声学基础
声学基础
噪声测试讲义第一章声学基础知识第一节声音的产生与传播一、声音的产生首先我们看几个例子:敲鼓时听到了鼓声,同时能摸到鼓面的振动;人能讲话是由于喉咙声带的振动;汽笛声、喷气飞机的轰鸣声,是因为排气时气体振动而产生的。
通过观察实践人们发现一切发声的物体都在振动,振动停止发声也停止。
因此,人们得出声音是由于物体的振动产生的结论。
二、声源及噪声源发声的物体叫声源,包括一切固体、液体和气体。
产生噪声的发声体叫噪声源。
三、声音的传播声音的传播需要借助物体的,传声的物体也叫介质,因此,声音靠介质传播,没有介质声音是无法传播的,真空不能传声,在真空中我们听不到声音。
声音的传播形式(以大气为例)是以疏密相间的波的形式向远处传播的,因此也叫声波。
当声振动在空气中传播时空气质点并不被带走,它只是在原来位置附近来回振动,所以声音的传播是指振动的传递。
四、声速声音的传播是需要一定时间的,传播的快慢我们用声速来表示。
声速定义:每秒声音传播的距离,单位:M/s。
在空气中声速是340 m/s,水中声速为 1450m/s ,而在铜中则为 5000m/s。
可见,声音在液体和固体中的传播速度一般要比在空气中快得多,另外,声速还和温度有关。
第二节人是怎样听到声音的一、人耳的构造人耳是由外耳、中耳和内耳三部分组成,各部分具有不同的作用共同来完成人的听觉。
耳朵三部分组成结构见彩图。
外耳,包括耳壳和外耳道,它只起着收集声音的作用。
中耳,包括鼓膜、鼓室、咽鼓管等部分。
由耳壳经过外耳道可通到鼓膜,这里便进人中耳了。
鼓膜俗称耳膜,呈椭圆形,只有它才是接受声音信号的,它能随着外界空气的振动而振动,再把这振动传给后面的器官。
鼓室位于鼓膜的后面,是一个不规则的气腔。
有一个管道使鼓室和口腔相通,这个管道叫咽鼓管。
咽鼓管的作用是让空气从口腔进人中耳的鼓室,使鼓膜内外两侧的空气压力相等,这样鼓膜才能自由振动。
鼓室里最重要的器官是听小骨。
听小骨由锤骨、砧骨和镫骨组成,锤骨直接与鼓膜相依附,砧骨居中,镫骨在最里面,它们的构造和分布就象一具极尽天工的杠杆,杠杆的前头连着鼓膜,后头连着内耳。
声学基础知识
声学基础知识声学基础知识⼀、声学基础1、⼈⽿能听到的频率范围是20—20KHZ。
2、把声能转换成电能的设备是传声器。
3、把电能转换成声能的设备是扬声器。
4、声频系统出现声反馈啸叫,通常调节均衡器。
5、房间混响时间过长,会出现声⾳混浊。
6、房间混响时间过短,会出现声⾳发⼲。
7、唱歌感觉声⾳太⼲,当调节混响器。
8、讲话时出现声⾳混浊,可能原因是加了混响效果。
9、声⾳三要素是指⾳强、⾳⾼、⾳⾊。
10、⾳强对应的客观评价尺度是振幅。
11、⾳⾼对应的客观评价尺度是频率。
12、⾳⾊对应的客观评价尺度是频谱。
13、⼈⽿感受到声剌激的响度与声振动的频率有关。
14、⼈⽿对⾼声压级声⾳感觉的响度与频率的关系不⼤。
15、⼈⽿对中频段的声⾳最为灵敏。
16、⼈⽿对⾼频和低频段的声⾳感觉较迟钝。
17、⼈⽿对低声压级声⾳感觉的响度与频率的关系很⼤。
18、等响曲线中每条曲线显⽰不同频率的声压级不相同,但⼈⽿感觉的响度相同。
19、等响曲线中,每条曲线上标注的数字是表⽰响度级。
20、⽤分贝表⽰放⼤器的电压增益公式是20lg(输出电压/输⼊电压)。
21、响度级的单位为phon。
22、声级计测出的dB值,表⽰计权声压级。
23、⾳⾊是由所发声⾳的波形所确定的。
24、声⾳信号由稳态下降60dB所需的时间,称为混响时间。
25、乐⾳的基本要素是指旋律、节奏、和声。
26、声波的最⼤瞬时值称为振幅。
27、⼀秒内振动的次数称为频率。
28、如某⼀声⾳与已选定的1KHz纯⾳听起来同样响,这个1KHz纯⾳的声压级值就定义为待测声⾳的响度。
29、⼈⽿对1~3KHZ的声⾳最为灵敏。
30、⼈⽿对100Hz以下,8K以上的声⾳感觉较迟钝。
31、舞台两侧的早期反射声对原发声起加重和加厚作⽤,属有益反射声作⽤。
32、观众席后侧的反射声对原发声起回声作⽤,属有害反射作⽤。
33、声⾳在空⽓中传播速度约为340m/s。
34、要使体育场距离主⾳箱约34m的观众听不出两个声⾳,应当对观众附近的补声⾳箱加0.1s延时。
公共基础知识声学基础知识概述
《声学基础知识概述》一、引言声学是一门研究声波的产生、传播、接收和效应的科学。
从我们日常的言语交流到音乐演奏,从医学超声诊断到建筑声学设计,从水下声呐探测到航空航天领域的噪声控制,声学无处不在。
