2019-2020学年高中数学 古典概率教案 新人教版必修3.doc
人教版高中数学必修三第三章概率古典概型教学设计.
第1页共6页古典概型教学设计.
一、教材分析
(一)教材地位、作用
《古典概型》是高中数学人教A 版必修3第三章概率 3.2的内容,教学安排是2课时,本节是第一课时。
是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。
(二)教材处理:
学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。
他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
二、三维目标
知识与技能目标:
(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
(2)理解古典概型的概率计算公式:P (A )=总的基本事件个数
包含的基本事件个数
A (3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典。
人教版高中数学必修3《古典概型》教案
过程及方法目标:创设情境,设计一些具有实际生活背景的问题,引导学生积极思考。
进一步发展学生的观察、类比、分析、归纳能力,让学生体会从特殊到一般的数学方法情感态度及价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的兴趣和热情;感受数学的应用价值,并尝试用数学的视野去关注生活中的数学问题。
四、教学重难点及突破难点的关键教学重点:理解古典概型及其概率计算公式教学难点:如何正确运用古典概型的概率计算公式关键:通过实例,特别是举一些破坏古典概型两个特征的例子,以突破古典概型识别的难点。
通过鼓励学生尝试画树状图和列表等方法,让学生感受求基本事件个数的一般方法,从而化解没有学习排列组合而学习概率这一教学困惑。
五、教法、学法的选择为了充分调动学生的积极性和主动性, 在教学中借鉴布鲁纳的“发现学习”理论。
教法采用情境教学法,依托实验,运用“问题解决”的教学模式,引导学生讨论问题、分析问题、解决问题。
学法学生通过观察类比、概括归纳和动手尝试相结合,在教师的引导下进行合作学习,让学生全员参及,全员活动。
教学手段多媒体教学六、教学流程一创设情境情境:麦当劳餐厅在五一假期进行有奖销售活动,购满68元可进行一次摇奖,奖品如下:1等奖:麦辣鸡翅一对;2等奖:吉士汉堡一份;3等奖:脆香鸡一份;4等奖:中杯可口可乐5等奖:优惠券五份用动画演示摇奖试验,由教师提出问题。
开门见山,创设有趣的情境,设计一些具有实际生活背景的问题,抓住学生的注意力,激发学生的学习兴趣和求知欲。
让学生对等可能性有了清晰的感性的认识。
你想抽到什么呢?抽到麦辣鸡翅及抽到可口可乐的可能性相同吗?抽到1等奖的概率是多少二构建概念思考交流:观察对比5等分转盘摇奖试验、掷硬币试验和例1的试验有什么共同的特点?(提示:从试验的基本事件的个数和基本事件的概率特点两个方面入手)概念2:古典概型(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。
高中数学(32古典概型)教案 新人教A版必修3 教案
古典概型一、教学内容解析1.本节课时高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的.这节课的学习任务所包括的知识类型主要有:事实性知识:基本事件及古典概型的特点;概念性知识:基本事件及古典概型的概念,古典概型概率计算公式;元认知知识:根据古典概型的研究分析,解释和预测生活中的古典概率模型问题.2.古典概型在概率的学习中承上启下,不仅有利于进一步理解概率的有关概念,而且有助于几何概型的学习,也可以为以后概率的学习奠定基础.3.古典概型是一种特殊的数学模型,能培养学生建模的思想,同时其与生活联系密切,便于解释生活中的一些问题,增加学生学习数学的兴趣.二、教学目标设置1.知识与技能理解基本事件、等可能事件等概念;正确理解古典概型的特点;会用列举法求解简单的古典概型问题;掌握古典概型的概率计算公式.2.过程与方法通过对现实生活中具体的概率问题的探究,感受应用数学解决问题的方式,体会数学知识与现实世界的联系,培养学生的逻辑推理能力;通过模拟试验,感知应用数学解决问题的方法,自觉养成多动手、勤动脑的良好习惯.3.情感、态度与价值观在教师指导、学生参与的过程中培养学生的自主学习能力;同时,使其获得数学源于生活服务于生活的体验,培养学生应用数学的意识.三、学生学情分析我校是湖南省著名的示范性中学,学生学习基础较好.从课前的微视频自学反馈中,了解到学生在以下3个方面仍需加强.1.学生已经学习了概率的加法,能够比较熟练的应用互斥事件的概率运算法则进行计算.2.通过预习,学生能够初步了解基本事件及古典概型的概念,但对其深入的理解和应用还需加强.3.学生对古典概型及其概率计算公式含义的认识上并不能直击本质,因此在教学过程中,将采用自主探究、小组讨论等环节强调其本质含义,突破难点.四、教学策略分析1.有效开发、合理利用教材资源.以教材中两个试验的其中之一作为实验探究,将第二个试验进行适当改编,引导学生认识基本事件及其两大特点和古典概型的定义及特征.让学生自己动手体会在试验、合作中得到的新知,同时通过归纳总结对知识有更为深刻的理解和认识.2.学生已经学习了概率的相关基础知识,通过试验后,对古典概型也有了较初步的印象.为加深学生对古典概型两个特征的认识和理解,在例题中加强对有限性和等可能性的区分和辨别,使学生深刻领会”有限”和”等可能”的含义.五、教学过程(一)复习回顾引入课题分析掷硬币试验和抛掷骰子试验的试验结果,引出基本事件的定义及特点:一次试验中可能出现的每一个结果称为基本事件.(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.引导学生进一步分析以上两个试验中基本事件的共同点,发现两个试验中的基本事件只有有限个,并得到关于“古典概型中每个基本事件出现的可能性相等”的猜想.【设计意图】课堂开始阶段,引导学生由之前课堂中曾完成过的掷硬币试验进行分析,让学生在熟悉的情景下、了解的知识中温故知新,得到基本事件的定义和特点.同时鼓励学生大胆猜想古典概型中基本事件的等可能性,培养学生的发散思维和研究精神.(二)试验探究概念形成实验目的:验证古典概型中基本事件的等可能性.实验内容:抛掷一颗骰子,统计实验中向上点数出现的次数.实验用具:质地均匀的骰子1个、空量杯一个、数据统计表1份.实验步骤:(1)3位同学为1个小组,3个小组为1个大组进行实验.(2)每小组中,第一位同学负责抛掷骰子,每次实验将骰子置于同一高度在(量杯口处)向下掷,待骰子静止后,观察实验结果;第二位同学负责记录实验结果;第三位同学负责监督实验过程,并检验统计数据.(3)小组实验结束后,将数据汇总至所在大组的实验数据统计表中.由学生展示每小组的统计结果,进行比较分析,然后师生合作将每小组的实验数据累加,并综合继续分析.最后运用EXCEL软件模拟掷骰子试验,得到1000次、10000次及100000次的试验结果,说明在大量的试验下,掷骰子试验中的六个基本事件出现的频率基本相等,也就验证了对于“古典概型中每个基本事件出现的可能性相等”的猜想.从而,通过掷一颗骰子的试验得到古典概型的概念:(1)试验中所有可能出现的基本事件的个数只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.【设计意图】以抛掷骰子的数学实验作为切入点,在学生动手实践、动脑思考、数据分析的学习活动中,验证”每个基本事件出现的可能性相等”的猜想,并抽象出古典概型的概念.在实验过程中,突出了本节课的重点,培养了学生合作探究的能力,并进一步加深了学生对古典概型中基本事件的认识.1.下列概型是否为古典概型?(1)在长度为3厘米的线段AB上随机取一点C,求点A到点C的距离小于1的概率.你认为这是古典概型吗?为什么?分析:不是.具有等可能性,不具有有限性.(2)一颗质地均匀的骰子,在其一个面上标记1点,两个面上标记2点,三个面上标记3点,现掷这颗骰子,试验结果有:”出现1点”、”出现2点”、”出现3点”.你认为这是古典概型吗?为什么?分析:不是.具有有限性,不具有等可能性.2.你能举出生活中的古典概型例子吗?学生例举生活实例.【设计意图】通过2个问题,加深学生对有限性及等可能性的认识.让学生自己举例,即可加深学生对古典概型特征的理解,又可以将数学练习生活,提升学生的学习兴趣.通过学生对生活中实例的分析,进一步提出问题:既然生活中有如此多的古典概型,那么我们能否找到其概率计算的通法呢?再次回到刚刚的试验中,你能否求出“出现偶数点”这个随机事件的概率呢?