(完整)七年级数学上册_一元一次方程练习题及答案

合集下载

七年级数学上册第五章一元一次方程练习题及答案

七年级数学上册第五章一元一次方程练习题及答案

七年级数学上册第五章一元一次方程练习题及答案做七年级数学练习题不思,故有惑;不求,故无得;不问,故不知。

以下是店铺为大家整理的七年级数学上册第五章一元一次方程练习题,希望你们喜欢。

七年级数学上第五章一元一次方程练习题试题一、选择题(本题共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请将正确的答案选出来!1.一元一次方程2x=4的解是( )A. x=1B. x=2C. x=3D. x=42.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个B.5个C.10个D.12个3.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。

那么顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样4.已知x=-3是方程k(x+4)-x = 5的解,则k的值是( )A.-2B.2C.3D.55.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元6.方程∣2x-6∣=0的解是( )A.3B.-3C. 37.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则列方程正确的是( )A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200﹣x)=240008.方程的解是,则等于( )A. B. C. D.9.下列方程变形中,正确的是( )A.方程,移项,得B.方程,去括号,得C.方程,未知数系数化为1,得D.方程化成10.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为( )A. B. C.42 D.44二、填空题(本题共6小题,每小题4分,共24分)温馨提示:要求将最简洁、最正确的答案填在空格处!11.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.12.当 ___时,代数式与的值互为相反数.13.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.14在公式中,已知,则 ___.15.三个连续奇数的和是75,这三个数分别是__________________16.铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).三、解答题(本部分共7题,共66分)温馨提示:解答题要求完整地表述出解答过程!17、(本题6分)(1) ; (2)18(本题8分)已知是方程的根,19(本题8分)学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9 人,可空出2个房间。

【人教版】七年级上册数学:第三章《一元一次方程》练习题(含答案)

【人教版】七年级上册数学:第三章《一元一次方程》练习题(含答案)

第3章一元一次方程练习题(一)一、选择题1. 对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21- 2.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 解方程3x +1=5-x 时,下列移项正确的是( )A.3x +x =5+1B.3x-x=-5-1C.1-5=-3x+xD.3x+x=5-14. 将(3x +2)-2(2x -1)去括号正确的是( )A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +25.下列解方程去分母正确的是( )A .由1132x x --=,得2x -1=3-3x . B .由44153x y +-=,得12x -15=5y +4. C .由232124x x ---=-,得2(x -2)-3x -2=-4. D .由131236y y y y +-=--,得3y +3=2y -3y +1-6y . 6.当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( )A.-8B.-4C.-2D.87.在下列方程中,解是x=2的方程是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

8.如果错误!未找到引用源。

是方程错误!未找到引用源。

的解,那么错误!未找到引用源。

的值是( )A.-8B.0C.2D.89.若x =a 是方程4x +3a =-7的解,则a 的值为( )A.7B.-7C.1D.-110.已知x =-2是方程2x -3a =2的根,那么a 的值是( )A.a =2B.a =-2C.a =23D.a =23- 11.如果错误!未找到引用源。

人教版七年级数学上册第3章 一元一次方程练习题(含答案)

人教版七年级数学上册第3章 一元一次方程练习题(含答案)

