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。
高中物理复习能量和动量经典习题例题含答案
专题研究二能量和动量清大师德教育研究院物理教研中心李相关知识链接恒力做功 W=FsCOS B咼考考点解功能量(重力做功、电场力做功)变力做功(弹力、机车牵引力、摩擦力、分子力做功等)考题重力做功W G=—△ E p 弹力做功 W FI=— A E pi 分子力做功WF2=—A E P2 电场力做功W F3=— A E p3动量台匕冃匕动能20KK上海4 ” 势能(重力势能动弹上海£ 性势能、子势能)20KK上海21动能定理工 W= A E K功能原理W其他=A E机械能守题__型A E P=选择题能量守,恒计算题A E选择题计算题功和能、动能定理勺冲量20K牟t大津理综・24 变力的冲量20KK力江苏「10 向心力、摩擦20KK仑上海1 力的冲量等)----- 20KK厂东1计算题冲量9A动量定理选择题动量动冲量、动动量的变化2(方向黑、吉力量定理线上的0KK向广东不在一条直线上的)上海工 I = A p、广西・23动量守恒计算题A P = — A F计算题p i+p2=p i /计算题能量和动量的综合应用机械能守恒定律动量守恒定律动量和能量的综合应•420KK江苏1520KK上海920KK北京理综2320KK广东620KK河南河北2420KK天津理综21计算题选择题计算题选择题计算题选择题计算题选择题20KK江苏19 计算题20KK江苏20 计算题20KK江苏18 计算题20KK广东17 计算题20KK全国理综-25 计算题20KK北京理综-24 计算题20KK江苏18 计算题咼考命题思路——和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。
例如20KK年江苏物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。
2 .动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。
动量、动力学和能量观点在力学中的应用(解析版)--高一物理专题练习(内容+练习)
动量、动力学和能量观点在力学中的应用高一物理专题练习(内容+练习)一、解决力学问题的三个基本观点和五个规律二、力学规律的选用原则1.如果物体受恒力作用,涉及运动细节可用动力学观点去解决.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究的对象为几个物体组成的系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.一、单选题1.如图所示,半径为R、竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦。
圆心O 点正下方放置质量为2m 的小球A ,质量为m 的小球B 以初速度0v 向左运动,与小球A 发生弹性碰撞。
碰后小球A 在半圆形轨道运动时不脱离轨道,则小球B 的初速度0v 不可能为(重力加速度为g )()A .BC .D .【答案】A【解析】根据题意可知,小球B 与小球A 发生弹性碰撞,设碰撞后小球B 的速度为2v ,小球A 的速度为1v ,取向左为正方向,由动量守恒定律和能量守恒定律有0122mv mv mv =+2220121112222mv mv =⋅+解得1023v v =2013v v =-由于碰后小球A 在半圆形轨道运动时不脱离轨道,则小球A 未通过与圆心的等高点或通过圆弧最高点,若小球A 恰好到达圆心的等高点,由能量守恒定律有211222mv mgR ⋅=解得1v =解得0v =若小球恰好通过圆弧最高点,由能量守恒定律有22111222222mv mg R mv ⋅=⋅+由牛顿第二定律有222v mg mR=解得1v =解得0v =则碰后小球A 在半圆形轨道运动时不脱离轨道,小球B 的初速度0v 取值范围为0v ≤0v ≥选不可能的,故选A 。
高考物理二轮复习 第一部分 专题四 动量与能量 第1讲 动量和能量观念在力学中的应用练习(含解析)
动量和能量观念在力学中的应用1.如图甲所示,质量m=6 kg的空木箱静止在水平面上,某同学用水平恒力F推着木箱向前运动,1 s 后撤掉推力,木箱运动的v .t图像如图乙所示,不计空气阻力,g取10 m/s2。
下列说法正确的是()A.木箱与水平面间的动摩擦因数μ=0。
25B.推力F的大小为20 NC.在0~3 s内,木箱克服摩擦力做功为900 JD.在0.5 s时,推力F的瞬时功率为450 W解析撤去推力后,木箱做匀减速直线运动,由速度—时间图线知,匀减速直线运动的加速度大小a2=错误! m/s2=5 m/s2,由牛顿第二定律得,a2=错误!=μg,解得木箱与水平面间的动摩擦因数μ=0.5,故A错误;匀加速直线运动的加速度大小a1=错误! m/s2=10 m/s2,由牛顿第二定律得,F-μmg=ma1,解得F=μmg+ma1=0。
5×60 N+6×10 N=90 N,故B错误;0~3 s内,木箱的位移x=错误!×3×10 m=15 m,则木箱克服摩擦力做功W f=μmgx=0。
5×60×15 J=450 J,故C错误;0。
5 s时木箱的速度v=a1t1=10×0。
5 m/s=5 m/s,则推力F的瞬时功率P=Fv=90×5 W=450 W,故D正确.答案D2.(2019·湖南株洲二模)如图,长为l的轻杆两端固定两个质量相等的小球甲和乙(小球可视为质点),初始时它们直立在光滑的水平地面上。
后由于受到微小扰动,系统从图示位置开始倾倒。
当小球甲刚要落地时,其速度大小为()A.错误!B.错误!C.错误!D.0解析甲、乙组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得mv-mv′=0,由于甲球落地时,水平方向速度v=0,故v′=0,由机械能守恒定律得错误!mv错误!=mgl,解得v甲=2gl,故A正确.答案A3。
高中力学动量与能量综合题精选35题(例题+练习+知识提要)
高中力学综合题精选35题例1、如图所示,光滑水平面上有一质量M=4.0kg 的平板车,车的上表面右侧是一段长L=1.0m 的水平轨道,水平轨道左侧是一半径R=0.25m 的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。
车右端固定一个尺寸可以忽略,处于锁定状态的压缩轻弹簧,一质量m=1.0kg 的小物体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数0.5μ=。
整个装置处于静止状态。
现将轻弹簧解除锁定,小物体被弹出,恰能到达圆弧轨道的最高点A 。
不考虑小物体与轻弹簧碰撞时的能量损失,不计空气阻力。
g 取10m/s 2,求:(1)解除锁定前轻弹簧的弹性势能;(2)小物体第二次经过O′点时的速度大小;(3)最终小物体与车相对静止时距O′点的距离。