学生以小组为单位进行讨论,引导学生应用古典概型特点及互斥事件概率加法公式得到问题答案,并归纳总结出古典概型的概率计算公式:()AP A包含的基本事件个数基本事件总数【设计意图】由学生小组讨论,得到事件“出现偶数点”的概率,进而归纳出古典概型的概率计算公式.在学习新知识的同时培养学生的沟通交流能力,也加深了学生对概率公式的理解.(三)例题精讲感悟本质例1 从一个装有4颗巧克力(形状大小均相同)的布袋中随机取出2颗巧克力.(1)若4颗巧克力中,红色、黄色、蓝色、绿色各1颗,写出所有的基本事件.(2)若4颗巧克力中,红色、黄色各2颗,写出所有的基本事件.(3)在(2)的条件下,计算取出的2颗均为黄色的概率.在第(1)问的解题过程中引入树状图法进行列举,使学生熟悉掌握列举的重要方法之一——树状图法.学生在对比(1)完成(2)时,往往容易忽视古典概型的两个特点,预计学生在求解时可能会有以下两种情况:①将黄色巧克力标号为1、2,红色巧克力标号为3、4,试验结果共6种:②不对巧克力进行编号,试验结果包含(黄,黄)(红,红)(红,黄)3种.针对学生出现的典型错误,引导学生独立思考、合作交流,并提出问题:上述两种计数方法是否符合古典概型的特点?你能解释其中的原因吗?待学生充分讨论后,由学生代表发言,引导学生认识到在第二种情况下得到的事件不是等可能发生,不具备古典概型的特点,故不能用古典概型的概率计算公式进行计算.【设计意图】例1是基于教科书中第125页例1创新改编而成,将原例题中的a b c d,,,四个字母换为不同颜色的巧克力,以“抽取巧克力”试验作为背景,让学生在轻松的氛围中通过观察分析掌握古典概型的两个特点.这样既培养了学生观察、分析问题和解决问题的能力,又有效地突破了本节课的教学难点.练习题:同时掷两枚硬币,出现”1个正面朝上、1个反面朝上”的概率是多少?由学生独立完成练习【设计意图】例题1中的(2)(3)问是本节课的难点,这里设计一道与之类似的习题,使学生在多次练习的过程中,突破这一难点.例2 同时掷两个骰子,求:(1)向上的点数均为3的概率.(2)向上的点数和为5的概率.(3)向上的点数和为偶数的概率.由学生自主解答,小组交流,学生代表向全班进行展示,同时在学生展示中,进一步强调古典概型的两个重要特点,并针对学生解答过程中可能出现的问题适当加以引导,【设计意图】为了固化古典概型的概念及其概率计算公式,我将教科书中例3的设问作了变式与创新,使学生能够熟练地运用列表法列出所有的基本事件,掌握古典概型的概率计算公式,加深对古典概型概念的理解.进一步突出本节课的教学重点.(四)回顾总结提炼要点这节课我们学习了哪些知识和方法?【设计意图】学生总结反思,进一步强调本节课内容的重点和难点和方法,培养学生提炼、总结、概括的能力.(五)课后拓展探究提升1、课后练习教科书130页,第2题、第 3题.2、思考提升下面有三个游戏规则,袋子中分别装有球,从袋中无放回的取球,分别计算甲获胜的概率,则游戏是公平的是()游戏1 游戏2 游戏31个红球和1个白球2个红球和2个白球3个红球和1个白球取1个球取1个球,再取1个球取1个球,再取1个球取出的球是红球,则甲胜取出的两个球同色,则甲胜取出的两个球同色,则甲胜取出的球是白球,则乙胜取出的两个球不同色,则乙胜取出的两个球不同色,则乙胜A.游戏1 B.游戏1和3 C.游戏2 D.游戏2和33、实践应用近年来,国家越来越重视商品的质量问题,经常组织质检部门对其进行抽样检测.请你收集相关的新闻材料、数据或进行实际的市场调查,从古典概型角度针对检测产品的数量和检测出不合格产品的概率进行分析研究,说明质量抽检的科学性或提出你的建议.【设计意图】在作业的布置中,注意将双基训练与能力发展相结合.创新性地设计探究问题,有意识地将数学与生活结合,使学生能够学以致用,既巩固了基本知识,同时又提升了学生运用知识分析问题和解决问题的能力.。
人教版高中数学必修三 第三章 概率 “古典概型”的教学设计
“古典概型”的教学设计一、内容和内容解析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。
主要内容有:1.基本事件的概念及特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2.古典概型的特征:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
3.古典概型的概率计算公式,用列举法计算一些随机事件所含的基本事件的个数及事件发生的概率。
本节课的重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
二、目标和目标解析1.通过“掷一枚质地均匀的硬币的试验”和“掷一枚质地均匀的骰子的试验”了解基本事件的概念和特点2.通过实例,理解古典概型及其概率计算公式。
根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性。
观察类比各个试验,归纳总结出古典概型的概率计算公式。
鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
同时适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以初步形成实事求是地科学态度和锲而不舍的求学精神。
3.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
4.会初步应用概率计算公式解决简单的古典概型问题。
用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
人教版高中数学必修3第三章概率-《3.2.1古典概型》教案(3)
人教A版必修3《3.2.1古典概型》教学设计一、教材内容与内容解析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。
它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。
因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
二、目标与目标解析根据本节教材在本章中的地位和大纲要求以及学生实际,本节课的教学目标制定如下:①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式,培养学生观察比较、归纳问题的能力。
②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率, 渗透数形结合、分类讨论的思想方法。
③使学生初步学会把一些实际问题转化为古典概型,关键是要使该问题是否满足古典概型的两个条件,培养学生分析问题、解决问题的能力。
三、教学问题诊断分析在例1教学中,求古典概型中基本事件总数是难点,原因是由于前面没有学习排列组合知识,此时教师可引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了这一难点。
在本节课例2的教学中,学生往往不会讨论这个问题该在什么情况下可以看成古典概型,在例3的教学中,学生给出的答案可能会有两种,原因是有些问题中的每个基本事件不是等可能的。
因此古典概型的教学应让学生通过实例验证该试验是否满足古典概型的两个条件,这也是本节课的教学难点。
四、教学支持条件分析①教师方面:教师在课堂教学过程中,根据学生的实际水平,恰时恰点的提出问题,设置合理、有效的教学情境,让每一位学生参与课堂讨论,提供学生思考讨论的时间与空间。
②学生方面:学生之间的讨论与师生之间的交流是获取知识、提高能力最直接的途径。
2019-2020学年高中数学第三章概率3.2.1古典概型导学案新人教A版必修.doc
2019-2020学年高中数学第三章概率3.2.1古典概型导学案新人教A版必修一、学习目标1、了解基本事件的特点,会用列举法把一次试验的所有基本事件的列举出来。
2、理解古典概型的概念及其特点,会判断一个试验是否为古典概型。
3、会应用古典概型的概率公式计算随机事件的概率。
二、学习重难点学会判断是否为古典概型,并学会利用古典概型计算出概率。
课前双击预习案A三、自主预习引例:假设银行卡的密码由6个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个。
假设一个人完全忘了自己的储蓄卡密码,问他到自动取款机上随即试一次密码就能取到钱的概率是多少?探究一古典概型的定义和特点(1)掷硬币(2)掷骰子(3)从字母a,b,c,d 中任意取出两个不同字母的实验中,按一次性抽取的方式,哪那些基本事件?(4)若将上面的抽取方式改为按先后顺序依次抽取,结果如何呢?古典概率模型,简称古典概型:试验中所有可能出现的基本事件 ;每个基本事件出现的 。