它不仅在科学研究中具有重要地位,也在工程技术、医学、艺术等领域发挥着关键作用。
本文将对声学基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、声学的基本概念1. 声波的定义与性质声波是一种机械波,是由物体的振动产生的。
它通过介质(如空气、水、固体等)传播,引起介质分子的振动。
声波具有以下主要性质:(1)频率:指声波每秒振动的次数,单位为赫兹(Hz)。
人耳能够听到的声音频率范围大约在 20Hz 到 20kHz 之间。
(2)波长:指声波在一个周期内传播的距离。
波长与频率和波速之间的关系为:波长=波速/频率。
(3)波速:声波在不同介质中的传播速度不同。
在空气中,声速约为 343 米/秒;在水中,声速约为 1480 米/秒;在固体中,声速则更高。
(4)振幅:表示声波的强度,即介质分子振动的幅度。
振幅越大,声音越响亮。
2. 声音的三要素声音的三要素是音调、响度和音色。
(1)音调:由声音的频率决定,频率越高,音调越高。
例如,女高音的音调比男低音高。
(2)响度:与声音的振幅和距离有关,振幅越大、距离越近,响度越大。
通常用分贝(dB)来表示声音的响度。
(3)音色:也称为音品,是由声音的波形决定的。
不同的发声体发出的声音具有不同的音色,这使得我们能够区分不同的乐器和人的声音。
3. 噪声与乐音噪声是指那些杂乱无章、令人厌烦的声音。
噪声的来源广泛,如交通噪声、工业噪声、建筑施工噪声等。
噪声对人的身心健康会产生不良影响,如引起听力损伤、心理压力等。
乐音则是有规律、悦耳动听的声音,如音乐演奏中的声音。
三、声学的核心理论1. 波动方程波动方程是描述声波传播的基本方程。
对于一维情况,波动方程可以表示为:$\frac{\partial^{2}u}{\partialt^{2}}=c^{2}\frac{\partial^{2}u}{\partial x^{2}}$ 其中,$u$表示介质的位移,$t$表示时间,$x$表示空间坐标,$c$表示波速。
声学基础知识
声学基础知识声学是物理学分支学科之一,是研究媒质中机械波的产生、传播、接收和效应的科学。
媒质包括物质各态(固体、液体和气体等),可以是弹性媒质也可以是非弹性媒质。
以下是由店铺整理关于声学知识的内容,希望大家喜欢!声学的领域介绍与光学相似,在不同的情况,依据其特点,运用不同的声学方法。
波动也称物理声学,是用波动理论研究声场的方法。
在声波波长与空间或物体的尺度数量级相近时,必须用波动声学分析。
主要是研究反射、折射、干涉、衍射、驻波、散射等现象。
在关闭空间(例如室内,周围有表面)或半关闭空间(例如在水下或大气中,有上、下界面),反射波的互相干涉要形成一系列的固有振动(称为简正振动方式或简正波)。
简正方式理论是引用量子力学中本征值的概念并加以发展而形成的(注意到声波波长较大和速度小等特性)。
射线或称几何声学,它与几何光学相似。
主要是研究波长非常小(与空间或物体尺度比较)时,能量沿直线的传播,即忽略衍射现象,只考虑声线的反射、折射等问题。
这是在许多情况下都很有效的方法。
例如在研究室内反射面、在固体中作无损检测以及在液体中探测等时,都用声线概念。
统计主要研究波长非常小(与空间或物体比较),在某一频率范围内简正振动方式很多,频率分布很密时,忽略相位关系,只考虑各简正方式的能量相加关系的问题。
赛宾公式就可用统计声学方法推导。
统计声学方法不限于在关闭或半关闭空间中使用。
在声波传输中,统计能量技术解决很多问题,就是一例。
分支可以归纳为如下几个方面:从频率上看,最早被人认识的自然是人耳能听到的“可听声”,即频率在20Hz~20000Hz的声波,它们涉及语言、音乐、房间音质、噪声等,分别对应于语言声学、音乐声学、房间声学以及噪声控制;另外还涉及人的听觉和生物发声,对应有生理声学、心理声学和生物声学;还有人耳听不到的声音,一是频率高于可听声上限的,即频率超过20000Hz的声音,有“超声学”,频率超过500MHz的超声称为“特超声”,当它的波长约为10-8m量级时,已可与分子的大小相比拟,因而对应的“特超声学”也称为“微波声学”或“分子声学”。
《声学基础》课件
声学与音乐学
声学研究为音乐学提供了 科学基础,有助于理解声 音在音乐中的产生、传播 和感知。
声学与医学
声学应用于医学领域,如 超声波成像、听力研究等, 为医学诊断与治疗提供了 重要工具。
结论
1 声音是什么?
