动量及能量经典题剖析及答案

合集下载

动量与能量部分习题分析与解答

动量与能量部分习题分析与解答

跳跃的距离增加了多少?(假设人可视为质点)
分析:人跳跃躏距离的增加是由于他在最
高点处向后抛出物体所致。在抛物的过程
中,人与物之间相互作用的冲量,使他们 各自的动量发生了变化。人与物水平方向 不受外力作用,系统在该方向上动量守恒, 且必须注意是相对地面(惯性系)而言的,
y
u v0
根据相对运动可确定人与物的速度,求得
x
v-u 为抛出物对地面的水平速率。
人的水平速率的增量为
v
v0
c
os
m m'm
u
x Δx
v
v
v0
cos
m m'm
u
而人从最高点到地面的运动时间为
t v0 sin
g
所以,人跳跃的距离的增加量为 x vt mv0 sin u
(m' m) g
第三章 动量与能量部分习题分析与解答
3-13 如图所示,一绳索跨过无摩擦的滑轮,系在质量为1.00kg 的物体上,起初物体静止在无摩擦的水平平面上,若用5.00N的 恒力作用在绳索的另一端,使物体向右作加速运动,当系在物 体上的绳索从与水平面成30°角变为37°角时,力对物体所作 的功为多少?已知滑轮与水平面之间的距离d=1.00m。
(2)
由式(1)、(2)可得 F P1 F2
(3)
当A板跳到N点时,B板刚被提起,此时弹性力F’2=P2,且F2=F’2。由 式(3)可得
F P1 P2 ( m1 m2 )g
第三章 动量与能量部分习题分析与解答
3-22 如图示,有一自动卸货矿工车,满载时的质量为m’,从与 水平成倾角α=30.0°斜面上的点A由静止下滑。设斜面对车的 阻力为车重的0.25倍,矿车下滑距离L时,与缓冲弹簧一道沿斜 面运动,当矿车使弹簧产生最大压缩形变时,矿车自动卸货, 然后矿车借助弹簧的弹性力作用,使之返回原位置A再装货。试 问要完成这一过程。空载时与满载时车的质量之比变为多大?

动量与能量部分习题分析与解答共23页

动量与能量部分习题分析与解答共23页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。量与能量部分习题分析与解 答
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

动量和能量的综合问题-解析版

动量和能量的综合问题-解析版

专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。

动量与能量综合问题归类分析

动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0

设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。

v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:

2020年高三物理专题 动量和能量问题的三组经典问题(解析版)

2020年高三物理专题 动量和能量问题的三组经典问题(解析版)

动量和能量问题的三组强化训练伴随着“动量”调整为必考内容,动量与能量结合的“压轴题”更容易受到高考试卷命题人的青睐,因此特意为准备的考生准备了动量与能量结合的三组经典题目,进行强化训练。

1.如图所示,一质量为M 的木块静止在水平轨道AB 的B 端,水平轨道与光滑圆弧轨道BC 相切。

现有一质量为m 的子弹以v 0的水平速度从左边射入木块且未穿出,重力加速度为g 。

求:(1)子弹射入木块过程中系统损失的机械能和子弹与木块一起在圆弧轨道上上升的最大高度; (2)从木块开始运动到木块返回B 点的过程中木块(含子弹)所受合外力的冲量大小。

【解析】(1)设子弹射入木块后与木块的共同速度为v ,子弹射入木块的过程系统动量守恒, 由动量守恒定律有mv 0=(m +M )v 解得v =mm +M v 0损失的机械能ΔE =12mv 02-12(m +M )v 2=mMv 022(m +M )设木块上升的最大高度为h ,子弹与木块在光滑圆弧轨道BC 上运动,到达最高点的过程中由系统机械能守恒有12(m +M )v 2=(m +M )gh解得h =m 2v 022(m +M )2g。

(2)由于圆弧轨道光滑,从木块开始运动到木块返回B 点,木块(含子弹)速度大小不变,其动量变化为-2(m +M )v由动量定理,所受合外力的冲量大小I =2(m +M )v =2mv 0。