探究二 古典概型的计算思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算? ①在抛掷一枚质地均匀的硬币试验中,“正面朝上” 的概率是多少?②在抛掷一枚质地均匀的骰子试验中,“出现点数为1”的概率是多少?③在抛掷一枚质地均匀的骰子试验中,“出现奇数点”的概率是多少? 古典概型概率计算公式:A A m P n 所包含的基本事件的个数()=基本事件的总数古典概型解题步骤(1)阅读题目,搜集信息;(2)判断试验是否为古典概型;(3)求出基本事件总数n 和事件A 所包含的结果数m ;4)用公式P(A)=n m求出概率并下结论.典型例题例1:不定项选择题是从A 、B 、C 、D 四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?例2(掷骰子问题)同时掷两个骰子,计算:(1)一共有多少种不同的等可能结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?思考与探究为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?例3. 从含有两件正品1a ,2a 和一件次品1b 的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
2019-2020年高中数学-第三章概率教案-新人教版必修3
2019-2020年高中数学第三章概率教案新人教版必修3一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。
2、正确理解事件A出现的频率的意义。
3、正确理解概率的概率和意义,明确事件A 发生的频率f n(A)与事件A发生的概率P(A)的区别与联系。
4、利用概率知识,正确理解现实生活中的实际问题。
过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。
情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
2、培养辩证唯物主义观点,增强科学意识。
二、课前预习导学请同学们阅读P108—112,完成下列问题1、事件的有关概念(1)必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;(2)不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;(3)确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;(4)随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。
(5)_________事件与________事件统称为事件,一般用________表示。
2、概率与频率(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn(A)=为事件A出现的__________,显然频率的取值范围是____________。
(2)概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P(A)表示,显示概率的取值范围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
人教版高中数学必修三(教案)3.2.古典概型 .doc
第一课时 3.2 古典概型教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.教学难点:古典概型是等可能事件概率.教学过程:一、复习准备:1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).(1)必然事件:必然事件是每次试验都一定出现的事件.不可能事件:任何一次试验都不可能出现的事件称为不可能事件.(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.二、讲授新课:1.教学:基本事件(要正确区分事件和基本事件)定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.2. 教学:古典概型的定义古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.例2:掷两枚均匀硬币,求出现两个正面的概率.取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型.n=4, m=1, P=1/ 4对于古典概型,任何事件的概率为:AP(A)=包含的基本事件的个数基本事件的总数P120例2:(关键:这个问题什么情况下可以看成古典概型的)P120例3:(要引导学生验证是否满足古典概型的两个条件)3. 小结:古典概型的两个特点:有限性和等可能性三、巩固练习:1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)2.连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)3.一次投掷两颗骰子,求出现的点数之和为奇数的概率.4 作业:①教材P127第2题,②教材P128.第4题第二课时 3.2.2 (整数值)随机数(randon numbers)的产生教学要求:让学生学会用计算机产生随机数.教学重点:初步体会古典概型的意义.教学难点:设计和运用模拟方法近似计算概率.教学过程:一、复习准备:回忆古典概型的两个特征:有限性和等可能性.二、讲授新课:1. 教学:例题P122例4:假设储蓄卡的密码由4位数组成,每个数字可以是0,1,2,……,9十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?P122例5:某种饮料每箱装配听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的几率有多大?2. 教学:随机数的产生(教师带着学生用计算器操作)①如何用计算器产生随机数:随机函数:REND(a,b)产生从整数a到整数b的取整数值的随机数.②如何用计算机产生随机数:在Excel 执行RANDBETWEEN函数或者查看P95的随机数表.P126例6,天气预报说,在今后的三天中,每一天下雨的概率均为040。
高中数学必修3《古典概型》教案
课题:古典概型教材:新课标人教版《数学》必修3一. 教学目标1.知识与技能(1)通过试验结果的分析理解基本事件的概念及特点。
(2)理解古典概型及其概率计算公式。
(3)学会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法(1)探究分析试验结果,掌握基本事件的两个特点。
(2)通过试验对比让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性。
(3)观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想。
(4)掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观(1) 适当地增加学生合作学习交流的机会,培养学生感受与他人合作精神。
(2) 经历公式的推导过程,体验由特殊到一般的数学思想方法,在探究活动中形成锲而不舍的钻研精神和科学态度。
(3)用现实意义的实例,培养学生以科学的观点评价身边的一些随机现象的能力,激发其学习兴趣,培养勇于探索、善于发现的创新精神。
二. 教学重点、难点1.教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。
2.教学难点如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
三. 教学方法和手段1.教学方法:引导发现和归纳概括相结合根据本节课的特点,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2.教学手段:多媒体辅助教学高一数学“古典概型”教案说明古典概型是高中数学人教A版必修3第三章概率第2节的内容。
古典概型是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种理想的数学模型,也是一种最基本的概率模型。
它的引入避免了大量的重复试验,而且得到的是概率准确值,同时它也是后面学习其它概率的基础,起到承前启后的作用。
2019-2020年高中数学 第三章《古典概型》教案 新人教A版必修3