解:(1)由能量守恒定律得:E=mgR+μmgL 代入数据解得:E=7.5J(2)设小物体第二次经过O′点时的速度大小为v 1,此时车的速度大小v 2,由水平方向动量守恒定律得:m v 1-M v 2 =0 ①由能量守恒定律得:mgR=12m v 12+12Mv 22 ②①②联立代入数据解得:v 1=2.0m/s(3) 最终小物体与车相对静止时,二者的速度都为0由能量守恒定律得:E=μmgS ③距O′点的距离: x=S-L ④③④代入数据解得:x=0.5m例2、质量m =1kg 的小车左端放有质量M =3kg 的铁块,两者以v 0=4m/s 的共同速度沿光滑水平面向竖直墙运动,车与墙的碰撞时间极短,无动能损失。
铁块与车间的动摩擦因数为μ=1/3,车足够长,铁块不会到达车的右端。
从小车第一次与墙相碰开始计时,取水平向右为正方向,g =10m/s 2,求:(1)当小车和铁块再次具有共同速度时,小车右端离墙多远?(2)在答卷的图上画出第二次碰撞前,小车的速度时间图象。
不要求写出计算过程,需在图上标明图线的起点、终点和各转折点的坐标。
解:(1)撞墙后至两者具有共同速度,小车和铁块系统动量守恒:(M -m )v 0=(M +m )v 1,此时小车右端离墙距离s 1,由动能定理知:221101122Mgs mv mv μ-=-, 10.6m s =。
高三物理专项训练 力学中的动量和能量问题(附答案解析)
力学中的动量和能量问题专题强化练1.(2019·河南洛阳孟津二中调研)一质量为m的滑块A以初速度v0沿光滑水平面向右运动,与静止在水平面上的质量为23m的滑块B发生碰撞,它们碰撞后一起继续运动,则在碰撞过程中滑块A动量的变化量为()A.25mv0,方向向左 B.35mv0,方向向左C.25mv0,方向向右 D.35mv0,方向向右【答案】A设两滑块碰后的共同速度为v,以水平向右为正方向,根据动量守恒定律有mv0=m+23mv,解得v=35v0,可知在碰撞过程中滑块A动量的变化量为Δp=m·35v0-mv0=-25mv0,方向向左,故选A.2.(2019·山东日照一模)A、B两小球静止在光滑水平面上,用轻弹簧相连接,A、B两球的质量分别为m和M(m<M).若使A球获得瞬时速度v(如图甲),弹簧压缩到最短时的长度为L1;若使B球获得瞬时速度v(如图乙),弹簧压缩到最短时的长度为L2,则L1与L2的大小关系为()A.L1>L2B.L1<L2C.L1=L2D.不能确定【答案】C3.(2019·福建晋江季延中学月考)质量为m1=1 kg和m2(未知)的两个物体在光滑的水平面上发生正碰,碰撞时间极短,其x-t图像如图所示,则() A.此碰撞一定为弹性碰撞B.m2=2 kgC.碰后两物体速度相同D.此过程有机械能损失【答案】A由图像可知,碰撞前质量为m 2的物体是静止的,质量为m 1的物体速度为v 1=4 m/s ,碰后质量为m 1的物体速度为v 1′=-2 m/s ,质量为m 2的物体速度为v 2′=2 m/s ,两物体碰撞过程动量守恒,由动量守恒定律得m 1v 1=m 1v 1′+m 2v 2′,解得m 2=3 kg ;碰撞前总动能E k =E k1+E k2=12m 1v 21+12m 2v 22=8 J ,碰撞后总动能E k ′=E k1′+E k2′=12m 1v 1′2+12m 2v 2′2=8 J ,碰撞前后系统动能不变,故碰撞是弹性碰撞,综上分析可知A 正确,B 、C 、D 错误.4.(2019·福建省泉州市模拟三)如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 0高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0,则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h <34h 0【答案】D小球与小车组成的系统在水平方向所受合外力为零,水平方向系统动量守恒,但系统整体所受合外力不为零,系统动量不守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m 2R -x t -m x t =0,解得,小车的位移:x =R ,故B 错误;小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 错误;小球第一次由释放经半圆轨道冲出至最高点时,由动能定理得:mg (h 0-34h 0)-W f =0,W f 为小球克服摩擦力做功大小,解得W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做的功小于14mgh 0,机械能的损失小于14mgh 0,因此小球第二次离开小车时,能上升的高度大于34h 0-14h 0=12h 0,且小于34h 0,故D 正确.5.(2019·河南省鹤壁市第二次段考)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,船的质量为( )A.()m L d d +B.()m L d d - C.mL dD.()m L d L + 【答案】B设人走动的时候船的速度为v ,人的速度为v ′ ,人从船尾走到船头用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -d t.以船的速度方向为正方向,根据动量守恒定律有:Mv -mv ′=0,可得:M d t =m L -d t ,解得小船的质量为M =m L -d d ,故B 项正确.6.(多选)水平地面上有两个物体在同一直线上运动,两物体碰撞前后的速度-时间图像如图所示(其中一个物体碰后速度为0),下列说法正确的是( )A .t =0时,两物体的距离为1 mB .t =2.5 s 时,两物体的距离为4.5 mC .两物体间的碰撞为弹性碰撞D .碰撞前,地面对两个物体的摩擦力大小不相等【答案】BC两物体相向运动,均做匀减速运动,1 s 相碰,可知t =0时,两物体的距离为Δs =12×(4+6)×1 m +12(2+6)×1 m =9 m ,选项A 错。
高中物理动量知识点专题(含答案)
高中物理动量知识点专题一、冲量与动量、动量与动能概念专题●1.冲量I :I =Ft ,有大小有方向(恒力的冲量沿F 的方向),是矢量.两个冲量相同必定是大小相等方向相同,讲冲量必须明确是哪个力的冲量,单位是N ·s .●2.动量p :p =mv ,有大小有方向(沿v 的方向)是矢量,两个动量相同必定是大小相等方向相同,单位是kg ·m/s .●3.动量与动能(E k =12mv 2)的关系是: p 2=2m E k .动量与动能的最大区别是动量是矢量,动能是标量.【例题】A 、B 两车与水平地面的动摩擦因数相同,则下列哪些说法正确?A .若两车动量相同,质量大的滑行时间长;B .若两车动能相同,质量大的滑行时间长;C .若两车质量相同,动能大的滑行时间长;D .若两车质量相同,动量大的滑行距离长.【分析】根据动量定理F ·t =mv t -mv 0得mg ·t =p ∴t =P mg μ∝1m——A 不正确;根据 t =221==k k mE E p mg mg g m μμμ∝1m——B 不正确;根据 t =2=k mE p mg mg μμ∝k E ——C 正确;根据动能定理F 合·s cos =2201122-t mv mv 得 mgs =E k =22p m , ∴s =222p m g μ∝p 2——D 正确. 训练题(1)如图5—1所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,到达斜面底端的过程中,两个物体具有的物理量相同的是:A .