【答案】(1)mMv 022(m +M ) m 2v 022(m +M )2g(2)2mv 02.如图所示,用长为R 的不可伸长的轻绳将质量为m3的小球A 悬挂于O 点。

在光滑的水平地面上,质量为m的小物块B (可视为质点)置于长木板C 的左端静止。

将小球A 拉起,使轻绳水平拉直,将A 球由静止释放,运动到最低点时与B 发生弹性正碰。

(1)求碰后轻绳与竖直方向的最大夹角θ的余弦。

(2)若长木板C 的质量为2m ,B 与C 之间的动摩擦因数为μ,C 的长度至少为多大,B 才不会从C 的上表面滑出?【解析】(1)设小球A 与B 碰前瞬间速度为v 0,则有: m 3gR =12·m 3v 02 设碰后A 和B 的速度分别为v 1和v 2,有: m 3v 0=m3v 1+mv 2 12·m 3v 02=12·m 3v 12+12·mv 22 设碰后A 球能上升的最大高度为H ,有m 3gH =12·m 3v 12所求cos θ=R -HR由以上各式解得:cos θ=34。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

能量和动量的综合应用(超详细)

能量和动量的综合应用(超详细)

【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。

要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。

因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。

2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。

等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。

等等……(3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。

滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。

因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。

(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。

由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。

由图可知,s A ≠s B ,且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+- 对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。

专题17 动量与能量(解析版)

专题17 动量与能量(解析版)

17 动量与能量【专题导航】目录热点题型一 应用动量能量观点解决"子弹打木块"模型 (1)热点题型二 应用动量能量观点解决"弹簧碰撞"模型 (3)热点题型三 应用动量能量观点解决"板块"模型 (7)热点题型四 应用动量能量观点解决斜劈碰撞现象 (10)【题型演练】 (13)【题型归纳】热点题型一 应用动量能量观点解决"子弹打木块"模型子弹打木块实际上是一种完全非弹性碰撞。

作为一个典型,它地特点是:子弹以水平速度射向原来静止地木块,并留在木块中跟木块共同运动。

下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

设质量为m 地子弹以初速度0v 射向静止在光滑水平面上地质量为M 地木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹地平均阻力地大小和该过程中木块前进地距离。

要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量地角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量地角度看,该过程系统损失地动能全部转化为系统地内能。

设平均阻力大小为f ,设子弹、木块地位移大小分别为1s 、2s ,如下图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅- ……②对木块用动能定理:2221Mv s f =⋅ ……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2019·江苏苏北三市模拟)光滑水平地面上有一静止地木块,子弹水平射入木块后未穿出,子弹和木块地v -t 图象如下图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50 J,则此过程产生地内能可能是( )A .10 JB .50 JC .70 JD .120 J【解析】D.【解析】设子弹地初速度为v 0,射入木块后子弹与木块共同地速度为v ,木块地质量为M ,子弹地质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得地动能为E k =12Mv 2=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生地内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m m E k >50 J,当Q =70 J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120 J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2019·山东六校联考)如下图所示,两个质量和速度均相同地子弹分别水平射入静止在光滑水平地面上质量相同、材料不同地两矩形滑块A 、B 中,射入A 中地深度是射入B 中深度地两倍.两种射入过程相比较( )A .射入滑块A 地子弹速度变化大B .整个射入过程中两滑块受地冲量一样大C .射入滑块A 中时阻力对子弹做功是射入滑块B 中时地两倍D .两个过程中系统产生地热量相同【解析】BD【解析】在子弹打入滑块地过程中,子弹与滑块组成地系统动量守恒,由动量守恒定律可知,mv 0=(M +m )v ,两种情况下子弹和滑块地末速度相同,即两种情况下子弹地速度变化量相同,A 项错误;两滑块质量相同,且最后地速度相同,由动量定理可知,两滑块受到地冲量相同,B 项正确;由动能定理可知,两种射入过程中阻力对子弹做功相同,C 项错误;两个过程中系统产生地热量与系统损失地机械能相同,D 项正确.【变式2】如下图所示,质量为m =245 g 地物块(可视为质点)放在质量为M =0.5 kg 地木板左端,足够长地木板静止在光滑水平面上,物块与木板间地动摩擦因数为μ=0.4。