人教版七年级上册第三章一元一次方程练习题一、选择题1.已知下列方程:①x+1=3x ;②5x=8;③x3=4x+1;④4x2+2x−3=0;⑤x=1;⑥3x+y=6.其中一元一次方程的个数有()A. 2个B. 3个C. 4个D. 6个2.在下列等式的变形中,正确的是()A. 若3x=a,则x=a3B. 若ax=b,则x=baC. 若ac=bc,则a=bD. 若a=b,则a−c=c−b3.在下列各式中,是方程的是()A. 2x+3y=2B. 2a+3C. 2x>5D. π−1=2.144.下列方程中,移项正确的是()A. 12−x=−5,移项,得12−5=xB. −7x+3=−13x−2,移项,得13x−7x=−3−2C. 4x+3=2x+5,移项,得4x−2x=5+3D. −5x−7=2x−11,移项,得11−7=2x−5x5.解方程3x+7=32−2x正确的时()A. x=25B. x=5C. x=39D. x=3956.代数式2x−1与4−3x的值互为相反数,则x等于()A. −3B. 3C. −1D. 17.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为().A. 2B. −2C. 1D. −18. 若3x+12的值比2x−23的值小1,则x 的值为( )A. 135B. −135C. 513D. −5139. 若3a +1的值与3(a +1)的值互为相反数,则a 的值为( )A. −23B. −13C. 23D. 13 10. 某书上有一道解方程的题:1+▫x 3+1=x ,▫处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =−2,那么▫处的数字是( )A. 7B. 5C. 2D. −2 11. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +1 12. 把方程x −x−52=x−16去分母,正确的是( )A. x −3(x −5)=x −1B. 6x −3(x −5)=x −1C. x −x −5=x −1D. 6x −(x −5)=x −113. 甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( )A. 75×1+(120−75)x =270B. 75×1+(120+75)x =270C. 120(x −1)+75x =270D. 120×1+(120+75)x =27014. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则这个商店这次( ) A. 不赔不赚 B. 赚了8元 C. 赔了8元 D. 赔了10元15. 某足球比赛计分规则:胜一场得3分,平一场得1分,负一场得0分.某足球队经过26轮激战,以42分获比赛第五名,其中负6场,那么胜场数为( )A. 9B. 10C. 11D. 12二、填空题16.写出一个一元一次方程使它同时满足下列两个条件: ①未知数的系数是2; ②方程的解为2.则这个方程为.17.如果x+17=y+6,那么x+11=y+_____,根据是___________________.18.当x的值为________时,代数式2x+3与(x−7)的差等于5.19.当x=_________ 时,代数式x−x−25的值等于−2.20.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.三、解答题21.甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠图书,已知甲、乙、丙三位爱心人士捐赠图书的册数之比是5:8:9,如果他们共捐了748册图书,那么甲、乙、丙三位爱心人士各捐了多少册图书?22.知关于x的方程2(x−1)=3m−1与3x+2=−2(m+1)的解互为相反数,求m的值.23.解下列方程:(1)2x+13−5x−16=1;(2)x−x−12=2−x+25.24.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)若在这次促销活动中,商场销售了这款空调100台,则盈利多少元?25.如图,数轴上A,B两点所表示的数分别为−5,10,O为原点,点C为数轴上一动点且表示的数为x.点P以每秒2个单位长度的速度,点Q以每秒3个单位长度的速度,分别自A,B两点同时出发,相向而行,在数轴上运动.设运动时间为t秒.(1)若点P,Q在点C处相遇,求点C所表示的数x;(2)若OP=OQ,求t的值;(3)当PQ=5时,求t的值;(4)若同时一只宠物鼠以每秒4个单位长度的速度从点B出发,与点P相向而行,宠物鼠遇到点P后立即返回,又遇到点Q后立即返回,又遇到点P后立即返回⋯⋯直到点P,Q相遇为止.求宠物鼠在整个过程中所经过的路程.答案和解析1.【答案】B【解析】【分析】本题主要考查的是一元一次方程的概念的有关知识,直接利用一元一次方程的概念进行求解即可.【解答】不是一元一次方程;解:①x+1=3x②5x=8是一元一次方程;=4x+1是一元一次方程;③x3④4x2+2x−3=0不是一元一次方程;⑤x=1是一元一次方程;⑥3x+y=6不是一元一次方程.故选B.2.【答案】A【解析】【分析】此题主要考查了等式的性质,关键是注意等式两边同时除以同一个数时,必须说明除以一个不为零的数.根据等式的性质:等式两边乘同一个数或除以一个不为零的数,结果仍得等式,进行分析即可.【解答】解:A.若3x=a,则x=a,本选项正确;3B.若ax=b,则x=b,没说明a≠0,本选项错误;aC.若ac=bc,若c=0,则a=b不一定成立,本选项错误;D.若a=b,则a−c=c−b不一定成立,本选项错误;故选A.3.【答案】A【解析】【分析】此题主要考查方程的概念,根据含有未知数的等式就是方程求解【解答】解:A.2x+3y=2是方程,故A选项正确;B.2a+3不是等式,故B选项错误;C.2x>5不是等式,故C选项错误;D.π−1=2.14,不含未知数,故D选项错误.故选A.4.【答案】B【解析】【分析】本题考查了解一元一次方程,注意移项要变号.根据移项要变号对各选项分析判断即可得解.【解答】解:A、12−x=−5,移项,得12+5=x,故本选项错误;B、−7x+3=−13x−2,移项,得13x−7x=−3−2,故本选项正确;C、4x+3=2x+5,移项,得4x−2x=5−3,故本选项错误;D、−5x−7=2x−11,移项,得11−7=2x+5x,故本选项错误.故选B.5.【答案】B【解析】【分析】本题考查的是解一元一次方程有关知识,首先对该方程移项,合并同类项,系数化为1可得.【解答】解:移项可得:3x+2x=32−7,合并同类项:5x=25,系数化为1可得:x=5.故选B.6.【答案】B【解析】【分析】本题主要考查的是相反数,一元一次方程的解法的有关知识,根据相反数的定义列出方程求解即可.