重力的冲量;B .弹力的冲量;C .合力的冲量;D .刚到达底端时的动量;E .刚到达底端时动量的水平分量;F .以上几个量都不同.1.F 分析:物体沿斜面作匀加速直线运动,由位移公式,得θsin h =21g sin ·t 2 t 2∝θ2sin 1 不同,则t 不同.又I G =mgt I N =N t 所以I G 、I N 方向相同,大小不同,选项A 、B 错误;根据机械能守恒定律,物体到达底端的速度大小相等,但方向不同;所以刚到达底端时的动量大小相等但方向不同,其水平分量方向相同但大小不等,选项D 、E 错误;又根据动量定理I 合=ΔP =mv -0可知合力的冲量大小相等,但方向不同,选项C 错误.(2)对于任何一个固定质量的物体,下面几句陈述中正确的是:A .物体的动量发生变化,其动能必变化;B .物体的动量发生变化,其动能不一定变化;C .物体的动能发生变化,其动量不一定变化;D .物体的动能变化,其动量必有变化.2.BD 分析:动量和动能的关系是P 2=2mE k ,两者最大区别是动量是矢量,动能是标量.质量一定的物体,其动量变化可能速度大小、方向都变化或速度大小不变方向变化或速度大小变化方向不变.只要速度大小不变,动能就不变.反之,动能变化则意味着速度大小变化,意味着动量变化.(8)A 车质量是B 车质量的2倍,两车以相同的初动量在水平面上开始滑行,如果动摩擦因数相同,并以S A 、S B 和t A 、t B 分别表示滑行的最远距离和所用的时间,则A .S A =SB ,t A =t B ; B .S A >S B ,t A >t B ;C .S A <S B ,t A <t B ;D .S A >S B ,t A <t B .8.C 分析:由mv =mgt 知t A =t B /2, 由Fs =21mv 2=mp 22知s A /s B =1/2 二、动量定理专题●1.动量定理表示式:F Δt =Δp .式中:(1)F Δt 指的是合外力的冲量;(2)Δp 指的是动量的增量,不要理解为是动量,它的方向可以跟动量方向相同(同一直线动量增大)也可以跟动量方向相反(同一直线动量减小)甚至可以跟动量成任何角度,但Δp 一定跟合外力冲量I 方向相同;(3)冲量大小描述的是动量变化的多少,不是动量多少,冲量方向描述的是动量变化的方向,不一定与动量的方向相同或相反.●2.牛顿第二定律的另一种表达形式:据F =ma 得F =m 0'-=ΔΔΔv v p t t,即是作用力F 等于物体动量的变化率Δp /Δt ,两者大小相等,方向相同.●3.变力的冲量:不能用Ft 直接求解,如果用动量定理Ft =Δp 来求解,只要知道物体的始末状态,就能求出I ,简捷多了.注意:若F 是变量时,它的冲量不能写成Ft ,而只能用I 表示.●4.曲线运动中物体动量的变化:曲线运动中速度方向往往都不在同一直线上,如用Δp =mv ′-mv 0来求动量的变化量,是矢量运算,比较麻烦,而用动量定理I =Δp 来解,只要知道I ,便可求出Δp ,简捷多了.*【例题1】质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,又以4m/s 的速度被反向弹回(如图5—2),球跟墙的作用时间为0.05s ,求:(1)小球动量的增量;(2)球受到的平均冲力.【分析】根据动量定理Ft =mv 2-mv 1,由于式中F 、v 1、v 2都是矢量,而现在v 2与v 1反向,如规定v 1的方向为正方向,那么v 1=5m/s ,v 2=-4m/s ,所以:(1)动量的增量 Δp =mv 2-mv 1=0.4×(-4-5)kg ·m/s =-3.6kg ·m/s . 负号表示动量增量与初动量方向相反.(2)F =21 3.60.05--=mv mv t N =-72N .冲力大小为72N ,冲力的方向与初速反向.【例题2】以速度v 0平抛出一个质量为1lg 的物体,若在抛出3s 后它未与地面及其它物体相碰,求它在3s 内动量的变化.【分析】不要因为求动量的变化,就急于求初、未动量而求其差值,这样不但求动量比较麻烦,而且动量是矢量,求矢量的差也是麻烦的.但平抛出去的物体只受重力,所求动量的变化应等于重力的冲量,重力是恒量,其冲量容易求出.即:Δp =Ft =1×10×3kg ·m/s =30kg ·m/s .总结与提高 若速度方向变而求动量的变化量,则用ΔP =Ft 求;若力是变力而求冲量,则用I =mv t -mv 0求.训练题(2)某质点受外力作用,若作用前后的动量分别为p 、p ′,动量变化为Δp ,速度变化为Δv ,动能变化量为ΔE k ,则:A .p =-p ′是不可能的;B .Δp 垂直于p 是可能的;C .Δp 垂直于Δv 是可能的;D .Δp ≠0,ΔE k =0是可能的.2.BD 提示:对B 选项,ΔP 方向即为合力F 合的方向,P 的方向即为速度v 的方向,在匀速圆周运动中,F 合⊥v (即ΔP ⊥P );对C 选项,ΔP 的方向就是Δv 的方向,∵ ΔP =m Δv ,故C 选项错.(4)在空间某一点以大小相同的速度分别竖直上抛,竖直下抛,水平抛出质量相等的小球,若空气阻力不计,经过t 秒:(设小球均未落地)A .作上抛运动小球动量变化最小;B .作下抛运动小球动量变化最大;C .三小球动量变化大小相等;D .作平抛运动小球动量变化最小.4.C 提示:由动量定理得:mgt =Δp ,当t 相同时,Δp 相等,选项C 对.(8)若风速加倍,作用在建筑物上的风力大约是原来的:A .2倍;B .4倍;C .6倍;D .8倍.8.B 提示:设风以速度v 碰到建筑物,后以速度v 反弹,在t 时间内到达墙的风的质量为m ,由动量定理得: Ft =mv -m (-v )=2m v , 当v 变为2v 时,在相同时间t 内到达墙上的风的质量为2m ,有: F ′t =2m ·2v -2m(-2v )=8m v , ∴ F ′=4F ,故选项B 对.(9)质量为0.5kg 的小球从1.25m 高处自由下落,打到水泥地上又反弹竖直向上升到0.8m 高处时速度减为零.若球与水泥地面接触时间为0.2s ,求小球对水泥地面的平均冲击力.(g 取10m/s ,不计空气阻力)9.解:小球碰地前的速度 v 1=12gh =251102.⨯⨯=5m/s 小球反弹的速度 v 2=22gh =80102.⨯⨯=4m/s以向上为正方向,由动量定理: (F -mg )t =mv 2-mv 1 ∴ F =0.5×(4+5)/0.2+0.5×10=27.5N 方向向上.四、动量守恒条件专题●1.外力:所研究系统之外的物体对研究系统内物体的作用力.●2.内力:所研究系统内物体间的相互作用力.●3.系统动量守恒条件:系统不受外力或所受外力合力为零(不管物体是否相互作用).系统不受外力或所受外力合力为零,说明合外力的冲量为零,故系统总动量守恒.当系统存在相互作用的内力时,由牛顿第三定律得知相互作用的内力产生的冲量,大小相等方向相反,使得系统内相互作用的物体的动量改变量大小相等方向相反,系统总动量保持不变.也就是说内力只能改变系统内各物体的动量而不能改变整个系统的总动量.训练题(2)如图5—7所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒;B .动量不守恒,机械能不守恒;C .动量守恒、机械能不守恒;D .