声音是声波的感知,是人类与世界沟通的重要方式。
2 声学在生活中的应用
声学研究为我们提供了许多实用的应用,如语音识别、音乐欣赏、医学诊断等。
声波传播
1
声音的产生和传播方式
声音可以通过声源的振动产生,并在空气中以波的形式传播。了解声音传播的方 式对声学研究至关重要。
2
空气中声波传播的特性
空气中声波的传播速度、衰减和传播路径都受到温度、湿度和空气密度等因素的 影响。
3
物体表面反射和衍射
声波在物体表面上反射和衍射,这些现象会引起声音的反射、散射和聚焦。
《声学基础》PPT课件
# 声学基础 ## 概述 - 声波与声音的区别 - 声学基础概念 - 声学研究领域 ## 声波传播 - 声音的产生和传播方式 - 空气中声波传播的特性 - 物体表面反射和衍射 ## 声音特性 - 频率、波长及周期 - 振幅、声压和声强 - 速度和能量传播 ## 声学应用 - 声学与语音识别 - 声学与音乐学
3 声学的未来发展方向
随着科技的不断进步,声学研究将继续发展并为我们带来更多惊喜与可能。
声音特性
频率、波长及周期
声音的频率决定了它的音高; 波长和周期是描述声音波动特 征的声音的音量;声压和 声强是描述声音强度的指标。
速度和能量传播
声音传播速度的了解有助于研 究声音如何在空间中传递和传 播能量。
声学应用
声学与语音识别
声学在语音识别技术中发 挥着重要作用,帮助计算 机理解和转换人类的声音 信息。
声学基础知识
声学基础知识声学是研究声音的产生、传播和接收的学科,它是物理学的一个重要分支,也与工程学、心理学等学科密切相关。
声音是一种机械波,是由介质中分子的振动引起的。
在日常生活中,我们所接触的声音与我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域,声学也扮演着重要的角色。
本文将从声音的产生、传播和接收三个方面介绍声学的基础知识。
一、声音的产生声音是由物体振动引起的,当物体振动产生的机械波传播到我们的耳朵时,我们才能感知到声音。
声音的产生主要有以下几种方式:1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。
例如,乐器弦线振动时产生的声音。
2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。
例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。
3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。
例如,人的嗓子发出的声音就是通过空气的振动传播出去的。
二、声音的传播声音是通过介质传播的,常见的传播介质有空气、水和固体。
声音传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约为每秒343米。
声音传播的基本过程可以分为以下几个步骤:1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中产生声波。
2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。
3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体的分子也会被振动,进而再次产生声波。
4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等组织,被转化为神经信号,我们才能感知到声音。
三、声音的接收声音的接收是指我们如何感知和理解传播过程中产生的声音信号。
人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。
1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。
外耳通过外耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递给内耳。
内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。
声学基础知识
声学基础知识声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。
声学是研究声音产生、传播和听觉效应等相关现象的学科。
本文将介绍声学的基础知识,包括声音的特性、声波的传播与衰减、和人类的听觉系统。
一、声音的特性声音有几个重要的特性,包括音调、音量和音色。
音调是指声音的高低,由声源的频率决定。
频率越高,音调越高;频率越低,音调越低。
音量是指声音的强弱,由声源振幅的大小决定。
振幅越大,音量越大;振幅越小,音量越小。
音色是指具有独特质感的声音特征,由声音的谐波成分和声源的包络形状决定。
不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。
二、声波的传播与衰减声波是指由声源振动产生的压力波。
声波传播时,需要介质作为传播介质,常见的介质包括空气、水、固体等。
在传播过程中,声波会经历衍射、反射、折射等现象。
衍射是指声波遇到障碍物时沿着障碍物的边缘传播,使声音能够绕过障碍物。
反射是指声波遇到障碍物后从障碍物上反弹回来,产生回声。
折射是指声波在介质之间传播时由于介质密度不同而改变传播方向。
声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。
一般来说,声音传播的距离越远,声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。
环境条件如温度和湿度也会对声波的衰减产生一定影响。
三、人类的听觉系统人类的听觉系统是感知声音的重要器官。
它由外耳、中耳、内耳和大脑皮层等部分组成。
外耳包括耳廓和外耳道,它们的主要功能是接收和传导声音。
中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们的主要功能是将声音的机械能转换为神经信号。
内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。
大脑皮层负责处理和解读声音信号。
人类听觉系统对不同频率的声音有不同的感知范围。
一般来说,人类可以听到频率范围在20Hz到20kHz之间的声音。
音响技术第2章声学基础
我们以舞台上左右前后错开的各种乐器组成整个乐队. 他们演奏时, 到达听众耳际的声音可分为三类:
第二类为反射声.
第一类为直达声.
第三类为混响声.
与单声道重放声相比, 立体声具有一些显著的特点. 具有明显的方位感和分布感
用单声道放音时, 即使声源是一个乐队的演奏, 聆听者仍会明确地感到声音是从扬声器一个点发出的. 具有较高的清晰度
1.声压
声压的大小表示声波的强弱. 在一定时间内, 瞬时声压对时间取均方根值称为有效声压. 用电子仪表测量得到的通常是有效声压, 人们习惯上讲的声压实际上也是有效声压. 声压的国际单位是“Pa”(帕), 1 Pa=1 N/m2, 1大气压=105 Pa. 声压与大气压相比是极其微弱的. 正常人能听到的最弱声音约为2×10-5 Pa, 称为参考声压, 用符号Pr表示.