2019-2020年高中数学第三章《古典概型》教案新人教A版必修3一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=(3)了解随机数的概念;(4)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.四、教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;(2)古典概型的概率计算公式:P(A)=.3、例题分析:课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3所以,P(A)====0.5小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏。
2019-2020学年度最新高中数学人教A版必修3教学案:复习课(三) 概率-含解析
2019-2020学年度最新高中数学人教A版必修3教学案:复习课(三)概率-含解析古典概型是命题的热点,主要考查古典概型概率的求法,常与互斥事件、对立事件结合在一起考查.也有时与抽样方法交汇命题.主要以选择题、填空题为主.有时也出解答题,属中低档题.[考点精要]1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.[典例]甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有: (A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种, 所以选出的2名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出的2名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种.所以,选出的2名教师来自同一学校的概率为P =615=25. [类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[题组训练]1.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为( )A.13 B.110 C.25D.310解析:选D 设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P =310.2.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15. (1)求x 的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名? (3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450. (2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m500=603 000.所以m =10. 即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.低档题.[考点精要](1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).[典例] (1)已知平面区域D 1=⎩⎨⎧⎭⎬⎫(x ,y )| ⎩⎪⎨⎪⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14B.π4C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C. (2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23[类题通法]几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.2.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( )A.34 B.23 C.13D.14解析:选A 不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34. 3.已知区域E ={(x ,y )|0≤x ≤3,0≤y ≤2},F ={(x ,y )|0≤x ≤3,0≤y ≤2,x ≥y },若向区域E 内随机投掷一点,则该点落入区域F 内的概率为________.解析:依区域E 和区域F 的对应图形如图所示.其中区域E 的面积为3×2=6,区域F 的面积为12×(1+3)×2=4,所以向区域E 内随机投掷一点,该点落入区域F 内的概率为P =46=23.答案:231.同时掷3枚质地均匀的骰子,记录3枚骰子的点数之和,则该试验的基本事件总数是( )A .15B .16C .17D .18解析:选B 点数之和可以为3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,共16个基本事件. 2.某娱乐栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到带苦脸的商标就不获奖.参加这个游戏的观众有三次翻商标的机会.某观众前两次翻商标均获若干奖金,如果翻过的商标不能再翻,那么这位观众第三次翻商标获奖的概率是( )A.14B.16C.15D.320解析:选B 该观众翻两次商标后,还有18个商标,其中有3个含奖金,所以第三次翻商标获奖的概率为P =318=16.3.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.已知铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔.若你随机向铜钱上滴一滴油,则这滴油(油滴的大小忽略不计)正好落入孔中的概率是( )A.9π4B.94πC.4π9D.49π解析:选D 本题显然是几何概型,用A 表示事件“这滴油正好落入孔中”,可得P (A )=正方形的面积圆的面积=12⎝⎛⎭⎫322π=49π.4.掷一枚质地均匀的硬币两次,事件M ={一次正面向上,一次反面向上},事件N ={至少一次正面向上}.则下列结果正确的是( )A .P (M )=13,P (N )=12B .P (M )=12,P (N )=34C .P (M )=13,P (N )=34D .P (M )=12,P (N )=12解析:选B 掷一枚质地均匀的硬币两次,所有基本事件为(正,正),(正,反),(反,正),(反,反),所以P (M )=24=12,P (N )=34.5.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A.310 B.58 C.710D.25解析:选A 从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),所以选出的火炬手的编号相连的概率为P =310.6.任意抛掷两颗骰子,得到的点数分别为a ,b ,则点P (a ,b )落在区域|x |+|y |≤3中的概率为( )A.2536B.16C.14D.112解析:选D 基本事件为6×6=36,P (a ,b )落在区域|x |+|y |≤3中的有(1,1),(1,2),(2,1),所以P =36×6=112.7.为了调查新疆阿克苏野生动物保护区内鹅喉羚的数量,调查人员逮到这种动物400只做过标记后放回.一个月后,调查人员再次逮到该种动物800只,其中做过标记的有2只,估算该保护区共有鹅喉羚________只.解析:设保护区内共有鹅喉羚x 只,每只鹅喉羚被逮到的概率是相同的,所以400x ≈2800,解得x ≈160 000.答案:160 0008.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{}0,1,2,…,9.若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为________.解析:当a 为0时,b 只能取0,1两个数;当a 为9时,b 只能取8,9两个数;当a 取其他数时,b 都可以取3个数,所以他们“心有灵犀”的情况共有28种,又基本事件总数为100,所以所求的概率为28100=0.28.答案:0.289.在一棱长为6 cm 的密闭的正方体容器内,自由飘浮着一气泡(大小忽略不计),则该气泡距正方体的顶点不小于1 cm 的概率为________.解析:距离顶点小于1 cm 的所有点对应的区域可构成一个半径为1 cm 的球,其体积为4π3,正方体的体积为216,故该气泡距正方体的顶点不小于1 cm 的概率为1-π162. 答案:1-π16210.设关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,此方程有实根的条件是a ≥b .