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。

(B)质点系总动量的改变与内力无关。

(C)动量是过程量,冲量是状态量。

(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。

2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。

3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。

5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。

7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。

高三物理专项训练 力学中的动量和能量问题(附答案解析)

高三物理专项训练 力学中的动量和能量问题(附答案解析)

力学中的动量和能量问题专题强化练1.(2019·河南洛阳孟津二中调研)一质量为m的滑块A以初速度v0沿光滑水平面向右运动,与静止在水平面上的质量为23m的滑块B发生碰撞,它们碰撞后一起继续运动,则在碰撞过程中滑块A动量的变化量为()A.25mv0,方向向左 B.35mv0,方向向左C.25mv0,方向向右 D.35mv0,方向向右【答案】A设两滑块碰后的共同速度为v,以水平向右为正方向,根据动量守恒定律有mv0=m+23mv,解得v=35v0,可知在碰撞过程中滑块A动量的变化量为Δp=m·35v0-mv0=-25mv0,方向向左,故选A.2.(2019·山东日照一模)A、B两小球静止在光滑水平面上,用轻弹簧相连接,A、B两球的质量分别为m和M(m<M).若使A球获得瞬时速度v(如图甲),弹簧压缩到最短时的长度为L1;若使B球获得瞬时速度v(如图乙),弹簧压缩到最短时的长度为L2,则L1与L2的大小关系为()A.L1>L2B.L1<L2C.L1=L2D.不能确定【答案】C3.(2019·福建晋江季延中学月考)质量为m1=1 kg和m2(未知)的两个物体在光滑的水平面上发生正碰,碰撞时间极短,其x-t图像如图所示,则() A.此碰撞一定为弹性碰撞B.m2=2 kgC.碰后两物体速度相同D.此过程有机械能损失【答案】A由图像可知,碰撞前质量为m 2的物体是静止的,质量为m 1的物体速度为v 1=4 m/s ,碰后质量为m 1的物体速度为v 1′=-2 m/s ,质量为m 2的物体速度为v 2′=2 m/s ,两物体碰撞过程动量守恒,由动量守恒定律得m 1v 1=m 1v 1′+m 2v 2′,解得m 2=3 kg ;碰撞前总动能E k =E k1+E k2=12m 1v 21+12m 2v 22=8 J ,碰撞后总动能E k ′=E k1′+E k2′=12m 1v 1′2+12m 2v 2′2=8 J ,碰撞前后系统动能不变,故碰撞是弹性碰撞,综上分析可知A 正确,B 、C 、D 错误.4.(2019·福建省泉州市模拟三)如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 0高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0,则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h <34h 0【答案】D小球与小车组成的系统在水平方向所受合外力为零,水平方向系统动量守恒,但系统整体所受合外力不为零,系统动量不守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m 2R -x t -m x t =0,解得,小车的位移:x =R ,故B 错误;小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 错误;小球第一次由释放经半圆轨道冲出至最高点时,由动能定理得:mg (h 0-34h 0)-W f =0,W f 为小球克服摩擦力做功大小,解得W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做的功小于14mgh 0,机械能的损失小于14mgh 0,因此小球第二次离开小车时,能上升的高度大于34h 0-14h 0=12h 0,且小于34h 0,故D 正确.5.(2019·河南省鹤壁市第二次段考)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,船的质量为( )A.()m L d d +B.()m L d d - C.mL dD.()m L d L + 【答案】B设人走动的时候船的速度为v ,人的速度为v ′ ,人从船尾走到船头用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -d t.以船的速度方向为正方向,根据动量守恒定律有:Mv -mv ′=0,可得:M d t =m L -d t ,解得小船的质量为M =m L -d d ,故B 项正确.6.(多选)水平地面上有两个物体在同一直线上运动,两物体碰撞前后的速度-时间图像如图所示(其中一个物体碰后速度为0),下列说法正确的是( )A .t =0时,两物体的距离为1 mB .t =2.5 s 时,两物体的距离为4.5 mC .两物体间的碰撞为弹性碰撞D .碰撞前,地面对两个物体的摩擦力大小不相等【答案】BC两物体相向运动,均做匀减速运动,1 s 相碰,可知t =0时,两物体的距离为Δs =12×(4+6)×1 m +12(2+6)×1 m =9 m ,选项A 错。