【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x =3.故选B .7.【答案】B【解析】【分析】本题主要考查的是同解方程,一元一次方程的解法的有关知识.先求出方程x +2=2x +1的解,然后将x 的值代入3x +2m =−1进行求解即可.【解答】解: x +2=2x +1,∴x −2x =1−2,∴−x =−1,解得:x =1,∵两个方程的解相同,∴把x =1代入3x +2m =−1得3+2m =−1,解得:m =−2.故选B .8.【答案】B【解析】【试题解析】【分析】本题考查了解一元一次方程方程,其步骤为:去分母,去括号,移项合并同类项,将未知数系数化为1,求出解. 根据3x+12的值比2x−23的值小1列出方程,求出方程的解即可得到x 的值.【解答】解:由题,3x+12=2x−23−1,去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x =−13,系数化为1得:x =−135.故选B .9.【答案】A【解析】【分析】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.利用相反数的性质列出方程,求出方程的解即可得到a的值.【解析】解:根据题意得:3a+1+3(a+1)=0,去括号得:3a+1+3a+3=0,移项合并得:6a=−4,,解得:a=−23故选A.10.【答案】B【解析】【分析】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程,已知方程的解x=−2,把x=−2代入未知方程,就可以求出被油墨盖住的地方了.【解答】+1=x解:把x=−2代入1+□x3+1=−2,得:1−2□3解这个方程得:□=5.故选B.11.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.【答案】B【解析】【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.根据等式的基本性质,把方程的左右两边同时乘6,去掉分母即可.【解答】解:去分母得,6x−3(x−5)=x−1,故选B.13.【答案】B【解析】【分析】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是了解相遇问题中的等量关系,难度不大.根据两车相遇共行驶270千米列出方程即可.【解答】解:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270,故选:B.14.【答案】C【解析】【分析】本题考查了一元一次方程的应用,需注意利润率是相对于进价说的,进价+利润=售价.已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,,列方程y−25%y=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店赔了8元.故选:C.15.【答案】C【解析】【分析】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.要求胜场数,就要先设出未知数,然后根据题中的等量关系列方程求解.此题等量关系:胜场所得分数+平场所得分数=总分.【解答】解:设胜场数为x场,则平场数为(26−6−x)场,依题意得:3x+(26−6−x)=42解得:x=11,那么胜场数为11场.故选C.16.【答案】2x−4=0(答案不唯一)【解析】【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且系数是2,还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x−4=0等17.【答案】0,等式的基本性质一【解析】【分析】本题主要考查了等式的性质,熟练掌握等式的性质是解题的关键,根据等式的基本性质一解答即可.【解答】解:x+17=y+6,两边同时减去6可得x+17−6=y+6−6,即x+11=y+0,故答案为0,等式的基本性质一.18.【答案】−5【解析】【分析】本题考查一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.根据代数式2x+3与x−7的差等于5,即可列方程2x+3−(x−7)=5,解方程即可求解.【解答】解:根据题意得,2x+3−(x−7)=52x+3−x+7=5x=−5,故答案为−5.19.【答案】−3【解析】【分析】本题考查了解一元一次方程的解法,解题时牢记解方程的步骤是关键.先列出等式,再根据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1解题即可.【解答】=−2.解:x−x−25去分母得:5x−x+2=−10,移项、合并同类项得:4x=−12,系数化为1得:x=−3.故答案为−3.20.【答案】14【解析】【分析】本题考查了由实际问题抽象出一元一次方程.等量关系为:小明现在的年龄+父亲现在的年龄=54,把相关数值代入即可求解.【解答】解:设小明的年龄的为x岁,则父亲的年龄为(3x−2)岁,根据题意得:x+(3x−2)=54解得x=14.故答案为14.21.【答案】解:设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,∵他们共捐了748册,∴5x+8x+9x=748解得x=34,∴甲捐书5x=170册,乙捐书8x=272册,丙捐书为9x=306册.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.【解析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,根据他们共捐了748册,即可求出这三位同学各捐书多少册.22.【答案】解:解方程2(x−1)=3m−1得:x=3m+12;解方程3x+2=−2(m+1)得:x=−2m−43;因为两个方程的解互为相反数,所以3m+12+−2m−43=0,解得m=1.【解析】本题主要考查的是相反数,一元一次方程的解,一元一次方程的解法的有关知识.分别求出两个方程的解,然后根据相反数的定义得到关于m的方程求解即可.23.【答案】(1)2x+13−5x−16=1解:去分母(方程两边乘6),得2(2x+1)−(5x−1)=6.去括号,得4x+2−5x+1=6.移项,得4x−5x=6−2−1.合并同类项,得−x=3.系数化为1,得x=−3.(2)x−x−12=2−x+25解:去分母(方程两边乘10),得10x−5(x−1)=20−2(x+2).去括号,得10x−5x+5=20−2x−4.移项,得10x−5x+2x=20−4−5.合并同类项,得7x=11.系数化为1,得x=117.【解析】本题考查的是一元一次方程的解法。