从两组数中各取数一个数的所有的基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个(其中第一个数表示a的取值,第二个数表示b的取值),事件A包含的基本事件有(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共9个.故P(A)=912=3 4.11.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.解:(1)由题意,(a,b,c)所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A)=327=1 9,因此,“抽取的卡片上的数字满足a+b=c”的概率为19. (2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P(B)=1-P(B)=1-327=89,因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.12.如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O共面的概率.解:从这6个点中随机选取3个点的所有可能结果是:x轴上取2个点的有A1A2B1,A1A2B2,A1A2C1,A1A2C2,共4种;y轴上取2个点的有B1B2A1,B1B2A2,B1B2C1,B1B2C2,共4种;z轴上取2个点的有C1C2A1,C1C2A2,C1C2B1,C1C2B2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共4+4+4+8=20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110.(2)选取的这3个点与原点O 共面的所有可能结果有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:选D “抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.2.总体容量为203,若采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体( )A .4B .5C .6D .7解析:选D 由于203=7×29,即203在四个选项中只能被7整除,故间隔为7时不需剔除个体.3.如图所示是计算函数y =⎩⎪⎨⎪⎧-x ,x ≤-1,0,-1<x ≤2,x 2,x >2的值的程序框图,则在①、②、③处应分别填入的是( ) A .y =-x ,y =0,y =x 2 B .y =-x ,y =x 2,y =0 C .y =0,y =x 2,y =-x D .y =0,y =-x ,y =x 2解析:选B 框图为求分段函数的函数值,当x ≤-1时,y =-x ,故①y =-x ,当-1<x ≤2时,y =0,故③为y =0,那么②y =x 2.4.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的纵坐标分别为0.05,0.04,0.02,0.01,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为( )A .1 000,0.50B .800,0.50C .800,0.60D .1 000,0.60解析:选D 第二小组的频率为0.40,所以该校高三年级的男生总数为4000.40=1 000(人);体重正常的频率为0.40+0.20=0.60.5.现有甲、乙两颗骰子,从1点到6点出现的概率都是16,掷甲、乙两颗骰子,设分别出现的点数为a ,b 时,则满足a <|b 2-2a |<10a 的概率为( )A.118B.112C.19D.16解析:选B ∵试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论. 若a =1时,b =2或3;若a =2时,b =1; ∴共有3种情况满足条件, ∴概率为P =336=112.6.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是( )评委给高三(1)班打出的分数A.2 B .3 C .4D .5解析:选A ∵由题意知记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,即89+88+92+90+x +93+92+917=91.∴635+x =91×7=637,∴x =2.7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π解析:选C 如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P 到定点A 的距离|PA |<1的概率为S ′S =π4.8.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如右图).s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( )A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定解析:选C 由茎叶图可知:甲得分为78,81,84,85,92;乙得分为76,77,80,94,93.则x 甲=84,x乙=84,则s 1=15[(78-84)2+…+(92-84)2]=22,同理s 2=62,故s 1<s 2,所以选C.9.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310B.15C.110D.112解析:选A 随机取出2个小球得到的结果数有10种,取出的小球标注的数字之和为3或6的结果为{}1,2,{}1,5,{}2,4,共3种,故所求概率为310.10.将二进制数110 101(2)转化为十进制数为( ) A .106 B .53 C .55D .108解析:选B 110 101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.11.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是( )A .8B .6C .4D .2解析:选B ∵16020=8,∴抽样间隔为8,∴第1组中号码为126-15×8=6.12.某公司共有职工8 000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:钟)的关系是y =200+40⎣⎡⎦⎤t 20,其中⎣⎡⎦⎤t 20表示不超过t 20的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A .0.5B .0.7C .0.8D .0.9解析:选D 由题意知y ≤300, 即200+40⎣⎡⎦⎤t 20≤300,即⎣⎡⎦⎤t 20≤2.5,解得0≤t <60, 由表可知t ∈[0,60)的人数为90人, 故所求概率为90100=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.将参加数学竞赛的1 000名学生编号如下:0 001,0 002,…,1 000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个号码为0 015,则第40个号码为________.解析:根据系统抽样方法的定义,得第40个号码对应15+39×20=795,即得第40个号码为0 795.答案:0 79514.有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于18米的概率为________.解析:如图,将细绳八等分,C ,D 分别是第一个和最后一个等分点,则在线段CD 的任意位置剪断此绳得到的两截细绳长度都大于18米.由几何概型的概率计算公式可得,两截的长度都大于18米的概率为P =681=34.答案:3415.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是________(结果用最简分数表示).解析:从中任意取出两个的所有基本事件有(1,2),(1,3),(1,4),…,(2,3),(2,4),…,(6,7)共21个.而这两个球编号之积为偶数的有(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(6,7)共15个.故所求的概率P =1521=57.答案:5716.某工厂对某产品的产量与成本的资料分析后有如下数据:由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元.