动量和能量的综合应用 例题精选

动量和能量的综合应用 例题精选

动量和能量的综合应用 例题精选例题1: 如图,质量为3m 、长度为L 的木块放于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度变为0.4v 0 ,设木块对子弹的阻力始终保持不变,求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿出木块中所受平均阻力大小。

解:(1)子弹与木块组成的系统动量守恒,有mv 0=0.4mv 0+3mv ,则子弹穿出后木块的速度为v=0.2v 0 ;(2)子弹穿越木块的过程中,设木块的位移为s , 则据动能定理对子弹有:-f(s+L)= 12m(0.4v 0)2-12mv 02 对木块有: fs=123mv 2 联立解得:f=9mv 20/(25L)变式训练1:如图所示,质量为M 的木块固定在水平面上,有一质量为m 的子弹以初速度v 1水平射向木块,并恰能射穿,设木块的厚度及木块对子弹的平均阻力恒定. 试问若木块可以在光滑的水平面上自由滑动,子弹要射穿该木块速度至少应为多少?【解析】若木块在光滑水平面上能自由滑动,设子弹以速度v 0射入恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即 mv 0=(m +M )v设木块对子弹阻力为f, 木块厚度为d ,对系统应用能量守恒得fd =12mv 02-12(M +m )v 2由上面两式消去v 可得fd =12mv 02-12(m +M )(mv 0m +M)2 整理得12mv 20=m +M Mfd -----------------① 据题目条件,在木板固定时对子弹列动能定理有 -fd= - 12mv 12 ………………②联立① ② 可得v 0v 1例题2:如图甲质量m B =1 kg 的平板小车B 在光滑水平面上以v1=1 m/s 的速度向左匀速运动.当t =0时,质量m A =2 kg 的小铁块A 以v 2=2 m/s 的速度水平向右滑上小车,A 与小车间的动摩擦因数为μ=0.2.若A 最终没有滑出小车,取水平向右为正方向,g =10 m/s 2,则:1)A 在小车上停止运动时,小车的速度为多大?(2)小车的长度至少为多少?(3)在图乙所示的坐标纸中画出1.5 s 内的小车B 运动的速度—时间图象.解:因p A =m A v 2>p B =m B v 1,所以系统的总动量水平向右,即A 在车上停止运动时,它们必定以共同速度向右运动.此过程中A 的运动方向不变,做减速运动,而B 是先向左做匀减速运动而后再向右做匀加速运动,最后与A 达到共同速度.(1)A 在小车上停止运动时,A 、B 以共同速度运动,设其速度为v ,取水平向右为正方向,由动量守恒定律得 m A v 2-m B v 1=(m A +m B )v解得:v =1 m/s.(2)设小车的最小长度为L ,由功能关系得μmAgL =12m A v 22+12m B v 12-12(m A +m B )v 2 解得:L =0.75 m.(3)设小车匀变速运动的时间为t ,由动量定理得μmAgt =mB (v +v 1)解得:t =0.5 s故小车的速度—时间图象如右图所示.答案:(1)1 m/s (2)0.75 m (3)见解析图变式训练2:如图所示,一质量m 2=0.20 kg 的平顶小车,车顶右端放一质量m 3=0.25 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.4,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=12 3 m/s 射中小车左端,并留在车中.子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10 m/s 2.求:(1)小车的最小长度应为多少?最后小物体与小车的共同速度为多少?(2)小物体在小车上相对小车滑行的时间.【解析】(1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 1v 0=(m 2+m 1)v 1 ①由三物体组成的系统动量守恒得(m 2+m 1)v 1=(m 2+m 1+m 3)v 2 ②设小车最小长度为L ,三物体相对静止后,对系统利用能量守恒定律得12(m 2+m 1)v 21-12(m 2+m 1+m 3)v 22=μm 3gL ③联立以上方程解得L =0.9 m车与物体的共同速度为 v 2=2.1 m/s(或1.2 3 m/s)(2)以m 3为研究对象,利用动量定理得:μm 3gt =m 3v 2 ④解得t =0.52 s(或0.3 3 s)例题3:如图所示,一轻质弹簧两端连着物体A 和物体B ,放在光滑的水平面上,水平速度为v 0的子弹射中物体A 并嵌在其中(作用时间极短),已知物体B 的质量为m B ,物体A 的质量是物体B的质量的34,子弹的质量是物体B 的质量的14,求(1) 弹簧被压缩至最短时的弹性势能;(2) B 物体的最大速度。