掩蔽效应是指同一环境中的其它声音会使聆听者降低对某一声音的听力. 一个较强的声音往往会掩盖住一个较弱的声音, 特别是当这两个声音处于相同的频率范围时.
01
掩蔽效应在音响技术中得到应用. 如一些降噪系统就是利用掩蔽效应的原理设计的, 信噪比的概念及其指标要求也是根据掩蔽效应提出来的. 在数字音源中, 可利用掩蔽效应进行压缩编码.
01
正弦定理告诉我们: 改变左右两只扬声器的发声强度, 声像将定位在两只扬声器之间.
(2 - 3)
01
02
式中l表示两耳距离; θ表示声源与人头中心线的夹角, 称为平面入射角; c为声速. 设l=20 cm,
c=340 m/s, 则
02
Δt≈0.62 sinθ (ms) (2 - 4)
两耳虽然相距不远, 但是, 由于头颅的阻隔作用, 使得从某方向传来的声音需要绕过头部才能到达离声源较远的一只耳朵中去. 在传播过程中, 其声压级会有一定程度的衰减, 使两侧耳壳处产生声级差.
声学基础知识解析
声学基础知识解析声学,作为物理学的一个分支,研究了声音的产生、传播和感知。
声波是一种机械波,是由固体、液体和气体中的物质震动引起的。
声学的研究对于我们日常生活和科学研究中都具有重要的意义。
本文将对声学的基础知识进行解析。
一、声的产生声音的产生是由物体的振动引起的。
当物体振动时,周围的空气分子也会跟随振动,形成一个机械波,即声波。
声波的频率越低,音调就越低,频率越高,音调就越高。
二、声的传播声波是通过介质传播的,大部分情况下是通过空气传播。
当我们发出声音时,声波会向四面八方传播,当声波到达一个物体时,它会撞击物体的表面,使表面振动,并且使介质内的分子也发生振动。
这种振动会一直传播下去,直到遇到障碍物或者被吸收。
三、声的特性声音具有以下几个基本特性:1. 音量:也称为声音的强度,是指声音的大小。
音量与声波的振幅有关,振幅越大,音量就越大。
2. 频率:也称为音调,是指声音振动的快慢。
频率与声波的周期有关,周期越短,频率就越高,音调就越高。
3. 声音色彩:是指声音的质地或音质,不同的乐器和人的声音都有独特的音色。
音色由声波的谐波分量决定。
四、声的吸收与反射当声波遇到物体时,它会发生吸收和反射。
当声波被吸收时,会转化为其他形式的能量,导致声音变弱或消失。
当声波被物体表面反射时,它会沿着其他方向传播,形成回声。
五、应用领域声学的研究在很多领域都有重要的应用,以下是一些常见的应用领域:1. 音乐:声学研究有助于了解乐器的原理和声音产生的机制,帮助人们更好地演奏乐器和欣赏音乐。
2. 建筑与环境:声学研究在建筑和环境设计中发挥重要作用,可以帮助减少噪音污染,改善室内声学环境。
3. 通讯:声学研究在通讯技术中起着关键作用,例如手机和音频设备的设计。
4. 医学:声学在医学中的应用广泛,包括超声波成像、听力研究等。
结论声学作为物理学的一个分支,研究了声音的产生、传播和感知。
通过学习声学的基础知识,我们可以更好地理解声音的产生和传播原理,并且可以应用于音乐、建筑、通讯和医学等领域。
声学基础
声场中单位体积介质中声能,用D表示,单位为J/m3。
2.平均声能密度
声场中每一位置的声能密度随时间变化,取一个周期内的 平均值为平均声能密度 D 。
3. 声能密度计算公式
pe2 D 2 c
八、声强(*)
1.声强定义
单位时间通过垂直于声波传播方向的单位面积 的声能在一个振动周期内的平均值,用I表示。
振动方向
传播方向
力学原理:靠介质中的剪切应力传播振动。 存在介质: 固体
注:空气中只存在纵波。
三、声波种类 2. 按波振面分类 (1)概念
波振面:所有振动相位相同的点构成的面 (客观存在) 声 线:沿传播方向与波振面垂直或正交 的一系列直线(假想线)
波振面 声源 声线
三、声波种类
(2)声波按波振面分类 球面波:波振面为球面,点声源产生; 柱面波:波振面为柱面,线声源产生; 平面波:波振面为平面,平面声源产生; 注:当距离声源足够远时,所有声波均可
c c c E (纵波) (横波) (气体纵波)
其中:E —— 压伸(杨氏)弹性模量 G —— 切变弹性模量 B —— 体变弹性模量
G
B
ρ —— 介质质量密度
?问题
高空中空气密度与地面明显不同,那么, 高空与地面声速会有明显不同吗?