解析:由表中数据得x =4,y =9,代入回归直线方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5.答案:14.5三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某制造商3月生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:(1)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm ,试求这批球的直径误差不超过0.03 mm 的概率;(3)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).解:(1)频率分布表如下:(2)误差不超过0.03 mm,即直径落在[39.97,40.03]范围内的概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).18.(本小题满分12分)某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?解:(1)画出树状图如图:则选购方案为:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).(2)A型号电脑被选中的情形为(A,D),(A,E),即基本事件为2种,所以A型号电脑被选中的概率为P=26=1 3.19.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)计算甲班的样本方差;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解:(1)甲班的平均身高为 x =110(158+162+163+168+168+170+171+179+179+182)=170, 甲班的样本方差为 s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(2)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽取两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件, 故P (A )=410=25.20.(本小题满分12分)甲、乙两人参加知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解:甲、乙两人各抽一题共有20种情况.把3个选择题记为x 1,x 2,x 3,2个判断题记为p 1,p 2.“甲抽到选择题,乙抽到判断题”的情况有:(x 1,p 1),(x 1,p 2),(x 2,p 1),(x 2,p 2),(x 3,p 1),(x 3,p 2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p 1,x 1),(p 1,x 2),(p 1,x 3),(p 2,x 1),(p 2,x 2),(p 2,x 3),共6种;“甲、乙都抽到选择题”的情况有:(x 1,x 2),(x 1,x 3),(x 2,x 1),(x 2,x 3),(x 3,x 1),(x 3,x 2),共6种;“甲、乙都抽到判断题”的情况有:(p 1,p 2),(p 2,p 1),共2种.(1)“甲抽到选择题,乙抽到判断题”的概率为620=310,“甲抽到判断题,乙抽到选择题”的概率为620=310,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为310+310=35.(2)“甲、乙两人都抽到判断题”的概率为220=110,故“甲、乙两人至少有一人抽到选择题”的概率为1-110=910.21.(本小题满分12分)某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程; (3)试预测加工10个零件需要多少时间?注:b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a ^=y ^-b ^x .解:(1)散点图如图所示. (2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5, i =14x 2i =54.∴b ^=52.5-4×3.5254-4×3.52=0.7,∴a ^=3.5-0.7×3.5=1.05, ∴y ^=0.7x +1.05.(3)将x =10代入回归直线方程, 得y ^=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.22.(本小题满分12分)(2015·全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.图①B 地区用户满意度评分的频数分布表满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:解:(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.。
人教版高中数学必修3第三章概率-《3.2.1古典概型》教案(2)_001
古典概型【要点扫描】1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件.2.等可能性事件:若在一次试验中,每个基本事件发生的可能性相同,则称这些基本事件为等可能基本事件. 3.古典概型的特点:⑴所有的基本事件只有有限个;⑵每个基本事件发生的概率相等,⑶不需要通过大量重复的试验,只要通过对一次试验可能出现的结果进行分析即可. 4.古典概型的概率公::如果一次试验的等可能基本事件共有n 个,那么每个等可能基本事件发生的概率都是1n ,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A发生的概率为P(A)=m n. 5.从集合的角度来理解古典概型的概率:把一次试验中等可能出现的所有结果组成全集I ,把事件A 发生的结果组成集合A ,则A 是I 的一个子集,则有P(A) =card(A)card(t) .【典例分析】【例1】判断下列命题的真假.⑴掷两枚硬币,可能出现“两个正面”、“两个反面”、“一正一反”3种等可能的结果; ⑵某口袋中装有大小和形状完全一样的三个红球、两个黑球和一个白球,那么每一种颜色的球被模到的可能相同; ⑶从-3,-2,-1,0,1,2,3中任取一个数,则此数小于0与不小于0的可能相同; ⑷分别从3名男生和4名女生中各选取一名代表,那么某个同学当选的可能性相同. 【解析】以上命题均不正确. ⑴如果仅考虑这三种结果,则它们不是等可能的,若要是等可能的,则有(正,正),(正,反),(反,正)和(反,反)4种结果,故本小题总是错的;⑵应是摸到每一个球的可能相同,而三种颜色的球的数量是不相同的; ⑶小于0的有3个,而不小于0的有4个;⑷分别从男生和女生中各选取一个人,对男生或女生内部来说是等可能的,而对所有的同学来说男生是3选1,而女生是4选1,显然每个被选取的可能性不同. 【反思】对硬币的问题,我们不管抛掷是否有先后顺序,还是一起抛掷的,都必须看成有先后顺序,否则它们就不是等可能的.若先后抛掷n 次或一次抛掷n 枚,基本事件总数都应是2n 个.【例2】将骰子先后抛掷两次,求:⑴向上的点数之和为几的概率最大?最大值是多少? ⑵向上的点数之和是5的倍数的概率是多少? ⑶个向上的点数中至少有一个是6点的概率? ⑷两个点数中有2或3的的概率;⑸第一次得到的点数比第二次的点数大的概率.⑴向上点数之和是7的概率最大,最大值是636 = 16;⑵向上的点数之和是5的倍数的有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)7个, ⑶至少有一个是6点的共有11个,则其概率为1136;⑷两个点数之和是2的倍数或是3的倍数,按列计算,有2+6+6+2+2+2=20个,其概率为2036 = 59;⑹去掉相等的共有6个,剩下的一半是前面的数字大,一半是后面的数字大,有15个,其概率为1536 = 512.【反思】⑴骰子问题与硬币问题一样,都要考虑先后顺序,且n 个骰子的基本事件总数是2n ;⑵当基本事件总数不大时,用枚举法较方便;⑶若能用一个表格来表示这些问题,可使问题直观明了. 【例3】从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数.试求: ⑴这个两位数是5的倍数的概率;⑵这个两位数是偶数的概率; ⑶这个两位数大于40的概率.【解析】“从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数”,共有基本事件总数5×4=20个.