动量及能量经典题剖析及答案

动量及能量经典题剖析及答案

动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。

质量为m的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H和物块的最终速度v。

2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。

火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例 11 】质量为 m 的钢板与直立
轻弹簧的上端连接,弹簧下端固定在地
A
3 上。平衡时,弹簧的压缩量为 x0如图 3 x
xO
所示。一物块从钢板正上方距离为 3x0
0
0
的 A 处自由落下,打在钢板上并立刻与
钢板一起向下运动,但不粘连。它们到 图
达最底点后又向上运动。已知物块质量也为3m 时,
它们恰能回到 O 点。若物块质量为 2m,仍从 A
4.爆炸类问题
【例 5】 抛出的手雷在最高点时水平速度为 10m/s,这时忽然炸成两块,其中大块质量 300g 仍按原方向飞行,其速度测得为 50m/s,另一小 块质量为 200g,求它的速度的大小和方向。
5.某一方向上的动量守恒 【例 6】 如图所示,AB 为一光滑水平横杆,
杆上套一质量为 M 的小圆环,环上系一长为 L 质量不计的细绳,绳的另一端拴一质量为 m 的 小球,现将绳拉直,且与 AB 平行,由静止释放 小球,则当线绳与 A B 成 θ 角时,圆环移动的距 离是多少?
(1)木块 A 的最终速度 ; (2)滑块 C 离 开 A 时的速度 。
二.动量,能量综合题
【例 9】(1)在如图 1 所示的装置中,木块 B 与水平桌面间的接触是光滑的,子弹 A 沿水平 方向射入木块后,留在木块内,将弹簧压缩到最 短。若将子弹、木块和弹簧合在一起作为研究对 象(系统),此系统从子弹开始射入木块到弹簧 压缩到最短的整个过程中,动量是否守恒?机械
处自由落下,则物块与钢板回到 O 点时,还具有
向上的速度。求物块向上运动到达的最高点与 O
点的距离。
【例 12】在光滑水平导 轨上放置着质量均为 m 滑块 C
v0
B
A
P 图4
B 和 C,B 和 C 用轻质弹簧拴接,且都处于静止状 态。在 B 的右端有一质量也为 m 的滑块 A 以速度 v0 向左运动,与滑块 B 碰撞的碰撞时间极短,碰 后粘连在一起,如图 4 所示,求弹簧可能具有的 最大弹性势能和滑块 C 可能达到的最大速度。
动量及能量经典题剖析及答案
动量及能量经典题剖析
一.动量问题
1.斜面问题
【例 1】 质量为 M 的楔形物块上有圆弧轨道, 静止在水平面上。质量为 m 的小球以速度 v1 向 物块运动。不计一切摩擦,圆弧小于 90°且足够 长。求小球能上升到的最大高度 H 和物块的最终速度 v。
2.子弹打木块类问题 【例 2】 设质量为 m 的子弹以初速度 v0 射向
(1)求弹簧长度刚被锁定后 A 球的速度。 (2)求在 A 球离开档板 P 之后的运动过程中, 弹簧的最大弹性势能。