碳钢拉压弹性模量: E=2×1011帕(N/m2) 密度:7800kg/m3 钢材理论声速:5063m/s 空气的体变弹性模量:B=1.42×105Pa 空气密度:1.29kg/m3 空气理论声速:332m/s
视为平面波。
四、声音的频率、波长、振幅
1.频率f: 单位Hz(1/秒)
人耳可听频率范围:20~20000Hz 次声波:低于20Hz 超声波:高于2000Hz
声学基础知识点总结
声学基础知识点总结1. 声波的产生声波是由振动的物体产生的,当物体振动时,会产生压缩和稀疏的波动,这些波动以一定速度在介质中传播,就形成了声波。
声波的产生需要具备两个条件:振动源和传播介质。
一般来说,声波的振动源可以是任何物体,包括人类的声带、乐器的琴弦、机器的发动机等,而传播介质主要是固体、液体和气体。
声波在不同的介质中传播速度不同,气体中的声速最慢,固体中的声速最快。
2. 声波的传播声波的传播包括两种方式:纵波和横波。
纵波是指波动方向与传播方向相同的波动,即介质中的分子以与波动方向相同的方式振动。
在气体和液体中,声波主要是纵波。
横波是指波动方向与传播方向垂直的波动,即介质中的分子以与波动方向垂直的方式振动。
在固体中,声波主要是横波。
3. 声波的特性声波具有一些特性,包括频率、振幅和波长。
频率是指单位时间内声波振动的次数,单位是赫兹(Hz),通常用来表示声音的高低音调。
振幅是指声波振动的幅度,通常用来表示声音的大小。
波长是指声波在介质中传播一个完整周期所需要的距离,与频率和传播速度有关。
4. 声音的产生声音是由声波在空气中传播而形成的,但在声音产生的过程中,还需要经过声带的振动、共鸣腔的放大和嘴唇、舌头等器官的调节。
声带位于声音道中部分,当呼吸进入声音道时,声带会振动产生声波,不同的振动频率会形成不同的音调。
共鸣腔是指声音道中的空腔部分,不同的共鸣腔大小和形状会影响声音的音色。
嘴唇、舌头等器官的调节会改变声音的音调和音色,从而产生不同的语音。
5. 声波的接受人类的听觉系统能够接受声波并将其转化为神经信号传递给大脑,从而形成对声音的感知。
耳朵是人类的听觉器官,主要包括外耳、中耳和内耳。
外耳是声音的接收器,能够接受来自外界的声波并将其传递给中耳。
中耳是声音的传导器,能够将声波转化为机械波并传递给内耳。
内耳是声音的感受器,能够将机械波转化为神经信号,并传递给大脑进行处理。
6. 声波的用途声波在日常生活中有着广泛的应用,包括声音通讯、声波测量、声波成像等方面。
声学基础文档
声学基础1. 声音的定义和特性声音是由物体振动产生的机械波在空气或其他介质中的传播所引起的感觉或听觉体验。
声音是一种能量,以波动的形式传播。
常见的声音特性有音调、音量和音色。
音调是指声音的频率特性,决定了声音的音高。
频率越高,音调越高;频率越低,音调越低。
音量是指声音的强度或响度。
音量的单位是分贝(dB),它是一个对数单位,用来量化声音的强弱。
音色是指声音的质地或特点,决定了声音的品质和区别。
每个声音都有独特的音色,这是由声音的频谱成分和谐波组成来决定的。
2. 声音的传播声音是通过物质媒介的振动传播的。
空气是最常见的媒介,但声音在其他媒介中也可以传播,如水、金属等。
当一个物体振动时,它会在周围的介质中产生一系列的压缩和稀疏波,称为机械波。
这些波通过分子的碰撞传播,沿着波的传播方向形成了波峰和波谷。
声音的传播速度取决于介质的性质和温度。
在空气中,声音的速度约为340米/秒。
声音传播的距离与时间之间的关系可以用声音的传播公式来描述:距离 = 速度 × 时间3. 声音的产生声音的产生是由物体的振动引起的。
当一个物体振动时,它会向周围传播机械波,并在空气中制造了声音。
一般来说,声音的振动是由物体的某种能源提供的。
常见的声音产生源包括乐器、人的声带、机械设备、风等。
在乐器中,不同的乐器通过不同的方式产生声音。
例如,钢琴通过击打弦和音板来发声,吹管乐器通过气流的振动来产生声音。
人的声带是声音的主要产生器。
当气流从肺部通过声门时,声带开始振动,产生声音。
人的口腔和鼻腔的共鸣器官会改变声音的音色,形成不同的语音和音调。
4. 声音的接收与听觉声音的接收是通过听觉器官进行的。
人类的听觉器官是耳朵,它包括外耳、中耳和内耳三部分。
外耳由耳廓和外耳道组成,它的作用是收集声音并将其传送到耳膜。
耳廓能够帮助我们感知声音的方向和位置。
中耳包括鼓膜和三个小骨头:锤骨、砧骨和镫骨。
当声音到达耳膜时,它使鼓膜振动,并通过传导链传递到内耳。
声学基础
感。也就是平时我们常说的房间的“声染色”。
四、人耳对声音的感知
哈斯效应
没有延时,感觉声音从两声源中间发出
延时5~30ms,感觉声音从超前一个声源发出,感觉不 到另一个声源的存在
延时30~50ms,能感觉两个声源的存在,但方向仍由 超前一个声源决定
延时50ms以上,感觉两个声源同时存在,方向由各个 声源决定,滞后声为回声
1倍频程的中心频率和截止频率
中心频率fm
下限频率f1
上限频率f2
63
125
44
89
89
177
250
500 1000 2000
177
354 708 1416
354
708 1416 2832
4000
8000
2832
5664
5664
11328