⑴设事件A 为“这个两位数是5的倍数”,则事件A 包含的基本事件为:个位数字是5,共有4个, ∴ P(A)=420 =15; ⑵设事件B 为“这个两位数是偶数” 则事件B 包含的基本事件为:个位数字是2或4,共有8个, ∴ P(A)=820 =25; ⑶设事件C 为“这个两位数大于40” 则事件C 包含的基本事件为:个十位数字是4或5,也有8个, ∴ P(A)=820 =25. 【反思】⑴数字问题要考虑先后顺序;⑵常把问题转换成个位数或首位数的问题,学会用到分类讨论的思想;⑶若含有0,还要考虑0不能在首位的特殊要求,这是最容易出错的地方. 【例4】一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. ⑴摸出的两只球都是白球的概率是多少? ⑵摸出的两只球是一白一黑的概率是多少?【解析】从中摸出两球,可分有先后顺序(有序)和无先后顺序(无序)两种情况.设摸出的2只球都是白球的事件为A ,一白一黑的事件为B . 有序:从5只球中摸出2只球,其基本事件总数为5×4=20.⑴摸到2只白球的基本事件数是3×2=6,∴P(A)=620 =310;⑵摸到1只白球和一只黑球的基本事件数是(先白后黑)3×2 +(先黑后白)2×3 =12, ∴ P(A)=1220 =35.无序:从5只球中摸出2只球,其基本事件总数为5×42=10.⑴摸到2只白球的基本事件数是3×2 2=3 ∴P(A)= 310;⑵摸到1只白球和一只黑球的基本事件数是3×2 =6, ∴ P(A)=610 =35. 【反思】某些摸球问题是否考虑先后顺序,对问题的答案没有区别,但必须正确理解题意. 【同步演练】1.将一枚均匀的硬币连掷两次,出现“两次都是正面”的概率为 ( )A .14B .13C .12D .12.从甲,乙,丙三人中任意选两名代表,甲被选中的概率为 ( ) A .13 B .12 C .23D .13.在100瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是未过保质期的概率是( ) A .0.4 B .0.04 C .0.96 D .0.0964.从1,2,…,20中任取一个数,它恰好是3的倍数的概率是 ( ) A .320 B .310 C .15 D .145.从3台甲型电脑和2台乙型电脑中任选2台,其中两种品牌电脑都齐全的概率是 ( )A .35B .25C .15D .456.从标有1,2,3,…,9的9张纸片中任取2张,那么这两张纸片上数字之积为偶数的概率是 ( ) A .12 B .718 C .1118 D .13187.掷两颗骰子,所得的两个点数中,一个恰是另一个的两倍的概率为 ( ) A .14 B .16 C .18 D .1128.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为 ( ) A .320 B .25 C .15 D .3109.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为 ( ) A .111 B .233 C .433 D .53310.某小组有成员3人,每人在一个星期中参加一天劳动,如果劳动日期可随机安排,则3人在不同的3天参加劳动的概率为 ( ) A .37 B .335 C .3049 D .17011.100张卡片上分别写有1,2,3,…,100,则任取其中一张,这张卡片上写的数是6的倍数的结果有_____种,概率为______. 12.甲,乙,丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的概率为___ __. 13.已知A ,B 两地共有三条不交叉道路连接,甲乙二人分别从A ,B 两地相向而行,则两人恰好相遇的概率为____ __. 14.某国科研会合作项目成员有2个美国人,2个法国人和3个中国人组成,现在从中随机选出两位作为成果发布人,则此两人中一个为中国人,一个为外国人的概率为______. 15.同时抛掷两枚骰子,则点数和为5点的概率为 . 16.从3名男生和2名女生中任选2人参加演讲比赛,试求:⑴所选2人都是男生的概率; ⑵所选2人中恰有1名女生的概率; ⑶所选2人中至少有1名女生的概率.17.用不同的颜色给右图中的3个矩形随机的涂色,每个矩形只涂一种颜色,求:⑴3个矩形颜色都相同的概率; ⑵3个矩形颜色都不同的概率.18. 同时抛掷三枚骰子,求出现的点数的和是11的概率.19.一个各面都涂有色彩的正方体,被锯成1000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:⑴有一面涂有色彩的概率; ⑵有两面涂有色彩的概率; ⑶有三面涂有色彩的概率.20.袋中有红、黄、白球各2只且各有不同编号,从袋中有放回地摸出一球,共摸3次,求:⑴三次颜色各不相同的概率; ⑵三次颜色不全相同的概率;⑶三次取出的球无红球或无白球的概率. 【演练答案】1.A .2.C .3.C .4.B .5.A .6.C .要分仅有一个是偶数和两个都是偶数两种情况. 7.B .8.C .用枚举法.9.D .从11只球中连续取3只,有11×10×9种,顺序为“黑白黑”的为6×5×5.10.C .用模仿骰子,基本事件总数是7×7×7,符合条件的有7×6×5. 11.16个,0.16.12.0.5.13.13.14.47 .15.19 .16.基本事件总数有10种,⑴设“所选2人都是男生”的事件为A ,则A 包含3个基本事件,P(A)=310=0.3;⑵设“所选2人中恰有1名女生”的事件为B ,则B 包含3×2个基本事件,P(B)=610=0.6;⑶设“所选2人中至少有1名女生”的事件为C ,分两种情况:①2名女生,基本事件有1个;②恰有1名女生,基本事件有6个.P(C)=1 +610=0.7.17.基本事件共有27个;⑴记事件A=“3个矩形涂同一种颜色”,则A 包含的基本事件有3个,故P(A) =327 = 19 ;⑵记事件B=“3个矩形颜色都不同”,则B 包含的基本事件有3×2=6个,故P(B)=627=29.18.符合条件的基本事件情况: 1,5,5(3个); 1,4,6(6个); 2,3,6(6个);2,4,5(6个);3,3,5(3个);3,4,4(3个);合计有27个,基本事件总数63. P =2763 = 18.19.在1000个小正方体中,一面涂有色彩的有82×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,∴⑴一面涂有色彩的概率为P 1=3841000 =0.384;⑵两面涂有色彩的概率为 P 2=961000=0.096; ⑶有三面涂有色彩的概率P 2=81000 =0.008.20.注意是有放回:基本事件总数有63种.⑴设“三次颜色各不相同”的事件为A ,则A 包含6×4×2个基本事件,P(A) =6×4×263 = 29;⑵设“三次颜色不全相同”的事件为B ,全相同的基本事件数有6×2×2种,则B 包含63-6×2×2=192个基本事件,P(B) =19263 = 16;⑶设“三次取出的球无红球或无白球”的事件为C ,C 有下列情况:白白白,白白黄,白黄黄,黄黄黄,红红红,红红黄,红黄黄;分别有2×2×2,2×2×2×3,2×2×2×3,2×2×2,2×2×2,2×2×2×3,2×2×2×3;合计有120个基本事件,P(C) =12063 = 59.。
人教版高中数学必修3第三章概率-《3.2.1古典概型》教案(5)
人教A版高中数学课程标准实验教科书(必修3第三章)
《3.2.1古典概型》教学设计
一、教学目标
1.知识与技能
(1)通过“掷一枚质地均匀的硬币的试验”和“掷一枚质地均匀的骰子的试验”了解
基本事件的概念和特点。
(2) 通过试验理解古典概型的两个特征(有限性和等可能性)及其概率计算公式,并
初步应用概率计算公式解决简单的古典概型问题。
(3) 能用列举法(画树状图或列表等)计算一些随机事件所含的基本事件个数和基本
事件总数。
2.过程与方法
(1)观察、类比两个试验中一些事件的概率表达,归纳总结出古典概型的概率计算公式。
(2)经历对学习生活中具体的概率问题的探究,体验应用概率知识解决问题的乐趣。
3.情感态度与价值观
(1)初步体会概率知识在工作生活中的广泛应用,增强学以致用的意识。
(2)逐步形成实事求是、科学严谨的学习态度。
二、教学重点与难点
重点:理解古典概型的两个特征及利用古典概型求随机事件的概率。
难点:如何判断古典概型,以及如何确定对于古典概型中任何事件包含基本事件的个数和基本事件的总数。
三、学法与教学用具
1、学法:分组合作完成试验操作,观察比较,类比归纳得出古典概型的两个特征及概率
计算公式,体会从特殊到一般的学习过程。
2、教学用具:硬币若干枚、骰子若干枚、投影仪、计算机多媒体设备。
四、教学设计
这是古典概型吗?为什么?
