细菌和病毒的遗传转化接合
细菌和病毒的遗传性导转导
普遍性转导
例如E.coli thr+ leu+azi+供体,用P1噬菌体转导受体thr- leu- azi 首先在受体中选择标记基因; 然后把受体细菌培养在选择性培养基上,检查其他非标记基
因的有无;
例--把受体菌放在azisthr+的基本培养基上培养,leu就成为选 择的标记基因,因为在该培养基上只有leu+细胞才能生长。 对每个选择的标记基因进行多次实验,以确定其未选择标记 基因出现的频率,确定基因顺序。按照前面的原理,对那些 leu+的细胞进一步进行涂布培养,以测试它们是aziR或aziS, 是thr+或thr- 。
❖ 若两个基因紧密连锁,就可能经常在一起转导,合转导频率 将接近于1。如果两个基因从来或者几乎不包含在同一转导 DNA片段中,它们的合转导频率接近于或等于0。利用这种关 系可以求出同一染色体上两个基因之间的物理距离。经推导, 得到以下计算公式:
P228 自学
❖ d=同一染色体上两基因之间的物理距离。 ❖ L=转导DNA的平均长度。 ❖ X=两个基因合转导的频率。 ❖ 转导颗粒DNA的平均长度(约为1个病毒基因组的大小)知道后,
四、转导(transduction)
LA22 phe-trp-tyr-met+his+
P224 LA2
phe+trp+ tyr+ met-his-
单独
培养
基本培养基培养是否
形成原养型菌落
否
混合 培养
是
单独 培养
否
❖原因? ❖是否为接合或转化引起的?
(三)寻找原因的实验
➢ U型管实验,排除 了接合的可能。
10细菌和病毒的遗传-性导、转导
如果研究三因子转导(three-factor transduction),只需分析一个实 验的结果就可以推出三个基因的次序。
普遍性转导
例如:供体基因型a+b+c+,受体的基因型为a- b- c- 。 供体用P1噬菌体感染,P1的后代再用来感染受体细胞,
然后把受体细胞接种在选择培养基上。
如果通过中断杂交已知三个基因中的一个如a不在中 间,就可对a+进行选择,即在对a+进行选择的选择培 养基上,把可以生长的a+细胞选出来。然后,再把被 选择的受体细胞重复接种在其他对b+或c+进行选择的 选择培养基上,检查a+细胞是否同时具有b+和c+。
突变子和重组子都是一个核苷酸对或者碱基对(bp)。所
以基因内每个碱基均可能发生突变,任意两个碱基间均能 发生交换重组
噬菌体突变型的互补试验
属于同一基因(功能单位)还是两个基因突变产生的呢
p59
对于两个独立起源的、表型相似的隐性突变,如何判定是 在二倍体生物中,可以建立双突变杂合体。双突变体杂合 体有两种形式:顺式(cis)和反式(trans)
普遍性转导
最少的一类转导体应当代表最难于转导的情况,
这种转导体是同时发生交换次数最多的一类。
这种转导子的基因排列应为两边是供体基因,而
中间为受体基因。
假定由实验得到的最少的转导体类别为a+b+c- ,
那么就可以确定,这三个基因的正确次序应当是 acb或bca,而不是abc。
普遍性转导
如λ的DNA,既可以以自主的状态存在,也可以整合在细菌染色 体中。这种有两种状态的遗传因子叫做附加体(episome)。
细菌遗传物质的转移有哪些方式
龙源期刊网 细菌遗传物质的转移有哪些方式作者:郑娟娟来源:《学习与科普》2019年第17期细菌的遗传物质是DNA,细菌遗传物质过程中的转移方式大致有三种,分别是转化,接合和转导,三种方式对DNA的相互作用是区分他们的主要指标。
一、细菌遗传物质的转化过程:在自然界中,细菌的转化过程都是能依靠自身的特定功能来实现自我调节和完成物质之间的相互转化,细菌也不止一种生理形态,而是多种多样的,最常见的形态有Photo-energy inorganic autotrophic type(光能无机自养型), chemical-energy inorganic autotrophic type, heterotrophic type(化学能无机自养型), methyl-nutritional type (甲基营养型)等,除了不同的生理形态对细菌遗传物质的转化方式引起差异外,还有其他外部自然或非自然因素对其转化过程也会产生有差异的影响。
如果细菌的状态为能够被外界环境所影响时,此时,细菌的就能够向外界产生电离反应。
又或者受到氯化钙等其他化学物理刺激,而对DNA吸收或者改变其目前的状态。
这种细菌的状态被称为细菌的感受态。
有些细菌自诞生的时候就处于感受态的环境中,而有一些则需要外界的特殊刺激才能转变为感受态,这也把细菌的感受态分成了自然感受态和人工感受态两种。
不同种类的细菌实现感受态的方式也不尽相同,例如本身就可以实现感受态转变也就是自然感受态的细菌代表有枯草芽孢杆菌,而需要通过人工干扰才能实现感受态的细菌典型代表是大肠杆菌,一种在生活中尤其常见的细菌。
细菌遗传物质转化方式的不同还取决于对外部环境的反应,在自然界的生态系统中,大部分细菌都是来源于土壤之中,因此土壤的干湿程度,酸碱差异,营养成分的比例等因素也会影响细菌遗传物质转化过程的快慢,吸收DNA的快慢以及细胞与DNA相互作用的效率状况。