(完整版)最新人教版七年级上册数学一元一次方程应用题及答案

(完整版)最新人教版七年级上册数学一元一次方程应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2。

一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x—80%×(1+45%)x = 50 D。

80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.7.某市移动通讯公司开设了两种通讯业务:“全球通"使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0。

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。

完整版)七年级上册数学一元一次方程测试题及答案

完整版)七年级上册数学一元一次方程测试题及答案

完整版)七年级上册数学一元一次方程测试题及答案1.在方程3x-y=2,x+2x=,x=,x2-2x-3=中一元一次方程的个数为(2)。

2.解方程x/(x-1)=2/3时,去分母正确的是(3x-3=2x-2)。

3.方程x-2=2-x的解是(x=2)。

4.下列两个方程的解相同的是(方程5x+3=6与方程2x=4)。

5.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。

若经过x个月后,两厂库存钢材相等,则x是(3)。

6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(90元)。

7.下列等式变形正确的是(如果x-3=y-3,那么x-y=0)。

8.已知:1-(3m-5)有最大值,则方程5m-4=3x+2的解是(-7/3)。

9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱(元)。

10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(2.4)小时。

11.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是(a+60)米。

12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了(6)场。

13.方程为:3a + 5 = 9.14.根据题意,应该是-3x^2a-1+6=0,解得a=1/3.15.将x=2代入方程得到2a-3=7,解得a=5.16.将5a^2b^(1/22)(2m+1)^(-3/2)(m+3)^(-1)与-ab合并,得到m=-11.17.设四天的日期分别为a。

b。

c。

d,根据题意有a+b+c+d=42.由于每个月最多31天,最后一天的日期不可能超过31,因此最后一天的日期必须是11.18.设十位数为x,个位数为y,则题意转化为x=y/2且x+y=9,解得x=3,y=6,因此这个两位数是36.19.下游速度为8+2=10km/h,上游速度为8-2=6km/h。