动量不守恒,机械能守恒.2.B 解:过程一:子弹打入木板过程(Δt 很小),子弹与木板组成的系统动量守恒,但机械能不守恒(∵ 子弹在打入木块过程有热能产生); 过程二:木块(含子弹)压缩弹簧,对三者组成的系统机械能守恒,但动量不守恒(∵ 对系统:F 合≠0),所以全程动量、机械能均不守恒.(3)光滑水平面上A 、B 两小车中有一弹簧(如图5—8),用手抓住小车并将弹簧压缩后使小车处于静止状态,将两小车及弹簧看作系统,下面的说法正确的是:A.先放B车后放A车,(手保持不动),则系统的动量不守恒而机械能守恒;B,先放A车,后放B车,则系统的动量守恒而机械能不守恒;C.先放A车,后用手推动B车,则系统的动量不守恒,机械能也不守恒;D.若同时放开两手,则A、B两车的总动量为零.3.ACD 提示:对A选项:先放B车时,A、B车及弹簧三者组成的系统合外力F合≠0,∴动量不守恒,但由于按A车的手不动,故手不做功,此系统机械能守恒.对C选项:F合≠0,且F合又对系统做功(机械能增加),∴动量及机械能均不守恒.五、动量守恒定律各种不同表达式的含义及其应用专题●1.p=p′(系统相互作用前总动量p等于相互作用后总动量p′)●2.Δp=0(系统总动量增量为零).●3.Δp1=-Δp2(相互作用两个物体组成的系统,两物体动量增量大小相等方向相反).●4.m1v1+m2v2=m1v1′+m2v2′(相互作用两个物体组成系统,前动量和等于后动量和)●5.以上各式的运算都属矢量运算,高中阶段只限于讨论一维情况(物体相互作用前、后的速度方向都在同一直线上),可用正、负表示方向.处理时首先规定一个正方向,和规定正方向相同的为正,反之为负,这样就转化为代数运算式,但所有的动量都必须相对于同一参照系.【例题】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g 的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止,那么碰撞后小球m1的速度是多大?方向如何?【分析与解答】设v1的方向即向右为正方向,则各速度的正负号为:v1=30cm/s,v2=-10cm/s,v2′=0,据m1v1′+m2v2′=m1v1+m2v2有10v1′=10×30+50×(-10).解得v1′=-20(cm/s),负号表示碰撞后,m1的方向与v1的方向相反,即向左.总结提高解此类题一定要规定正方向.正确找出初末态动量.训练题(3)一只小船静止在湖面上,一个人从小船的一端走到另一端(不计水的阻力),以下说法中正确的是:A.人在小船上行走,人对船作用的冲量比船对人作用的冲量小,所以人向前运动得快,船后退得慢;B.人在船上行走时,人的质量比船小,它们所受冲量的大小是相等的,所以人向前运动得快,船后退得慢;C.当人停止走动时,因船的惯性大,所以船将会继续后退;D.当人停止走动时,因总动量任何时刻都守恒,所以船也停止后退.3.BD 分析:对A:人对船的作用力和船对人的作用力等大反向,作用时间相等,所以两冲量大小相等;选项A错.对C:人在船上走的过程,对人和船构成的系统,总动量守恒,所以人停则船停;选项C 错.(6)一辆总质量为M的列车,在平直轨道上以速度v匀速行驶,突然后一节质量为m的车厢脱钩,假设列车受到的阻力与质量成正比,牵引力不变,则当后一节车厢刚好静止的瞬间,前面列车的速度为多大?6.解:列车在平直轨道匀速行驶,说明列车受到合外力为零.后一节车厢脱钩后,系统所受合外力仍然为零,系统动量守恒.根据动量守恒定律有:Mv=(M-m)v′v′=Mv/(M-m)六、平均动量守恒专题若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒.如果系统是由两个物体组成,且相互作用前均静止、相互作用后均发生运动,则由0=m 11v -m 22v 得推论: m 1s 1=m 2s 2,使用时应明确s 1、s 2必须是相对同一参照物位移的大小.【例题】一个质量为M ,底面长为b 的三角形劈静止于光滑的水平桌面上,(如图5—16所示)有一质量为m 的小球由斜面顶部无初速滑到底部时,劈移动的距离为多少?【分析和解答】劈和小球组成的系统在整个运动过程中都不受水平方向外力.所以系统在水平方向平均动量守恒.劈和小球在整个过程中发生的水平位移如图5—15所示,由图见劈的位移为s ,小球的水平位移为(b -s ).则由m 1s 1=m 2s 2得:Ms =m (b -s ),∴s =mb /(M +m )总结提高 用m 1s 1=m 2s 2来解题,关键是判明动量是否守恒、初速是否为零(若初速不为零,则此式不成立),其次是画出各物体的对地位移草图,找出各长度间的关系式.训练题(2)静止在水面的船长为l ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离为多少?2.解:如图,设船移动的距离为s 船,人移动的距离为s 人. Ms 船=ms 人 s 人+s 船=l 解得s 船=ml /(M +m )(4)气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 的地方,气球下悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至安全到达地面,则这根绳长至少为多长?4、解:如图,设气球产生的位移为s 球,气球产生的位移为s 人,m 人s 人=m 球s 球50×20=200×s 球s 球=5m所以绳长至少为:l =s 人+s 球=20+5=25m七、多个物体组成的系统动量守恒专题有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量守恒即可,要善于选择系统、善于选择过程来研究.【例题】两只小船平行逆向航行,航线邻近,当它们头尾相齐时,由每一只船上各投质量m =50kg 的麻袋到对面一只船上去,结果载重较小的一只船停了下来,另一只船则以v =8.5m/s 的速度向原方向航行,设两只船及船上的载重量各为m 1=500kg 及m 2=1000kg ,问在交换麻袋前两只船的速率为多少?(水的阻力不计).【分析】选取小船和从大船投过的麻袋为系统,如图5—18,并以小船的速度为正方向,根据动量守恒定律有:(m 1-m )v 1-mv 2=0, 即450v 1-50v 2=0……(1). 选取大船和从小船投过的麻袋为系统有:-(-m2-m)v2+mv1=-m2v,即-950v2+50v1=-1000×8.5……(2).选取四个物体为系统有:m1v1-m2v2=-m2v,即500v1-1000v2=-1000×8.5……(3).联立(1)(2)(3)式中的任意两式解得:v1=1(m/s),v2=9(m/s).训练题(1)质量m=100kg的小船静止在静水面上,船两端载着m甲=40kg,m乙=60kg的游泳者,在同一水平线上甲朝左乙朝右同时以相对于岸3m/s的速度跃入水中,如图5—19所示,则小船的运动方向和速率为:A.向左,小于1m/s;B.向左,大于1m/s;C.向右,大于1m/s;D.向右,小于1m/s.1.A 解:对甲、乙两人及船构成的系统总动量守恒,取向右为正方向,则根据动量守恒定律得0=m m乙v乙+mv,0=40×(-3)+60×3+100×v, v=-0.6m/s 负号表示方向向左甲v甲+(3)A、B两船的质量均为M,都静止在平静的湖面上,现A船中质量为M/2的人,以对地的水平速率v从A船跳到B船,再从B船跳到A船……经n次跳跃后,人停在B船上;不计水的阻力,则:A.A、B两船速度大小之比为2∶3;B.A、B(包括人)两动量大小之比1∶1;C.A、B(包括人)两船的动能之比3∶2;D.