1/3倍频程的中心频率和截止频率 中心频率fm 下限频率f1 上限频率f2 63 80 100 125 160 200 250 315 400 500 630 56 71 89 112 141 178 224 282 355 447 562 71 89 112 141 178 224 282 355 447 563 708 中心频率fm 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 下限频率f1 上限频率f2 708 891 1122 1412 1778 2238 2817 3547 4465 5621 7077 892 1122 1413 1779 2240 2820 3550 4469 5626 7082 8916
反射
E0 :总声能 Eγ:反射声能 Eα:吸收声能 Eτ:透射声能 透射
声学基础知识
一、声学基础:1、名词解释(1)波长—-声波在一个周期内的行程。
它在数值上等于声速(344米/秒)乘以周期,即入=CT(2)频率-—每秒钟振动的次数,以赫兹为单位(3)周期-—完成一次振动所需要的时间(4)声压一一表示声音强弱的物理量,通常以Pa为单位(5)声压级-—声功率或声强与声压的平方成正比,以分贝为单位(6)灵敏度-—给音箱施加IW的噪声信号,在距声轴1米处测得的声压(7)阻抗特性曲线-—扬声器音圈的电阻抗值随频率而变化的曲线(8)额定阻抗--在阻抗曲线上最大值后最初出现的极小值,单位欧姆(9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功(10)音乐功率一-以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO)(11)音染—-声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份(12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围2、问答(1)声音是如何产生的?答:世界上的一切声音都是由物体在媒质中振动而产生的.扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。
(2)什么叫共振?共振声对扬魂器音质有影响吗?答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动.当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。
部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分(3)什么是吸声系数与吸声量?它们之间的关系是什么?答:吸声性能拭目以待好坏通常用吸声系级“a"表示,即a=1—K;吸声量是用吸声系数与材料的面积大小来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主观音质评价与客观测量的相关性一.什么叫音质评价?assessment of sound quality二.为什么要进行音质评价?三、实施手段:四、主观音质评价的特点:五、谁能作出正确评价?六、如何去评价,评价哪些方面?七、常用音质测试设备和A/B比较听音方法八、音质评价术语的含义及与客观物理参数之间的关系主观音质评价与客观测量的相关性◆什么叫音质评价?assessment of sound quality通过听觉判断声音(原声或重放声)的质量水平。
目前,对于语言主要从语言清晰度,而对音乐则从与作品类型和风格相吻合的音乐的可听性和欣赏价值来判断其声音质量水平的高低。
◆为什么要进行音质评价?因为现有的客观测试还不能完全揭示音质的所有特性的本质,音质评价术语还没有一一对应的物理指标。
甚至有时客观指标与主观感受有许多不一致的地方,有待人们进一步去研究、揭示,所以,客观测试不能代替主观评价。
我们制作音响产品的最终目标是满足人们听觉享受,因此,有必要对我们开发的音响产品进行主观评定。
◆实施手段:1、听音测试listening test让一定数量的、经过训练的听音员,在规定声学特性的房间(也有人叫试听室、听音室或审听室等)内,按照共同规定的听音试验方法,对音响设备、节目源、乐音或乐器音等的音质进行主观感觉的评定,最后用数理统计或其他方法对评定数据进行计算,评定出结果的试验。
有人也叫试听试验。
◆主观音质评价的特点:1.声音质量评价的模糊性blur of sound quality assessment2、评价尺度---多维尺度法multi-dimensional scaling3. 哪些因素导致主观音质评价的差异4、室内声学---为什么需要试音室?5、国内关于听音室的标准1.声音质量评价的模糊性blur of sound quality assessment指声音质量主观评价涉及人脑的感受和思维,不像客观电声指标那样具有精确性(精确的程度是另一回事),不能用一个明确的数字或一条明确的曲线来加以描述。
因而,它是对一些模糊信息(如亮度)的模糊数学方法来处理声音质量单项评价的得分,以求得综合评价的结果2、评价尺度---多维尺度法multi-dimensional scaling是从实验心理学发展起来的一种统计方法。