人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】

人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】

人教版七年级数学上册第三章《一元一次方程》测试卷及答案解析【含详细知识点梳理】第三章测试卷一、选择题(项)1.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d2.把方程3x +2x -13=3-x +12去分母正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)3.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =54.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,那么可列方程( )A .3(x -2)=2x +9B .3(x +2)=2x +9C.x 2+2=x -92D.x3-2=x +925.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A .1B .2C .3D .46.某校为了丰富“阳光体育”活动,现购进篮球和足球共16个,共花了2820元.已知篮球的单价为185元,篮球个数是足球个数的3倍,则足球的单价为( )A .120元B .130元C .150元D .140元 二、填空题(本大题共6小题,每小题3分,共18分)7.若-x n +1与2x 2n -1是同类项,则n =________.8.当x =________时,代数式4x -5与3x -9的值互为相反数.9.若方程x +2m =8与方程2x -13=x +16的解相同,则m =________. 10.一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分.若某学生得了80分,则该学生答对了________道题.11.某书店把一本新书按标价的八折出售,仍获利30%.若该书的进价为40元,则标价为________元.12.现定义某种运算“☆”,对给定的两个有理数a ,b ,有a ☆b =2a -b .若⎪⎪⎪⎪1-x 2☆2=4,则x 的值为________.三、(本大题共5小题,每小题6分,共30分) 13.解下列方程: (1)4x +1=2(3-x );(2)2x -13-2x -34=1.14.已知关于x 的方程2(x -1)=3m -1与3x +2=-4的解互为相反数,求m 的值.15.小聪做作业时解方程x +12-2-3x3=1的步骤如下:解:①去分母,得3(x +1)-2(2-3x )=1;②去括号,得3x +3-4-6x =1; ③移项,得3x -6x =1-3+4; ④合并同类项,得-3x =2; ⑤系数化为1,得x =-23.(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.16.保护和管理好湿地,对于维护一个城市的生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地的面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.17.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A 、B 两地间的路程是多少?四、(本大题共3小题,每小题8分,共24分)18.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.19.小李在解方程3x +52-2x -m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x =-4,求出m 的值并正确解出方程.20.某服装厂要生产某种型号的学生校服,已知3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存有这种布料600m ,应如何分配布料做上衣和做裤子才能恰好配套?共能做多少套?五、(本大题共2小题,每小题9分,共18分)21.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读,在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.请根据以上信息解答下列问题:(1)你认为小宇购买________元以上的书,办卡合算;(2)小宇购买这些书的原价是多少元?22.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?六、(本大题共12分)23.在某市第四次党代会上,提出了“建设美丽城市,决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?参考答案与解析1.C2.A3.A4.A5.B6.C7.28. 29. 7 210. 21 1.6512. -5或713.解:(1)x=56.(3分)(2)x=72.(6分)14.解:方程3x+2=-4,解得x=-2.(2分)所以关于x的方程2(x-1)=3m-1的解为x=2.把x=2代入得2=3m-1,解得m=1.(6分)15.解:(1)不正确①②(2分)(2)去分母,得3(x+1)-2(2-3x)=6,去括号,得3x+3-4+6x=6,移项,得3x+6x=6-3+4,合并同类项,得9x=7,解得x=79.(6分)16.解:设计划新增湿地x公顷,则计划恢复湿地(2x+400)公顷.(2分)根据题意,得x+2x+400=2200,解得x=600,∴2x+400=1600.(5分)答:计划恢复湿地1600公顷,计划新增湿地600公顷.(6分)17.解:设A、B两地间的路程为x km,(1分)根据题意得x60-x70=1,(3分)解得x=420.(5分)答:A、B两地间的路程为420km.(6分)18.解:设这个两位数的十位数字为x,则个位数字为7-x,(2分)由题意列方程为10x +7-x+45=10(7-x)+x,解得x=1,(6分)∴7-x=7-1=6,∴这个两位数为16.(8分)19.解:由题意x =-4是方程3(3x +5)-2(2x -m )=1的解,∴3(-12+5)-2(-8-m )=1,∴m =3,(4分)∴原方程为3x +52-2x -33=1,∴3(3x +5)-2(2x -3)=6,5x =-15,∴x =-3.(8分)20.解:设做上衣的布料用x m ,则做裤子的布料用(600-x )m ,(2分)由题意得x3×2=600-x 3×3,解得x =360,600-x =240.3603×2=240(套).(7分) 答:做上衣的布料用360m ,做裤子的布料用240m ,才能恰好配套,共能做240套.(8分)21.解:(1)100(3分) 解析:设买x 元的书办卡与不办卡的花费一样多,根据题意,得x =20+80%x ,解得x =100.故买100元以上的书,办卡比较合算.(2)设这些书的原价是y 元,(4分)根据题意,得20+80%y =y -13,解得y =165.(8分) 答:小宇购买这些书的原价是165元.(9分)22.解:(1)由题意,得5020-92×40=1340(元).(3分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42.(8分)答:甲班有50名同学,乙班有42名同学.(9分)23.解:(1)∵最小的正方形A 的边长是1米,最大的正方形B 的边长是x 米,∴正方形F 的边长为(x -1)米,正方形E 的边长为(x -2)米,正方形C 的边长为(x -3)米或x +12米.(3分)(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(7分) (3)设余下的工程由乙队单独施工,还要y 天完成.(8分)根据题意得⎝⎛⎭⎫110+115×2+115y =1,解得y =10.(11分)答:余下的工程由乙队单独施工,还要10天完成.(12分)第三章 一元一次方程 详细知识点梳理1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”! 2等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3方程:含未知数的等式,叫方程.4一元一次方程的概念:只含有一个未知数(元)(含未知数项的系数不是零)且未知数的指数是1(次)的整式方程叫做一元一次方程。