以上答案都不对.3.BC 分析:不管人跳几次,只关心初状态:人在A船上,系统(包括A、B船和人)总动量为零;末状态人在B船上.整过程动量守恒,根据动量守恒定律得 0=Mv1+(M+M/2)v B v A/v B=3/2(4)小车放在光滑地面上,A、B两人站在车的两头,A在车的左端,B在车的右端,这两人同时开始相向行走,发现小车向左运动,分析小车运动的原因,可能是:(如图5—20所示)A.A、B质量相等,A比B的速率大;B.A、B质量相等,A比B的速率小;C.A、B速率相等,A比B的质量大;D.A、B速率相等,A比B的质量小.4.AC 分析:对A、B两人及车构成的系统动量守恒,取向左为正方向.m B v B-m A v A+m车v车=0,m A v A=m B v B+m车v车 ,所以m A v A>m B v B(7)如图5—21,在光滑水平面上有两个并排放置的木块A和B,已知m A=500g,m B=300g,一质量为80g 的小铜块C以25m/s的水平初速开始,在A表面滑动,由于C与A、B间有摩擦,铜块C最后停在B上,B 和C一起以2.5m/s的速度共同前进,求:①木块A的最后速度v A′;②C在离开A时速度v′c.7.解:①因为水平面光滑、C在A、B面上滑动的整个过程,A、B、C系统总动量守恒.木块C离开A滑上B时,木块A的速度为最后速度,则m C v C=M A v A+(m B+m C)v′BC, 代入数据可得v′A=2.1m/s, ②对C在A上滑动的过程,A、B、C系统总动量守恒,A、B速度相等.则m C v C=(m A+m B)v′A+m C v′C 代入数据可得v′C=4m/s九、用动量守恒定律进行动态分析专题【例题】甲、乙两个小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg,游戏时,甲推着一质量为m=15kg的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求:甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【分析和解答】甲把箱子推出后,甲的运动有三种可能,一是继续向前,方向不变;一是静止;一是倒退,方向改变.按题意,要求甲推箱子给乙避免与乙相撞的最起码速度,是上述的第一种情况,即要求推箱子后,动量的变化不是很大,达到避免相撞的条件便可以,所以对甲和箱的系统由动量守恒定律可得:(取v0方向为正方向) (M+m)v0=mv+Mv1即(30+15)×2=15v+30v1……(1) v为箱子相对地速度,v1为甲相对地速度.乙抓住箱子后,避免与甲相遇,则乙必须倒退,与甲运动方向相同,对乙和箱的系统得:mv-Mv0=(M+m)v2即15v-30×2=(30+15)v2……(2) v2为乙抓住箱子后,一起相对地的后退速度.甲、乙两冰车避免相撞的条件是:v2≥v1;当甲、乙同步前进时,甲推箱子的速度为最小.v2=v1……(3) 联立(1)(2)(3)式代入数据解得:v=5.2m/s训练题(1)如图5—26所示,水平面上A、B两物体间用线系住,将一根弹簧挤紧,A、B两物体质量之比为2∶1,它们与水平面间的动摩擦因数之比为1∶2.现将线烧断,A、B物体从静止被弹开,则:A.弹簧在弹开过程中(到停止之前),A、B两物体速度大小之比总是1∶2;B.弹簧刚恢复原长时,两物体速度达最大;C.两物体速度同时达到最大;D.两物体同时停止运动.分析:由于A、B受水平地面的摩擦力等大反向,整个过程系统动量守恒,则0=m A v A-m B v B v A/v B=m B/m A=1/2选项A、C、D正确.当A或B受合外力等于零,加速度为零时,速度达到最大,此时弹簧尚未恢复原长,选项B错误.(2)如图5—27所示,光滑水平面有质量相等的A、B两物体,B上装有一轻质弹簧,B原来处于静止状态,A以速度v正对B滑行,当弹簧压缩到最短时:A.A的速度减小到零;B.是A和B以相同的速度运动时刻;C.是B开始运动时;D.是B 达到最大速度时.2.B 分析:当A碰上弹簧后,A受弹簧推力作用而减速,B受弹簧推力作用而加速;当两者速度相等时,A、B之间无相对运动,弹簧被压缩到最短.然后A受弹簧推力作用继续减速,B受弹簧推力作用继续加速,当弹簧恢复原长时,A减速至零,B加速至最大.或用动量守恒定律分析,m A v+0=m A v′A+m B v′B v′v′B增大;当v′A减至零时,v′B增加至最大为v.A减小,(5)如图5—29所示,甲车质量m1=20kg,车上有质量M=50kg的人.甲车(连人)从足够长的光滑斜坡上高h=0.45m由静止开始向下运动,到达光滑水平面上,恰遇m2=50kg的乙车以速度v0=1.8m/s迎面驶来.为避免两车相撞,甲车上的人以水平速度v′(相对于地面)跳到乙车上,求v′的可取值的范围.(g取10m/s 2)5.解:甲车滑到水平面时速度为 v 甲=gh 2=450102.⨯⨯=3(m/s)向右;取向右为正方向,设人从甲车跳到乙车后,甲、乙的速度为v ′甲,v ′乙(均向右), 当v ′甲=v ′乙时,两车不相碰,由动量守恒定律, 对人和甲车有:(20+50)v 甲=20v ′甲+50v ′,对人和乙车有:50v ′-50v 0=(50+50)v ′乙 解得 v ′=3.8m/s当v ″甲=-v ″乙 时两车不相碰,同理有: (20+50)v甲=50v ″+20v ″甲 50v ″-50v 0=(50+50)v ″乙 解得v ″=4.8m/s ,故v ′的范围:3.8m/s ≤v ′≤4.8m/s(6)如图5—30所示,一个质量为m 的玩具蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上,若车长为l ,细杆高为h ,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v 跳出时,才能落到桌面上?(要求写出必要文字,方程式及结果)6.解:取向右为正方向,系统m ,M 动量守恒:0=mv -MV ,蛙在空中运动时间:t =h g /2 蛙在t 内相对车的水平距离:l /2=(v +V )t , 解得:v =hg m M Ml 2)(2+. 十、爆炸、碰撞和反冲专题●1.碰撞过程是指:作用时间很短,作用力大.碰撞过程两物体产生的位移可忽略. ●2.爆炸、碰撞和反冲动量近似守恒:有时尽管合外力不为零,但是内力都远大于外力,且作用时间又非常短,所以合外力产生的冲量跟内力产生冲量比较都可忽略,总动量近似守恒. ●3.三种碰撞的特点:(1)弹性碰撞——碰撞结束后,形变全部消失,末态动能没有损失.所以,不仅动量守恒,而且初、末动能相等,即m 1v 1+m 2v 2=m 1v '1+m 2v '222221122112211112222''+=+m v m v m v m v (2)一般碰撞——碰撞结束后,形变部分消失,动能有部分损失.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '222221122112211112222''+=+m v m v m v m v +ΔE K 减 (3)完全非弹性碰撞——碰撞结束后,两物体合二为一,以同一速度运动;形变完全保留,动能损失最大.