该方法是从大量实验数据整理并明确其贡献程度的一种数学方法。
这种方法经常用来分析听音试验的实验数据。
评定尺度grading scale声音质量主观评价中,对其品质等级给出的量度(评分)。
分两级评价尺度,5级(10分)评价尺度等。
5级评价尺度的表示如下:“0”表示不能想象的最坏,“10”表示理想的最好,把“0”和“10”看成定义尺度端点的“标志”,实际评定中使用1~9(可含一位小数),另外,附以5级评语说明,如“优、良、中、差、劣”或其他语言。
对不同的音质评价用语所得到的评分会有所不同3. 哪些因素导致主观音质评价的差异人们在评价同一个音箱的音色方面有着差异,评论者的意见经常相去甚远,引起差异的主要原因有:(1)每个听众对音色都有自己的看法。
有的人愿意听音量大而深沉的低音,而有的人则把这种声音看是模湖不清。
相当多的人喜欢有适量低音部的声音,否则,放音时,声音就会发干。
有人喜欢中高频较多甚至尖刺的声音。
口味不同。
2)评价音箱使用的音乐软件(磁带、CD唱盘等),也是使音色产生重大差别的原因。
为了亲身体验,必须在高保真装置上连续听同一乐曲不同版本的录音。
虽然,在古典乐曲的录音中已经摒弃了电子对音色的影响,但是各个乐团的音色有着很大的不同。
除了在乐器配制上不同之外,录音师还有许多另外的可能性的影响。
最重要的影响因素有:录音室(如音乐厅、播音室、教堂等等)自身的声学条件,选择话筒的型号,话筒的数目和放置地点、母带的混录制等等。
在流行音乐中相当普遍地让全部乐器先单独录制,然后再混录制作,并使用想象中的一切电子音色变化,使两盘不同的唱片产生的听觉效果完全不同。
3)另外一个影响音质评价的因素是监听室、听音环境对音箱的音色起决定性作用,这点常常受到不可原谅的忽视。
由于室内声学的重要性,所以对这个问题要详细讨论。
4、室内声学---为什么需要试音室?每个房间都可以通过其建筑结构的给定条件(如房间大小、房间形状和房间表面结构及家具布置等),影响室内声音的整体印象。
声波在室内传播,碰到墙面,顶棚和家具,多次反射吸收直到最后消失。
从声源直接传播的声音和反射声都对重播有决定性意义。
可以从声源直达声中得到特性曲线和确定声源的空间位置(声像)。
间接发出的声音由第一次强反射和逐步减弱的混响声组成。
间接的声音决定着实际感受到的声强,清晰度和听觉的立体感(环绕感、包围感)。
4、室内声学---为什么需要试音室任何时候也不能在居室中像在音乐厅中一样享受到享受到类似建筑结构中的完美音乐。
尽管如此,通过巧妙地搭配音响器材和音箱的摆位调式,可以使重播尽量的完美。
如果最初的强反射,在直达声之后几毫秒内就到达人的听觉,这样就会歪曲声音的定位,像在瞬态特性很差的音箱旁边一样,出现模糊的声音。
为了避免声音过早地反射,不要使扬声器靠近室内墙壁、墙角、柜子和桌子。
在家具布置简朴,墙内表面坚固、阻尼小的房间里容易出现声波来回多次反射,形成驻波,也就是颤动回波。
声波总是在两个墙壁之间来回反射。
在这样的空间中声音给人的印象是有回响,不清晰。
在一端墙壁上装阻尼材料就可以很容易地补救,如:挂窗帘、挂壁毯、铺地毯等等.4、室内声学---为什么需要试音室听音环境对扬声器音质影响巨大,主要由于房间因素引起的低频混响时间,反射位置决定的(初次反射时间,反射次数)巨大差异而导致声场分布,特性不同,从而很大程度上决定了不同房间环境,不同的音质表现:吸音少的大房间、房间混响时间长,声音丰满,但过分了就会混浊不清。
为了最大程度获得良好音质和均匀声场,又符合大多数人们的听音环境,IEC和其它制定标准的机构皆制定了听音室的标准。
如IEC-60268-13,Part13中关于标准试音室有如下叙述:.6.7m(L)X4.1m(W)X2.8m(H),硬天花顶,地板铺设地毯,听音位置侧墙及后墙,有橱子,书架等(散射用),扬声器(音箱)后面墙壁为窗帘布,软垫布沙发,扬声器(音箱)与听音员之间的侧墙平整和高反射性。
混响时间250Hz~ 4kHz 间0.34s 40Hz为0.85S 10kHz为0.25S4、室内声学---为什么需要试音室你是否真正需要一个完全符合上述要求的听音室吗?如果你的试音室还未建造你可以参照。
否则,你能真正理解室内各部分布置的真正目的,你就可以对你的实际使用的房间略加改造即可成为较满意的听音环境。
首先房间尺寸不要那么绝对的严格,相近尺寸即可(注意尺寸不要是整数倍,防止驻波产生和简正模式的合并引起的声场不均匀),与标准类似的长方体形状。
掌握下列原则:①A、房间内放置扬声器(音箱)后侧应阻尼良好(吸音),窗帘\声学发泡装饰材料,挂毯,织锦装饰画皆可.②B、地面铺地毯,吸音,减弱影响声像的强反射,③C、靠近听音者的墙面应为散射性的,但不是吸音(阻尼)D、扬声器和听音者之间的侧墙应平滑和反射性的.6.7M窗帘布沙发4.1m地毯>1M>1M5、国内关于听音室的标准理想地讲,试听室应模拟国内典型家庭房间的听音环境,扬声器听音试验国家标准规定试听室的性能要求及具体建议:,在0.3~0.6s (1)混响时间:在250~4000Hz之间,听音之区内的混响时间T60的各测量值偏离平均值不大于25%;范围内的平均值,最好为0.4±0.05s ;而且T60偏离上述平均值超过25%;但在250Hz以下,在250Hz以下,4000Hz以上,允许T60不应超过0.8s;(2)试听室内声频响应尽可能平滑、无明显声染色;(3)在T60100~5000Hz频率范围内,室内不应有任何异常共振和颤动回声;(4)环境条件:温度18~35℃,最好为20℃;相对湿度为25%~75%;气压为86~106kPa;(5)本底噪声声,空场无听音员时,在听音区测得的本底噪声声低于35dB(A计权,慢档);(6)室内灯光、色彩、坐椅等应使听音员感觉舒适;(7)试听室尺寸:见图6.10所示。