人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)一、单选题1.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-2.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .53.一个长方形的周长为28cm ,若把它的长减少1cm ,宽增加3cm ,就变成一个正方形,则这个长方形的面积是( ) A .482cmB .452cmC .402cmD .332cm4.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 5.若关于x 的方程()5221x m x -=-+的解是2x =-,则m 的值为( ) A .-3 B .-5C .-13D .56.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④7.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .28.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 9.甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( ) A .5小时B .1小时C .6小时D .2.4小时10.下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=-11.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( ) A .60100100x x =-B .60100100x x =+C .10010060x x =+ D .10010060x x =- 12.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)二、填空题(共0分)13.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是______.14.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算4671⨯,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果记入相应的方格中,最后沿斜线方向相加,得3266.如图2,用“格子乘法”计算两个两位数相乘,则k =______.15.数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A 、B 表示的数分别为﹣2、1,点C 为数轴上一动点.(1)当点C 在线段AB 上,点A 是B 、C 两点的“友好点”时,点C 表示的数为_______; (2)若点C 从点B 出发,沿BA 方向运动到点M ,在运动过程中有4个时刻使A 、B 、C 三点满足“友好关系”,设点M 表示的数为m ,则m 的范围是_______.16.关于x 的一元一次方程230x kx --=的解是正整数,整数k 的值是____________. 17.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人. 18.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk的解总是x =2,则ab =_________.三、解答题19.解方程 (1)324x -= (2)2141168x x --=+20.已知关于x 的一元一次方程320192019xx m +=+的解为2x =,那么关于y 的一元一次方程12019(1)32019yy m -+-=-的解y =______.21.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.22.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?23.为积极响应“创建文明城”的号召,某校七年级学生组建了一支“创建文明城”志愿者服务队.其中30%的同学去做“文明劝导、礼让他人”的志愿服务,40%的同学去做“清洁庭院、美化家园”的志愿服务,剩下的150名同学去做“传播文明、奉献爱心”的志愿服务.该校七年级共有多少名同学参加了这次活动?24.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.26.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n秒,得到点P',称这样的操作为点P的“m速移”点P'称为点P的“m速移”点.(1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。

一元一次方程练习题及答案

一元一次方程练习题及答案

一元一次方程练习题及答案一元一次方程练习题及答案一元一次方程是人教版七年级上册第三章的内容,它是初中数学的重要内容之一,一元一次方程练习题有哪些呢?下面是的一元一次方程练习题资料,欢迎阅读。

篇1:一元一次方程练习题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是()A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。

A、 B、 C、 D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m=。

(完整版)人教版七年级上册数学一元一次方程应用题及答案

(完整版)人教版七年级上册数学一元一次方程应用题及答案

一元一次方程大练习列一次方程(组)或分式方程解应用题的基本步骤是:审、设、列、解、答.常见题型有以下几种情形:①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;②行程类问题,即路程=速度×时间;③工程问题,即工作量=工作效率×工作时间;④浓度问题,即溶质质量=溶液质量×浓度;⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系;⑥等积问题,即变形前后的质量(或体积)不变;⑦数字问题,即有若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a,等等;⑧经济问题,即利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;税后利息=本金×利率×期数×(1-利息税率);商品的利润=商品的售价-商品的进价;商品的利润率=×100%.等等一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