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=(m 1+m 2)v222112212111()222+=m v m v m +m v +ΔE k max ●4.“一动一静”弹性正碰的基本规律如图5—32所示,一个动量为m 1v 1的小球,与一个静止的质量为m 2的小球发生弹性正碰,这种最典型的碰撞,具有一系列应用广泛的重要规律(1)动量守恒,初、末动能相等,即(2)根据①②式,碰撞结束时,主动球(m 1)与被动球(m 2)的速度分别为(3)判定碰撞后的速度方向当m 1>m 2时;v ′1>0,v ′2>0——两球均沿初速v 1方向运动.当m 1=m 2时;v ′1=0,v ′2=v 1——两球交换速度,主动球停下,被动球以v 1开始运动. 当m 1<m 2时;v ′1<0,v ′2>0——主动球反弹,被动球沿v 1方向运动.●5.“一动一静”完全非弹性碰撞的基本计算关系如图5—33所示,在光滑水平面上,有一块静止的质量为M 的木块,一颗初动量为mv 0的子弹,水平射入木块,并深入木块d ,且冲击过程中阻力f 恒定.(1)碰撞后共同速度(v )根据动量守恒,共同速度为v =0mv m+M……① (2)木块的冲击位移(s) 设平均阻力为f ,分别以子弹,木块为研究对象,根据动能定理,有 fs =12Mv 2………②,f (s +d )=12m 20v -12mv 2……③ 由①、②和③式可得 s =+m m Md <d 在物体可视为质点时:d =0,s =0——这就是两质点碰撞瞬时,它们的位置变化不计的原因 (3)冲击时间(t )以子弹为研究对象,根据子弹相对木块作末速为零的匀减速直线运动,相对位移d =12v 0t ,所以冲击时间为 t =02d v (4)产生的热能Q在认为损失的动能全部转化为热能的条件下 Q =ΔE K =f ·s 相=fd =12m 20v ()+M M m 【例题1】质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7kg ·m/s ,B 球的动量是5kg ·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是:A .p A =6kg ·m/s ,pB =6kg ·m/s ; B .p A =3kg ·m/s ,p B =9kg ·m/s ;C .p A =-2kg ·m/s ,p B =14kg ·m/s ;D .p A =-4kg ·m/s ,p B =17kg ·m/s .【分析】从碰撞前后动量守恒p 1+p 2=p 1′+p 2′验证,A 、B 、C 三种情况皆有可能,从总动能只有守恒或减少:221222+p p m m ≥221222''+p p m m来看,答案只有A 可能. 【例题2】锤的质量是m 1,桩的质量为m 2,锤打桩的速率为一定值.为了使锤每一次打击后桩更多地进入土地,我们要求m 1m 2.假设锤打到桩上后,锤不反弹,试用力学规律分析说明为什么打桩时要求m 1m 2.【分析】两个阶段,第一阶段锤与桩发生完全非弹性碰撞,即碰后二者具有相同的速度,第二阶段二者一起克服泥土的阻力而做功,桩向下前进一段.我们希望第一阶段中的机械能损失尽可能小,以便使锤的动能中的绝大部分都用来克服阻力做功,从而提高打桩的效率.设锤每次打桩时的速度都是v ,发生完全非弹性碰撞后的共同速度是v ′. 则 m 1v =(m 1+m 2)v ′.非弹性碰撞后二者的动能为 E k =12(m 1+m 2)v ′2=211212+m m m v 2.当m 1m 2时,E K ≈12m 1v 2,即当m 1m 2时碰撞过程中系统的机械能损失很小.训练题(1)甲、乙两个小球在同一光滑水平轨道上,质量分别是m 甲和m 乙.甲球以一定的初动能E k 0向右运动,乙球原来静止.某时刻两个球发生完全非弹性碰撞(即碰撞后两球粘合在一定),下面说法中正确的是:A .m 甲与m 乙的比值越大,甲球和乙球组成的系统机械能的减少量就越小;B .m 甲与m 乙的比值越小,甲球和乙球组成的系统机械能的减少量就越小;C .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最小;D .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最大.1.A 提示:由动量守恒有:mv 0=(M +m )v ,由能量守恒有:ΔE =21mv 02-21(M +m )v 2,,ΔE =21mv 02m M M +=21mv 02·Mm +11,∴ 越大,ΔE 越小,故选项A 对. (2)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是:A .甲球的速度为零而乙球的速度不为零;B .乙球的速度为零而甲球的速度不为零;C .两球的速度均不为零;D .两球的速度方向均与原方向相反,两球的动能不变.2.提示:不知道是哪一种碰撞. ∵ m 甲>m 乙,E k 相同,∴ 由P 2=2mE k 知P 甲>P 乙,故系统总动量的方向与甲的初速相同.对A 选项,当球反弹时可保证P 总与A 球的初速相同,∴ 可能出现; 对B 选项,∵ P 甲>P 乙,∴ 碰后乙球不可能静止;对C 选项,可保证动量守恒和能量守恒成立; 对D 选项,碰后系统总动量的方向与碰前总动量方向相反,违反了动量守恒定律.(3)质量为1kg 的小球以4m/s 的速度与质量为2kg 的静止小球正碰.关于碰后的速度v 1′与v 2′,下面哪些是可能的:A .v 1′=v 2′=4/3m/s ;B .v 1′=-1m/s ,v 2′=2.5m/s ;C .v 1′=1m/s ,v 2′=3m/s ;D .v 1′=-4m/s ,v 2′=4m/s .3.提示:必须同时满足:m 1v 1=m 1v ′+m 2v ′2和21m 1v 12≥21m 1v ′21+21m 2v ′22这两个条件.∴ 选项A 、B 正确.(5)在质量为M 的小车中挂有一单摆,摆球的质量为m 0.小车(和单摆)以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?A .小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =Mv 1+mv 2+mv 3;B .摆球的速度不变,小车和木块的速度变为v 1和v 2,满足Mv =Mv 1+mv 2;C .摆球的速度不变,小车和木块的速度都变为v ′,满足 Mv =(M +m )v ′;D .小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+mv 2.5.BC 提示:摆球并不参预小车碰木块的过程,因此小车和木块组成的系统动量守恒,摆球速度不变.(9)如图5—38所示,质量为m 的子弹以速度v 从正下方向上击穿一个质量为M 的木球,击穿后木球上升高度为H ,求击穿木球后子弹能上升多高?。
动量和能量专题-(新人教)
M,α粒子的质量为m,带电量为q,测得α粒
子作圆周运动的轨道半径为R,反应过程中释
放的能量全部转化为新核和α粒子的动能,求
铀核衰变中的质量亏损.