根据对不同环境下细菌转化速率的观察,可以得知,在淤泥中,细菌转化效率和吸收释放DNA的速度比在其在沃土中的速度更快,在酸性土壤中的转化效率比在碱性土壤中的效率高,再通过观察,发现土壤中的含水量在30%-40%左右时转化效率最高。
细菌和病毒的遗传学分析
用不同的Hfr菌株进行中断杂交实验所作出的大肠杆菌基因连锁图,其基因向F-细胞转移的顺序大不相同。
重组作图
01
当转移时间间隔在两分钟之内, 如已知lac与ade紧密连锁,距离约为1分钟,中断杂交作图就不可靠,须用传统的重组作图(recombination mapping)
01
不用亲本类型 两对基因间的交换频率,必须在形成部分二倍体的条件下,计算重组率。 部分二倍体如果不发生重组,无法鉴别。 接合重组不产生相反的重组类型
低频重组与高频重组
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合后将供体染色体的一部分或全部传递给F-受体,当供体和受体的等位基因带有不同的遗传标记时,可观察到它们之间发生重组,频率可达到10-2以上,称为高频重组品系(菌株)
杂合DNA复制后,形成一个亲代类型的DNA和一个重组类型的DNA并导致转化细胞的形成与表达。
转化的进程
4 共转化与遗传图谱绘制
共转化:供体的一条DNA片段上的两个基因同时转换的现象。 利用共同转化绘制细菌连锁遗传图谱的基本原理: 相邻基因发生共同转化的概率与两者的距离间成正向关系,基因间距离越近,发生共同转化的频率越高,反之越低。 因此可能通过测定两基因共同转化的频率来指示基因间的相对距离。
数理与生物工程学院
单击添加副标题
遗 传 学
单击添加副标题
第七章细菌和病毒的遗传学分析
目录
1
2
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔特姆( Tatum )在1946大肠杆菌杂交试验中发现的。
接合、转化、转染、转导、感染相关的概念
在真核生物中,与原核生物的转化完全相同的过程被称为:
3、Transfection 中文翻译为“转染”
The introduction of DNA into mammalian cells is called transfection. Eukaryotic microorganisms and animal and plant cells can take up DNA in a process that resembles bacterial transformation. Because the word transformation in mammalian cells is used to describe the conversion of cells to the malignant (tumorous, cancerous) state, the introduction of DNA into mammalian cells has been called transfection. Brock p998
又分为普遍转导( generalized transduction)通过完全缺陷噬菌体对供体菌任何DNA小片段的“误包”而实现其遗传性状传递至受体菌的转导现象;局限转导(restricted transduction )通过部分缺陷的温和噬菌体把供体菌的少数特定基因携带到受体菌中,并获得表达的转导现象。
接合、转化、转染、转导、感染等等几个与基因(主要是 DNA )转移相关的概念
1、Conjugation 中文翻译为“结合”
Conjugation is the mechanism by which genetic material is transferred between two bacterial cells by plasmids. A cell containing a conjugative plasmid(F+,fertility+)forms a mating pair with a cell that does not contain a conjugative-plasmid(F-)by means of an F-pilus on the surface of the cell.The pilus contracts,pulling the two cells into contact, and the conjugative plasmids(typified by the F plasmid of E.coli ) is transferred from the plasmid-containing cell, the donor, to the recipient(in some cases,pieces of chromosomal DNA is also transfered to the recipient). The tra genes, carried on the F plasmid, contain all the information for the conjugative process.