【例 14】如图,质量为m1的物体 A 经一轻质弹 簧与下方地面上的质量为 m2的物体 B 相连,弹簧 的劲度系数为k ,A、B 都处于静止状态。一条不 可伸长的轻绳绕过轻滑轮,一端连物体 A,另一 端连一轻挂钩。开始时各段绳都处于伸直状态, A 上方的一段绳沿竖直方向。现在挂钩上挂一质 量为m3 的物体 C 并从静止状态释放,已知它恰好 能使 B 离开地面但不继续上升。若将 C 换成另一 个质量为 (m1 m3) 的物体 D,仍从上述初始位置由 静止状态释放,则这次 B 刚离地时 D 的速度 的大小是多少?已知重力加速度为 g。
【例 13】)两个小球 A 和 B 用轻质弹簧相连, 在光滑的水平直轨道上处于静止状态。在它们左 边有一垂直轨道的固定档板 P,右边有一小球 C 沿轨道以速度v0 射向 B 球,如图所示,C 与 B 发 生碰撞并立即结成一个整体 D。在它们继续向左 运动的过程中,当弹簧长度变到最短时,长度突 然被锁定,不再改变。然后,A 球与档板 P 发生 碰撞,碰后 A、D 静止不动,A 与 P 接触而不粘 连。过一段时间,突然解除销定(锁定及解除锁 定均无机械能损失),已知 A、B、C 三球的质量 均为 m 。
6.物块与平板间的相对滑动
【例 7】如图所示,一质量为 M 的平板车 B 放在光滑水平面上,在其右端放一质量为 m 的
小木块 A,m<M,A、B 间动摩擦因数为 μ,现
给 A 和 B 以大小相等、方向相反的初速度 v0,使 A 开始向左运动,B 开始向右运动,最后 A 不会 滑离 B,求:
(1)A、B 最后的速度大小和方向;
能是否守恒?说明理由。 (2)如图 1 所示,若木块的质量为 M,子
弹的质量为 m,弹簧为轻质弹簧,子弹以速度 v0
射入木块 B 后能在极短时间内达到共同速度。求 弹簧可能具有的最大弹性势能。v0B来自A图1图一
【例 10】如图 2 所示, 轻弹簧的一端固定,另一端与 滑块 B 相连,B 静止在水平导
【例 3】 质量为 m 的人站在质量为 M,长为 L 的静止小船的右端,小船的左端靠在岸边。当他 向左走到船的左端时,船左端离岸多远?
【例 4】 总质量为 M 的火箭模型 从飞机上释 放时的速度为 v0,速度方向水平。火箭向后以 相对于地面的速率 u 喷出质量为 m 的燃气后, 火箭本身的速度变为多大?
静止在光滑水平面上的质量为 M 的木块,并留 在木块中不再射出,子弹钻入木块深度为 d。求 木块对子弹的平均阻力的大小和该过程中木块 前进的距离。
3.反冲问题 在某些情况下,原来系统内物体具有相同的速
度,发生相互作用后各部分的末速度不再相同而 分开。这类问题相互作用过程中系统的动能增大, 有其它能向动能转化。可以把这类问题统称为反 冲。
(2)从地面上看,小木块向左运动到离出发 点最远处时,平板车向右运动的位移大小。
【例 8】两块厚度相同的木块 A 和 B,紧靠着
放在光滑的水平面上,其质量分别为

,它们的下底面光滑,上表面粗糙;另有
一质量
的滑块 C(可视为质点),以
的速度恰好水平地滑到 A 的上表面,如
图所示,由于摩擦,滑块最后停在木块 B 上,B 和 C 的共同速度为 3.0m/s,求:
v0
B
A
l2
l1
P
图2
轨上,弹簧处在原长状态。另一质量与 B 相同滑
块 A,从导轨上的 P 点以某一初速度向 B 滑行,
当 A 滑过距离l1 时,与 B 相碰,碰撞时间极短,
碰后 B 紧贴在一起运动,但互不粘连。已知最后 A 恰好返回出发点 P 并停止。滑块 A 和 B 与导轨的 滑动摩擦因数都为 ,运动过程中弹簧最大形变 量为l2 ,求 A 从 P 出发时的初速度v0 。
相关文档
最新文档