下列数值为推荐尺寸:体积(V)80m3,高(H)2.8m,长(L)6.7m,宽(B)4.2m四、谁能作出正确评价?实际上,不同人对同一声音的优劣有着不同的判断,只有经过训练的和从事音乐工作的人员才能作出相对正确的判断。
四、谁能作出正确评价?在进行听音试验或心理声学试验时,为了了解人们对声音的反应,在试验中所起用的听音人员叫听音员。
一般是根据试验的目的来选定听音人员。
作为听音试验的听音员,是要经过听音训练的,他们具有高保真听音经验,最好有听现场音乐的经验,对音乐基础知识有一定的了解,在125~8000Hz的频率范围内,他们的听阈级应低于20dBH1(当然不需要把听力损失超过上述范围的人排除在外,但是对他们的听音评价结果,应分别进行分析,检查其数据与正常听力人员的数据一起处理是否合适)。
在听音经历类似的听音小组内,由于个人间的可靠性通常相当高,所以在听音小组内听音员人数可适当减少,但不能少于4人,如果发现评判的可靠性不满意时,则需要增加听音员,听音员人数较多时可分组进行听音。
测听队—(专业评价团)sound jury由经过专门训练或对声音质量主观评价有一定经验的人员所组成,有能力对音乐质量(或语言清晰度)的各种属性的总的声音质量,给出定量评价(或评定)的队伍。
语言测听人员应能听辨普通话和熟练认识常用字,人数到少有5人。
发音人员能识常用汉字,普通话发音标准,口齿清楚、音量平稳,男、女各一人。
音偿评价人员应有一定水平的音乐理解力,并以不包括演出人员的艺术人员为主,录音和有音乐理解力的听众为辅,其人数为4~10人。
推荐7人;若人数多,宜分组进行。
那些知名的公司都有自己的一支听音队伍.五、如何去评价,评价哪些方面?首先,听哪种音乐?这些音乐又能反映音质的哪些方面?评价的尺度如何?主观音质的分类方法多重多样,其用于表达的词汇也是五花八门,关于各词汇的理解定义在后面专门阐述。
下面是Linkwitz lab声学顾问公司的分类建议:﹢50-51Clarity/Articulation/Speed透明/清晰/速度Very detailed丰富的细节Very1veiled很朦胧2Instantaneous1Volume-range瞬间音量范围(动态)Like1live逼真、现场感Compressed压缩3Spaciousness/Openness空间/开阔度、旷度Airy 空气感Boxy 闷箱声4Size of1virtual1sound1image幻像虚声像的尺寸大小Pin1point针点状(集中)Diffuse散开的5Width ﹠Height of sound stage声场(舞台)的纵深距离感Wide宽Narrow窄6Depth1of1sound1stageDeep深Shallow浅Dull清楚Hard 硬低音相Overblown过多、肥Thin 单溥低音音质Tight/Articulate 紧凑/清晰Loose/Boomy松散/过多\轰鸣准确/保真Revealing原声(质朴)重现Euphonic色加工(美化)动情程度Lost1in1the1muisu忘情于音乐Wanting to leave想离开+50-5A Symphonic music交响乐1-12B Jazz band爵士乐队1-12C Large mixed chorus大合唱1,2,3,5,7,8,10,11,12D Small female group ofsingers女生小合唱1,2,3,4,7,8,11,12Small male group of singers1,2,3,4,9,10,11,12F Percussion set打击乐1,2,3,4,8,10,12,G Organ风琴、管风琴2,7,9,10,12H Single voice +stringbass+piano单个人声+贝司(弦贝司)+钢琴伴奏1,4,8,10,12听哪些音乐?Linkwitz lab声学顾问公司的建议,选用下表所不要根据单曲CD就作出判断,最少仔细听不同CD中6个片段JAES 的一篇论文《Perceived sound Quality of High-Fidelity Loudspeaker>中如下方法分类L:RATING OF SOUND QUALITY(音质等级)六、常用音质测试设备和A/B比较听音方法1、听音设备:2、高级CD机,优质测试CD2.3、优质前级和后级功放,或合并式功放.(平,大功率,失真小)3.4、优质信号线和喇叭线(尤其是喇叭线,过线,过长的音箱线,损耗,降低系统的阻尼).4.5、A/B切换系统(三路或多路),最好能遥控的.5测试箱1对,(最好有不同体积的二种,或三种)如1cųƒt, 2 cųƒt, 3 cųƒt.(听扬声器用).6 6、声级计,万用表(带峰值保持功能,能测电压有效值,DCR)等测量仪表。