细菌和病毒的遗传性导转导
(二)F΄因子
F因子的整合与环出图
F因子整合到宿主细 菌染色体的过程是 可逆的。
正常、精确
(二)F΄因
子
P224
lac
F 非正常 环出 Hfr
la F′lac c F
图10-25 F′因子的形成
阿代尔伯格和伯恩斯(Adelberg,E. 和 Burns,S.,1959)称这种携带有某些细 菌染色体基因的F因子为F′因子。
四、转导
(transduction)
P224
(一)概念:以噬菌体为媒介所进行的细菌遗传物质
重组的过程。
(二)转导现象的发现 黎德伯格(Lederberg)和津德(Zinder)在1952年首 先在鼠伤寒沙门氏菌(Salmenella typhimurium)中 发现转导现象。
四、转导
(transduction)
U型管实验结果的解释: 转导噬菌体---转导
溶源性细菌 (温和噬菌体P22)
(四)转导的类型
图--噬菌体转导
图a、普遍性转导
图b、特殊性转导 /局限性转导
普遍性转导过程图
转导细菌染色体组的任何不同部分
转导体
转导噬菌体 部分二倍体
普导遍性转
由此形成的具有重组遗传结构的细菌细胞叫转导体 transductant。
普遍性转 导
例如:供体基因型a+b+c+,受体的基因型为a- b- c- 。
供体用P1噬菌体感染,P1的后代再用来感染受体细胞, 然后把受体细胞接种在选择培养基上。
如果通过中断杂交已知三个基因中的一个如a不在中间, 就可对a+进行选择,即在对a+进行选择的选择培养基上, 把可以生长的a+细胞选出来。然后,再把被选择的受体 细胞重复接种在其他对b+或c+进行选择的选择培养基上, 检查a+细胞是否同时具有b+和c+。
细菌及病毒的遗传分析h
trp2+ his2+ tyr1+转化trp2- his2- tyr1- 实验 trp2 34 his2 13 tyr1
Hfr菌株在切除F因子时发生错误切除,分离出一个携带F因子和部分宿主染色体基因的遗传因子,这种带有宿主染色体基因的F因子称为F΄因子。
T2噬菌体的基因重组
将两种不同的T2突变体进行杂交,对其杂交子代进行重组分析 杂交方法: 将Ttor和Ttos两种大肠杆菌细胞混合 同时接种高浓度的T2噬菌体的h-r+和h+r-两种突变体,保证绝大多数细菌都被一个以上噬菌体感染 两种不同的噬菌体DNA可能在宿主细胞内进行重组,从而产生非亲本型子代h+r+和h-r-。 亲本型 重组型
F因子在杂交中的行为——接合过程
(三)中断杂交实验作图
中断杂交实验作图
1分钟≈20%的重组值
二、转化
转化(transformation):指某些细菌(或其它生物)能通过其细胞膜摄取周围介质中的DNA片段,并将此外源DNA片段整合到自己染色体组中的过程。 (一)转化的过程 非感受态细胞 外源DNA被洗掉了 转化因子 感受态细胞 外源DNA仍与细胞结合 整合 吸收 整合 供体单链DNA进入受体细胞后与受体染色体的某一部分联会,并进一步置换受体的对应染色体区段的过程。
第十章 细菌及病毒的遗传分析(2h)
1
第一节 细菌和病毒遗传研究的意义
2
第二节 噬菌体的基因重组
3
第三节 细菌基因重组
4
本章要求
5
思考题
繁殖世代所需时间短;
易于管理和进行化学分析;
便于研究基因的作用;
便于研究基因的突变;
遗传物质较简单,便于用作研究基因结构、功能及调控机制的材料。
遗传学_ 细菌和病毒的遗传分析_
1180 + 418 + 685 +107 +11940 +3660
100% = 2390 100% =13% 17990
trp2
tyr
34
his2
13 tyr1
his
40
trp
八、转导(transduction)
⚫ 普遍性转导(Generalized transduction)
转导是以噬菌 体为媒介,将 外源基因携带 入细菌,使受 体细胞发生遗 传重组的方式。