解(1)放射性元素的衰变过程中动量守恒,根据动量
守恒定定律可得: m11 m22 0
(2)由于α粒子在磁场中运动的半径:
α粒子
R m
qB
∴
qBR m
W Ek
I合 p
②动能定理可用于求变力所做的功,动量定 理可用于求变力的冲量;
③动能定理的表达式是标量式,动量定理的 表达式是矢量式.
练习
例:质量m=1.5kg的物块(可视为质点)在水平恒 力F作用下,从水平面上A点由静止开始运动,运动 一段距离撤去该力,物块继续滑行t=2.0s停在B点, 已知A、B两点间的距离s=5.0m,物块与水平面间的 动摩擦因数μ=0.20,求恒力F多大。(g=10m/s2)
求变力的功
典型例题---做功问题
例.如图,在匀加速向左运动的车厢中,
一人用力向前推车厢。若人与车厢始终保持相
对静止,则下列说法正确的是:( B )
A.人对车厢做正功
B.人对车厢做负功
a
C.人对车厢不做功
D.无法确定
分析
返回
a
a
返回
(一)常见力做功的特点:
1.重力、电场力做功与路径无关 2.摩擦力做功与路径有关
※非重力弹力功量度机械能的变化: W非 Et E0 (功能原理)
重力 弹力 做功 做功
电场力 分子力
做功
做功
重力 势能 变化
弹性 势能 变化
电势能 变化
分子 势能 变化
※摩擦力做功
滑动摩擦力在做功过程中,能量的转化有 两个方向,一是相互摩擦的物体之间机械能的 转移;二是机械能转化为内能,转化为内能的 值等于机械能减少量,表达式为
高中物理复习能量和动量经典习题例题含答案
专题研究二能量和动量清大师德教育研究院物理教研中心李丽相关知识链接动量重力做功W G=-ΔE P弹力做功W F1=-ΔE P1分子力做功W F2=-ΔE P2电场力做功W F3=-ΔE P3能量能冲量动量恒力做功W=Fs COSθ(重力做功、电场力做功)变力做功(弹力、机车牵引力、摩擦力、分子力做功等)动能势能(重力势能、弹性势能、电势能、分子势能)动能定理ΣW=ΔE K功能原理W其他=ΔE机械能守恒ΔE P=ΔE K能量守恒Q=ΔE恒力的冲量I=Ft变力的冲量(弹力、向心力、摩擦力、库仑力的冲量等)动量的变化(方向在一条直线上的、方向不在一条直线上的)动量定理ΣI=ΔP动量守恒ΔP1=-ΔP2P1+P2=P1ˊ+P2ˊ功能量和动量的综合应用考点考题题型功和能、动能定理2003上海·42003上海·212004上海·82004上海·212004天津理综·242005江苏·102005上海·19A2005广东·142005黑、吉、广西·23选择题计算题选择题计算题计算题选择题计算题计算题计算题动量、冲量、动量定理2004广东·14 计算题机械能守恒定律2003上海·72004江苏·152005上海·92005北京理综·232005广东·62005河南河北·24选择题计算题选择题计算题选择题计算题动量守恒定律2004天津理综·21 选择题动量和能量的综合应用2003江苏·192003江苏·202004江苏·182004广东·172004全国理综·252004北京理综·242005江苏·182005广东·182005河南河北·242005黑、吉、广西·252005陕西、四川·252005天津·24计算题计算题计算题计算题计算题计算题计算题计算题计算题计算题计算题计算题高考考点解读高考命题思路1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。
高中动量守恒、能量守恒定理经典练习题(含答案)
动量守恒、能量守恒、机械能守衡一冲量1.定义:力与力的作用时间的乘积叫做力的冲量。
2.公式:Ft I =3.矢量,方向与作用力方向一致二、动量定理:物体所受合外力的冲量等于它的动量的改变量,这叫做动量定理。
(1)公式:o t mv mv t F -=合三动量守恒:四、弹性碰撞:'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+= ()2121211'22m m v m m v m v +-+=练习一:1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( A )A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段 D.静止不动2(多选).如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E 0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E 1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( AD )A .201E E = B .01E E = C .202E E = D .02E E = 3(多选).光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。
假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。
忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( CD )22112211v m v m v m v m '+'=+Pv QA.子弹两次损失的动能相同B.每个木块增加的动能相同C.因摩擦而产生的热量相同D.每个木块移动的距离不相同4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题研究二能量和动量清大师德教育研究院物理教研中心丽1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。
例如2005年物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。
2.动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。
计算题常设置某个瞬时过程,计算该过程物体受到的平均作用力或物体状态的变化。
要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。
3.动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。
机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。
这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。
如2004年物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。
4.动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。
要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。
对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化与守恒的方法解决实际问题。
分析解答问题的过程中常需运用归纳、推理的思维方法。
如: 2003年全国卷第20题、2004年理综全国卷第25题的柴油机打桩问题、2004年物理卷第18题、2004年物理卷第17题、2005年物理卷第18题、2005年物理卷第18题等。
值得注意的是2005年物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。