:不是古典概型,虽然试验的所有可能
环、命中9环……
左右两组骰子所呈现的结果,这明显是两。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 古典概率教案 新人教版必修3一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?为此我们学习古典概型,教师板书课题.思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B 相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情形之一时,事件B 就发生,于是P(B)=5213=41.为此我们学习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是61. (3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event );它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability ),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P (“正面朝上”)=P (“反面朝上”)由概率的加法公式,得P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1.因此P (“正面朝上”)=P (“反面朝上”)=21. 即P (“出现正面朝上”)=基本事件的总数数所包含的基本事件的个出现正面朝上""21=. 试验二中,出现各个点的概率相等,即P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”).反复利用概率的加法公式,我们有P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=P (必然事件)=1.所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=61. 进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=61+61+61=63=21. 即P (“出现偶数点”)=基本事件的总数数所包含的基本事件的个出现偶数点""63=. 因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:P (A )=基本事件的总数数所包含的基本事件的个A . 在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d 中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A 包含的基本事件有1×3=3个,故P(A)=91273=. (2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B 包含的基本事件有2×3=6个,故P(B)=92276=. 答:3个矩形颜色都相同的概率为91;3个矩形颜色都不同的概率为92.例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?活动:学生阅读题目,搜集信息,交流讨论,教师引导,解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型.如果学生掌握或者掌握了部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定学生不会做,随机地选择了一个答案的情况下,才可以化为古典概型.解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D 的可能性是相等的.从而由古典概型的概率计算公式得:P (“答对”)=41""=基本事件的总数数所包含的基本事件的个答对=0.25. 点评:古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n 和事件A 所包含的结果数m ;(4)用公式P(A)=nm 求出概率并下结论. 变式训练1.两枚均匀硬币,求出现两个正面的概率.解:样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型. n=4,m=1,P=41.2.一次投掷两颗骰子,求出现的点数之和为奇数的概率.解法一:设表示“出现点数之和为奇数”,用(i,j)记“第一颗骰子出现i 点,第二颗骰子出现j 点”,i,j=1,2,…6.显然出现的36个基本事件组成等概样本空间,其中A 包含的基本事件个数为k=3×3+3×3=18,故P(A)=21. 解法二:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们也组成等概率样本空间.基本事件总数n=4,A 包含的基本事件个数k=2,故P(A)=21. 解法三:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},也组成等概率样本空间,基本事件总数n=2,A 所含基本事件数为1,故P(A)=21. 注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=31,错的原因就是它不是等概率的.例如P (两个奇)=41,而P (一奇一偶)=21.本例又告诉我们,同一问题可取不同的样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=91364 .例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码构成.所以P(“试一次密码就能取到钱”)=100001. 发生概率为100001的事件是小概率事件,通常我们认为这样的事件在一次试验中是几乎不可能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x 和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A 表示“抽出的2听饮料中有不合格产品”,A 1表示“仅第一次抽出的是不合格产品”,A 2表示“仅第二次抽出的是不合格产品”,A 12表示“两次抽出的都是不合格产品”,则A 1,A 2和A 12是互不相容的事件,且A=A 1∪A 2∪A 12,从而P(A)=P(A 1)+P(A 2)+P(A 12).因为A 1中的基本事件的个数为8,A 2中的基本事件的个数为8,A 12中的基本事件的个数为2,全部基本事件的总数为30,所以P(A)=302308308++=0.6.思路2例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,(1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个基本事件.(2)上述10个基本事件发生的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件A ),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为103. 变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A 的结果有12种,因为抛两次得到的36种结果是等可能出现的,所以所求的概率为P(A)=3612=31. 答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和是3的倍数的概率为31. 说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品用A 表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)],事件A 由4个基本事件组成,因而,P (A )=64=32. 思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 2),(b 1,b 1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B=[(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)], 事件B 包含4个基本事件,因而,P (B )=94. 点评:(1)在连续两次取出过程中,(a 1,b 1)与(b 1,a 1)不是同一个基本事件,因为先后顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z )记录结果,则x,y,z 都有10种可能,所以试验结果有10×10×10=103种;设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)=33108=0.512. (2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336,所以P(B)=720336≈0.467. 解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z )记录结果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x,y,z ),(x,z,y ),(y,x,z ),(y,z,x ),(z,x,y ),(z,y,x )是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P(B)=12056≈0.467. 点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.解:在1 000个小正方体中,一面涂有色彩的有82×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,∴(1)有一面涂有色彩的概率为P 1=1000384=0.384; (2)有两面涂有色彩的概率为P 2=100096=0.096; (3)有三面涂有色彩的概率为P 3=10008=0.008. 答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式P (A )=基本事件的总数数所包含的基本事件的个A . 3.求某个随机事件A 包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.§3.2.2 (整数值)随机数(random numbers)的产生一、教材分析产生随机数的方法有两种:(1)由试验产生的随机数:例如我们要产生1—25之间的随机整数,我们把25个大小形状等均相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌.然后从中摸出一个球,这个球上的数就是随机数.一般当需要的随机数个数不是太多时,可以用这种方法产生随机数.如果需要随机数的量很大,这种方法就不是很方便,因为速度太慢.(2)用计算器或计算机产生随机数:由于计算机或计算器产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,称为伪随机数.在随机模拟中,往往需要大量的随机数,这时会选择用计算机产生随机数.这部分内容是新增加的内容,是随机模拟中最简单、易操作的部分,所以要求每个学生会操作.具体教学时,教师可以在课堂上带着学生用计算器操作一遍,然后让学生模拟掷硬币的试验或掷骰子的试验,并统计试验的结果.根据试验结果,教师可以设计一些与上一章统计部分相联系的问题,通过知识的相互联系,可以帮助学生更好地理解概率的意义和一些统计思想.例如:①每个学生模拟掷一个硬币的试验20次,统计出现正面的频数与频率,并可用频率估计概率,在此基础上进一步提出问题:这个估计的精度如何?误差大吗?②如果全班有50人,每人得到一个频率,那么有50个观测数据,计算这50个数据的平均数和标准差,并根据统计中的平均数和标准差的含义和计算的具体数值,解释这个模拟结果,通过这个过程,可以使学生进一步理解频率是概率的估计值,以及平均数和标准差的含义等.不同的计算器产生随机数的操作步骤可能不同,教科书中仅是以一种计算器为例给出产生随机数的步骤.教学中,可以让学生自己看计算器的说明书,按说明书的提示进行操作.很多软件都能产生随机数,教科书中以Excel软件为例,主要考虑到这个软件比较普遍,多数教师对它比较熟悉.教师在讲授这部分内容之前应该熟悉一下Excel软件,特别是产生随机数的函数、画统计图的功能及对统计数据结果的处理功能.用随机模拟的方法模拟随机现象称为统计试验.这里必须明确随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能是不同的.二、教学目标1、知识与技能:(1)了解随机数的概念;(2)利用计算机产生随机数,并能直接统计出频数与频率。