a、b间发生交换
单性状的转化子
a、b间不发生交换
双性状的转化子
七、转化作图的原理
细菌两连锁基因的交换率
=
单性状转化子的数 单性状转化子数+共转化的转化子数
100%
表7-1 枯草芽孢杆菌trp2+ his2+ tyr1+(供体)× trp2- his2- tyr1-(受体)的转化实验 座位转化子类型
噬菌体的遗传分析
一、细菌和病毒的遗传分析
7-1 T4噬菌体的电镜照片
二、病毒对遗传学研究的贡献
1952年 Hershey & Chase的同位素示踪试验
证明T4病毒的遗传物质 是脱氧核糖核酸(DNA) 【1969年诺贝尔奖】
二、病毒对遗传学研究的贡献
1956年Fraemkel Conrat的烟草花叶病毒的重建试验
滑,可致病)
粗糙型R菌株 (无荚膜,菌落粗
糙,不致病)
三、转化现象的发现——Griffth的肺炎双球菌实验
IIR菌株不致病 IIIS菌株致病
灭活的IIIS菌株不致病 灭活的IIIS菌株的某种物 质使IIR菌株发生性状改 变,变成致病的IIIS菌株
细菌及病毒的遗传作图
7.1 细菌和病毒遗传研究的意义
7.1.1 细菌的培养 7.1.2 细菌在生物进化树中的地位 7.1.3 细菌和病毒在遗传研究中的优越性 7.1.4 细菌和病毒的拟有性过程
7.1.1 细菌培养
平皿分离 平皿培养
摇瓶培养
7.1.2 细菌在生物进化树中的地位
产烷生物
盐杆菌
7.1.3 细菌和病毒在遗传研究中的优越性
❖ 建立纯系的方法——纯培养
➢ 纯系:由单个细胞繁殖而 来的菌落称为纯系。
➢ 菌种纯:采用平板表面涂 布法或划线法获得单株菌 落。这种方法获得的纯系, 称为“菌种纯”。
➢ 菌株纯:利用显微操纵器 进行菌丝尖端切割等方法 获得单个细胞,并直接培 养建立纯系,这种方法获 得的纯系称为“菌株纯”。
❖选择培养法鉴定突变型与重组型
类病毒:一个单链环状的裸露的RNA。 拟病毒:线状单链RNA+环状单链RNA。 朊病毒:蛋白质颗粒。
7.2.3 噬菌体的生活周期
❖烈性噬菌体(virulent phage)——噬菌体侵入宿主细
胞后,利用宿主细胞内的物质进行自身遗传物质和蛋白质
的合成,组装出许多子噬菌体,使宿主细胞裂解而释放子
许多细菌的突变都与培养基营养成分及培养条件有关。 ➢ 营养缺陷型的筛选、鉴定——选择培养法。是根据菌
+++
S C01 mi S++
+ C01 mi S C01 + + + mi
S + mi
+ C01 + 总数
975 924 30
2.9%
32 61 51 5.3% 5 13 0.86% 2091
Rf s-co1 =3.76% Rf s-mi =6.16% Rf co1-mi=9.92%
07遗传学 课后练习 复习题 总结 第七章 细菌和病毒的遗传
第七章细菌和病毒的遗传本章习题1.解释下列名词:F-菌株、F+菌株、Hfr菌株、F因子、F'因子、烈性噬菌体、温和性噬菌体、溶原性细菌、部分二倍体。
F-菌株:未携带F因子的大肠杆菌菌株。
F+菌株:包含一个游离状态F因子的大肠杆菌菌株。
Hfr菌株:包含一个整合到大肠杆菌染色体组内的F因子的菌株。
F因子:大肠杆菌中的一种附加体,控制大肠杆菌接合过程而使其成为供体菌的一种致育因子。
F'因子:整合在宿主细菌染色体上的F因子,在环出时不够准确而携带有染色体一些基因的一种致育因子。
烈性噬菌体:侵染宿主细胞后,进入裂解途径,破坏宿主细胞原有遗传物质,合成大量的自身遗传物质和蛋白质并组装成子噬菌体,最后使宿主裂解的一类噬菌体。
温和性噬菌体:侵染宿主细胞后,并不裂解宿主细胞,而是走溶原性生活周期的一类噬菌体。
溶原性细菌:含有温和噬菌体的遗传物质而又找不到噬菌体形态上可见的噬菌体粒子的宿主细菌。
部分二倍体:当F+和Hfr的细菌染色体进入F-后,在一个短时期内,F-细胞中对某些位点来说总有一段二倍体的DNA状态的细菌。