第5课时 做功、能量和动能定理[例1](2005·10)如图5-1所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1、W 2,滑块经B 、C 两点时的动能分别为E KB 、E Kc ,图中AB=BC ,则一定有 ( )(A)W l >W 2 (B)W 1<W 2 (C)E KB >E KC (D)E KB <E KC析与解:该题考查了功的概念及功能关系,难点在于比较W l 和W 2,关键是要理解功是力在位移上的累积的本质;功的大小既可视为力F 与力的方向上的位移S 的乘积,又可视为位移S 与位移方向上的力的乘积;因此,可以将力F 在位移方向上进行分解,由于力F 在AB 段的分力均大于在BC 段的分力,则不难判断出W l >W 2,所以A 正确。
根据动能定理:K K G F E E W -'=-W 因在两段中拉力做的功W F 与重力做的功W G 的大小关系不能确定,故无法比较E KB 与E Kc 的大小。
点评:解决该题的关键是能正确地理解功的定义,注意从不同的思维角度去分析问题。
题中力F 为恒力,学生易从求力的作用点位移角度来比较两过程绳子缩短的长度,进而增加了思维难度,甚至造成错误。
[例2](2004·17)如图5-2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰精典考题反思 B A图5-1后A 、B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。
析与解:本题涉及物块A 及AB 共同体两个研究对象,涉及多个运动过程,且AB 共同体压迫弹簧及被弹簧推向右端的过程受力复杂,属于多对象多过程的复杂问题。
研究A 滑行至B 的过程,设A 刚接触B 时的速度为1v ,由功能关系有: 220111122mv mv mgl μ-=A 与B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为2v ,有 122mv mv = A 与B 碰后先一起向左运动,接着A 、B 一起被弹回,当弹簧恢复到原长时,A 、B 分离,设此时A 、B 的共同速度为3v ,在这过程中,弹簧势能始末两态都相等,研究共同体与弹簧作用的全过程,利用功能关系,有 2323211(2)(2)(2)(2)22m v m v m g l μ-=此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有 23112mv mgl μ= 由以上各式,可得 012(1016)v g l l μ=+点评:A 、B 碰撞的瞬间有动能损失,A 、B 再次分离后各自己的运动独立,故不能研究整个过程运用动能定理求解。
正确的分析出滑块运动的各个过程,判断出AB 两滑块分离时弹簧处于原长状态是题解的关键。
对于多过程问题,在分析运动过程的同时还应注意找出前后各过程间的联系。
[例3](2005·23)如图5-3所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与物块A 、B 相连,A 、B 的质量分别为m A 、m B 。
开始时系统处于静止状态。
现用一水平恒力F 拉物块A ,使物块B 上升。
已知当B 上升距离为h 时,B 的速度为v 。
求此过程中物块A 克服摩擦力所做的功。
重力加速度为g 。
析与解:由于连结AB 的绳子在运动过程中一直处于绷紧状态,故A 、B 速度的大小相等,对A 、B 组成的系统,由功能关系有:Fh -W -m B gh=12(m A +m B )v 2求得:W=Fh -m B gh -12(m A +m B )v 2 点评:本题如果运用隔离法选择研究对象,运用牛顿运动定律求解,要求出摩擦力的大小则比较复杂,而运用功能原理求解时则就显得简单多了。
在连结体问题中,若不涉及常系统的相互作用时,常以整体为研究对象求解。
[例4] 如图5-4所示,质量m =0.5kg 的小球从距地面高H =5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R =0.4m 。
小球第一次到达槽最低点时速率为10m/s ,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)(1)小球第一次离槽上升的高度h ;(2)小球最多能飞出槽外的次数(取g =10m/s 2)。
析与解:(1)小球从高处运动至槽口的过程中,只有重力做功;由槽口运动至槽底端的过程中,重力、摩擦力都做功,因摩擦力大小恒定不变,且方向总是与运动方向相反,故圆槽右半部分摩擦力对小A B K F图5-3球做的功与左半部分摩擦力对小球做的功相等。
分别研究小球从最高点落至槽底部和从槽底部运动至左侧上方最高点的过程,设小球第一次离槽上升的高度h ,由动能定理得221)(mv W R H mg f =-+221)(mv W R h mg f -=-+-得mgmgRW mv h f --=221=4.2m(2)小球通过一次圆弧槽,需克服摩擦力做功2W f ,且小球飞出槽口一次,在小球多次通过圆弧槽后,当小球飞出槽口的速度小于等于零,则小球不能飞出槽口,设小球飞出槽外的次数为n ,用动能定理研究全过程得02≥⋅-f W n mgH∴25.64252==≤f W mgH n 即小球最多能飞出槽外6次。
点评:小球在沿槽壁运动过程中摩擦力方向尽管不断变化,但摩擦力方向与运动方向始终在同一直线上,摩擦力功为力与路程的乘积。
该题小球的运动具有往复性,用动能定理研究整个过程可直接求出问题的答案。
本题中作了摩擦力不变的假设,学生应认真审题。
1、如图5′-1所示,木板长为l ,板的A 端放一质量为m 的小物块,物块与板间的动摩擦因数为μ。
开始时板水平,在绕O点缓慢转过一个小角度θ的过程中,若物块始终保持与板相对静止。
对于这个过程中各力做功的情况,下列说确的是 ( )A 、摩擦力对物块所做的功为mgl sin θ(1-cos θ)B 、弹力对物块所做的功为mgl sin θcos θC 、木板对物块所做的功为mgl sin θD 、合力对物块所做的功为mgl cos θ2、如图5′-2所示,一物体从高为H 的斜面顶端由静止开始滑下,滑上与该斜面相连的一光滑曲面后又返回斜面,在斜面上能上升到的最大高度为12 H 。
若不考虑物体经过斜面底端转折处的能量损失,则当物体再一次滑回斜面时上升的最大高度为 ( )A .0B .14 H , C .14 H 与12 H 之间 D .0与14H 之间3、如图5′-3所示,重球m 用一条不可伸长的轻质细线栓住后悬于O 点,重球置于一个斜面不光滑的斜劈M 上,用水平力F 向左推动斜劈M 在光滑水平桌面上由位置(a )匀速向左移动到位置(b ),在此过程中,正确说法是: ( )A .m 与M 之间的摩擦力对m 做正功;B .M 与m 之间的摩擦力对m 做负功;C .M 对m 的弹力对m 所做的功与m 对M 的弹力对M 所做的功的绝对值不相等;D .F 对M 所做的功与m 对M 所做的功的绝对值相等。
4、(2005·18)如图5′-4所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m 。
质量为2m ,大小可忽略的物块C 置于A 板的左端。
C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力。
开始时,三个物体处于静止状态。
现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?5.(05一模) 如图5′-5所示,EF 为水平地面,O 点左侧是粗糙的、右侧是光滑的.一轻质弹簧右端与墙壁固定,左端与静止在O 点质量为m 的小物块A 连结,弹簧处于原长状态. 质量为m 的物块B 在大小为 F 的水平恒力作用下由 C 处从静止开始向右运动 , 已知物块B 与地面EO 段间的滑动摩擦力大小为4F,物块B 运动到O 点与物块A 相碰并一起向右运动(设碰撞时间极短),运动到D 点时撤去外力F. 已知 CO =4S ,OD =S. 求撤去外力后:(1) 弹簧的最大弹性势能. Ob aF图5′-3A CB F s 图5′-4(2)物块B最终离0点的距离. .附:第5课时巩固提高训练答案及解1.答案:C解:支持力对物体做正功,重力对物体做负功;由于静摩擦力始终与运动方向垂直,故摩擦力不做功,三力对物体做的总功为零。