2.为什么说细菌和病毒是研究遗传学的好材料?答:与其他生物体相比,细菌和病毒能成为研究遗传学的好材料,具有以下7个方面的优越性:(1)世代周期短:每个世代以min或h计算,繁殖速度快,大大缩短了实验周期。
(2)易于管理和进行化学分析个体小,繁殖方便,可以大量节省人力、物力和财力;且代谢旺盛,繁殖又快,累积大量的代谢产物。
(3)便于研究基因的突变细菌和病毒均属于单倍体,所有突变都能立即表现出来,不存在显性掩盖隐性的问题。
(4)便于研究基因的作用通过基本培养基和选择培养基的影印培养,很容易筛选出营养缺陷型,利于生化研究。
(5)便于基因重组的研究通过细菌的转化、转导和接合作用,在一支试管中可以产生遗传性状不相同的后代。
(6)便于用于研究基因结构、功能及调控机制的材料细菌和病毒的遗传物质简单,基因定位和结构分析等易于进行且可用生理生化方法进行基因的表达和调控分析。
细菌接合作用
细菌的接合作用是指两个细菌细胞之间进行接触并交换遗传物质的生物学现象。
接合作用通常发生在细菌细胞之间,通过细胞间连接的结构(如毛或鞭毛)进行物质交换。
接合作用主要包括以下几种形式:
1. 转化:在细菌接合作用中,一种细菌细胞取得另一种细菌细胞的裸露DNA片段,并将其整合到自身的染色体中。
这种遗传物质的水平转移使得接受DNA的细菌获得新的遗传特征。
2. 转导:转导是细菌间利用噬菌体(细菌病毒)作为载体进行基因传递的过程。
在转导过程中,细菌感染了携带外源DNA的噬菌体,当这些噬菌体感染其他细菌时,它们会释放携带的外源DNA,从而实现遗传物质的传递。
3. 共生质粒传递:许多细菌含有质粒,这些质粒带有特定的基因,例如耐药性基因等。
在接合作用中,细菌可以通过连接结构直接将质粒传递给其他细菌,从而传递特定的基因,影响受体细菌的性状。
细菌的接合作用是细菌种群中重要的遗传交流方式,通过这种方式,细菌可以获取新的适应性特征,增加其生存竞争力。
在临床上,细菌接合作用也是细菌耐药性等问题产生的重要途径之一。
因此,对细菌接合作用的研究对于理解细菌遗传变异、耐药性传播、环境适应等具有重要意义。
细菌遗传分析
第四章细菌和病毒的遗传(一) 名词解释:1.原养型:如果一种细菌能在基本培养基上生长,也就是它能合成它所需要的各种有机化合物,如氨基酸、维生素及脂类,这种细菌称为原养型。
2.转化(transformation):指细菌细胞(或其他生物)将周围的供体DNA,摄入到体内,并整合到自己染色体组的过程。
3.转导:以噬菌体为媒介,把一个细菌的基因导入另一个细菌的过程。
即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。
4.性导(sexduction):细菌细胞在接合时,携带的外源DNA整合到细菌染色体上的过程。
5.接合(coniugation):指遗传物质从供体—“雄性”转移到受体—“雌性”的过程。
6.Hfr菌株:高频重组菌株,F因子通过配对交换,整合到细菌染色体上。
7.共转导(并发转导)(cotransduction):两个基因一起被转导的现象称。
8.普遍性转导:能够转导细菌染色体上的任何基因。
9.]10.局限转导:由温和噬菌体(λ、)进行的转导称为特殊转导或限制性转导。
以λ噬菌体的转导,可被转导的只是λ噬菌体在细菌染色体上插入位点两侧的基因。
11.att位点:噬菌体和细菌染色体上彼此附着结合的位点,通过噬菌体与细菌的重组,噬菌体便在这些位点处同细菌染色体整合或由此离开细菌染色体。
12.原噬菌体(prophage):某些温和噬菌体侵染细菌后,其DNA整合到宿主细菌染色体中。
处于整合状态的噬菌体DNA称为~~。
13.溶原性细菌:含有原噬菌体的细胞,也称溶原体。
14.F+菌株:带有F因子的菌株作供体,提供遗传物质。
(二) 是非题:1.在大肠杆菌中,“部分二倍体”中发生单数交换,能产生重组体。
()2.由于F因子可以以不同的方向整合到环状染色体的不同位置上,从而在结合过程中产生不同的转移原点和转移方向。
()3.受体细菌可以在任何时候接受外来的大于800bp的双链DNA分子。
()4.在中断杂交试验中,越早进入F-细胞的基因距离F+因子的致育基因越远。
遗传学:10-第十章 细菌和病毒的遗传
噬菌体重组分析、顺反测验 细菌基因重组的特点 细菌的中断杂交实验与基因作图 细菌的转化与转导
细菌和病毒在遗传研究中的优越性
世代周期短 群体大
T7phage 20—30min
E.Coli 20min
一支试管 数以百万计
遗传物质简单 一条裸露的核酸
单倍体
不存在显隐关系
第一节 病毒的一般特性及类型
D++ 0 + ++ 0 + +
I E0 0 + 0 +++ 0 +
F+ + 0 + +++ + +
J G0 + + + 00 + + 0
H0 + + 0 0 0 + 0 0 569 I + + + + 0 0 + + 0
J+ + + + + +++ 0
4. 负干扰
一个单交换发生后,会增加另一个单交换的 频率的现象。
基因间
基因内
顺反位置效应 两突变位点杂合体由于排列方式不同
而表型不同的现象。
顺反子 是一个不同突变之间没有互补的功能区。功能
上最小的遗传单位,又称作用子。
拟等位基因 染色体不同位置上 彼此密切连锁,重组
率很低,具有顺反位置效应,决定同一性状的同功能基因。
基因间互补 任何两个非等位基因之间的功能补偿。 基因内互补 某一基因内部不同位点突变之间的互补。
快速溶菌突变体 r
形成较大的噬菌斑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此可能通过测定两基因共同转化的频率来指示基因间 的相对距离。
转化与遗传图谱
P215
应用:
①两个基因同时转化的效率(连锁或不连锁) ②基因定位(遗传作图)(枯草杆菌)
杂交实验:trp2+his2+tyr1+ × trp2- his2-tyr1- (黎德伯格等)
结果(转化子类型): 基因座位
缺陷型品系:
A—甲硫氨酸缺陷型met-和生物素缺陷型bio-; B—苏氨酸缺陷型thr-和亮氨酸缺陷型leu-。
方法:
将A、B两菌株混和,在基本培养基(固体)上涂布培养。
结果:
平板上长出原养型菌落(++++)。
1946年 黎德伯格和塔特姆接合试验
原养型菌落频率10-7
几种可能解释及其分析
一种突变型为粗糙型 粗糙型R 无 粗糙 无 I, II
两者根本差异在于荚膜形成;
荚膜的主要成分是多糖, 具特殊的抗原性;
不同抗原型是遗传的、稳 定的,一般情况下不发生 互变。
2. Griffith转化研究
P213
Griffith对其试验结论及发展
根据上述研究结果Griffith认为:
trp2 + - - - + + + his2 + + - + - - + tyr1 + + + - - + -
数目 11940 3660 685 418 2600 107 1180
表10-5 3660
p215
trp2
34
tyr1
his2 13
二、接合 (conjugation)
P215
重点:接合的概念与基本原理、掌握F-、F+、Hfr 菌株的概念、区别和用途;中断杂交试验及重组 作图。
研究整合的分子机制也就是研究遗传重组的分子机制。
转化过程
P213
(三、转化在遗传分析中的应用 共转化与遗传图谱绘制
共转化 供体一条DNA片段上的两个基因同时转化的现象称为~。
利用共同转化绘制细菌连锁遗传图谱的基本原理:
相邻基因发生共同转化的概率与两者的距离成正向关系
→基因间距离越近,发生共同转化的频率越高,反之越
非感受态细胞 外源DNA被洗掉了
洗涤
吸附
转化因子 感受态细胞
外源DNA仍与细胞结合
整合 吸收
两种核酸酶: 切为约14kb的片段
使外源DNA片段变为单链
(二)、转化过程
P214
1. 感受态与感受态因子:
感受态指细菌能够从周围环境中吸收DNA分子进行转化 的生理状态。
感受态主要受一类蛋白质(感受态因子)影响,感受态因 子可以在细菌间进行转移,从感受态细菌中传递到非感 受态细菌中,可以使后者变为感受态。
细菌在培养条件下也能够实现遗传类型间的定向转化。
3.阿维利(Avery)等的转化实验(1944)
实验结果:
来源于加热 杀死的SIII 细菌,并使 RII细菌转化 成为SIII型 细菌的转化 因子是DNA。
实验结论
P213
转化定义:某一基因型的细胞从周围介质中吸收 来自另一基因型的DNA而使它的基因型和表现型发 生变化的现象称为转化。
概念:在原核生物中,接合是指遗传物质从 供体—“雄性”转移到受体—“雌性”的过程。
(一)、接合现象的发现和证实 (二)、F因子及其在杂交中的行为 (三)、中断杂交试验作图
(一)、接合现象的发现和证实
P215
1946年,黎德伯格和塔特姆的大肠杆菌杂交试验:
材料:大肠杆菌(Escherichia coli) K12菌株的两个营养
第三节 细菌的遗传分析 P213
细菌的遗传重组
一、转化 二、接合 三、性导 四、转导
一个细菌细胞 的DNA与另一 个细菌细胞的 DNA的交换重 组可以通过4 种方式进行
一、转化(transformation)
P213
概念:某些细菌(或其他生物)能通过其细胞膜摄 取周围供体(donor)的染色体片段,并将此外源 DNA片段通过重组整合到自己染色体组的过程。
一般认为感受态出现在细菌对数生长后期,并且某些处 理过程可以诱导或加强感受态,以大肠杆菌为例,用 Ca2+(CaCl2)处理对数生长后期的大肠杆菌可以增强其感 受能力。
转化过程 P214
2.供体DNA与受体细胞结合(binding):
结合发生在受体细胞特定部位; 供体DNA片段为双链; 结合过程是一个可逆过程。
(有毒)死细菌中的某种物质转移到(无毒)活细菌中,并使 之具有毒性,导致小家鼠死亡。
他将这种细菌遗传类型的转变称为转化,并将引起转化的 物质称为转化因子(tranforming principle)。
以后一些研究者重复上述试验,并且加入了体外培养试 验,即:将加热杀死的SIII细菌与无毒RII细菌混合培养, 然后注入小家鼠体内,同样导致家鼠死亡。表明:
P216
对上述试验结果原养型菌落可能产生于:
亲本细菌A或B发生了回复突变; 两品系细胞通过培养基交换养料——互养作用; 两品系间交换DNA; 发生细胞融合,形成了异核体或杂合二倍体。
结论:这些解释均不成立。
回复突变?
3.DNA的穿入和摄取:
当细菌结合点饱和之后,细菌开始摄取外源DNA; 往往只有一条DNA单链进入细胞,另一条链在膜上降解。
4.联会(synapsis)与外源DNA片段整合(integration):
整合指单链的转化DNA与受体DNA对应位点的置换,稳定 掺入到受体DNA中的过程,实际就是遗传重组的过程。
Avery等人的实验也表明:决定细菌遗传类型的物 质是DNA,即证明了DNA就是遗传物质。(p36)
由于他们采用的实验方法当时不被人们广泛接受, 而且得出的结论与当时人们的传统观念(认为蛋白 质是遗传物质)不符合,而长期没有得到人们的承 认。
(二)、转化过程
P214
细菌转化过程
(一)转化的过程
只有当整合的DNA片段产生新的表现型时,才能测 知转化的发生。转化中接受供体遗传物质的称为 受体(receptor) 。
(一)、细菌转化实验 (二)、转化过程 (三)、转化在遗传分析中的应用
(一)、细菌转化实验
1. 基础知识
荚膜 菌落 毒性 类型
野生型肺炎双球菌的菌落 光滑型S 发达 光滑 有 I, II, III