(完整版)七年级数学上册_一元一次方程练习题及答案

(完整版)七年级数学上册_一元一次方程练习题及答案

一元一次方程 练习题一、填空题(每题3分,共30分)1.关于x 的方程(k —1)x —3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.3.若x=3是方程2x —10=4a 的解,则a=______.4.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.5.(1)—3x+2x=_______. (2)5m-m —8m=_______.6.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 7.一个长方形周长为108cm,长比宽2倍多6cm ,则长比宽大_______cm . 8.某服装成本为100元,定价比成本高20%,则利润为________元.9.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 10.当m 值为______时,453m -的值为0. 二、选择题(每题3分,共30分) 11.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程 D .2y-3=1是一元一次方程12.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=—7B .由2x —3=0得2x-3+3=0C .由6x =2得x=13D .由5x=7得x=35 13.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0 C .13x —3=1x D .3x —2=4x —714.下列各组方程中,解相同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .—1311D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .16 18.解方程1432x x---=1去分母正确的是( ) A .2(x —1)—3(4x-1)=1 B .2x —1-12+x=1 C .2(x-1)-3(4—x )=6 D .2x —2—12—3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( ) A .280千米,240千米 B .240千米,280千米 C .200千米,240千米 D .160千米,200千米 三、解方程(共28分)21.(1)53—6x=-72x+1; (5分) (2)y-12(y —1)=23(y-1); (5分)(3)34 [43(12x-14)—8]= 32x+1;(5分) (4)0.20.110.30.2x x -+-=。

七年级上册数学专项:一元一次方程复习题精选(附答案)

七年级上册数学专项:一元一次方程复习题精选(附答案)

七年级上册数学一元一次方程一.选择题1.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.252.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2二.解答题3.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?4.一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟,若每小时行驶50km,就要迟到6分钟,求快递员所要骑行的路程.5.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.6.甲、乙两个仓库共存有粮食60t.解决下列问题,3个小题都要写出必要的解题过程:(1)甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?(2)如果甲仓库原有的粮食比乙仓库的2倍少3t,则甲仓库运出多少t粮食给乙仓库,可使甲、乙两仓库粮食数量相等?(3)甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1t,乙仓库运进的数量是本仓库原有粮食数量加上8t所得的和的一半.求此时甲、乙两仓库共有粮食多少t?7.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?8.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,才能使商场销售完节能灯时获利为13500元?9.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?10.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.11.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.12.有一些相同的房间需要粉刷,一天3名师傅去粉刷7个房间,结果其中有30m2墙面未来得及粉刷;同样的时间内5名徒弟粉刷了9个房间之外,还多粉刷了另外的10m2墙面.每名师傅比徒弟一天多刷20m2墙面.求每个房间需要粉刷的墙面面积.13.某城市按以下规定收取天然气费:(1)每月所用天然气按整立方米计算;(2)若每月用天然气不超过60立方米,按每立方米2.4元收费,若超过60立方米,超过部分按每立方米3元收费.已知某户人家冬季某月的天然气气费平均每立方米2.6元,试求这户人家该月需要交多少天然气费.14.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价 1500 元,售价 2000 元;乙种手机每部进价 3500 元,售价 4500 元;采购这两种手机恰好用了 27 万元.把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了 5000 元,经销商把甲种手机加价 50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.15.某市滴滴快车运价调整后实行分时段计价,部分的计价规则如下表:(1)小明今天早上在7:30﹣8:00之间乘坐滴滴快车去单位上班,行车里程4公里,行车时间20分钟,则他应付车费多少元?(2)上周五小明在单位加班,一直工作到晚上23:45才乘坐滴滴快车回家,已知行车里程为m公里(m>15),行车时间为n分钟(n<100),请用含m,n的代数式表示小明应付的车费.(3)若小明和小亮在17:00﹣18:30之间各自乘坐滴滴快车回家,行车里程分别为9.6公里与12公里,如果下车时两人所付车费相同,问这两辆滴滴快车的行车时间相差多少分钟?16.某商店购进一批棉鞋,原计划每双按进价加价60%标价出售.但是,按这种标价卖出这批棉鞋90%时,冬季即将过去.为加快资金周转,商店以打6折(即按标价的60%)的优惠价,把剩余棉鞋全部卖出.(1)剩余的棉鞋以打6折的优惠价卖出,这部分是亏损还是盈利?请说明理由.(2)在计算卖完这批棉鞋能获得的纯利润时,减去购进棉鞋的钱以及卖完这批棉鞋所花的1400元的各种费用,发现实际所得纯利润比原计划的纯利润少了20%.问该商店买进这批棉鞋用了多少钱?该商店买这批棉鞋的纯利润是多少?17.某水果批发市场苹果的价格如下表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果千克,第二次购买千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题,写出分析过程)18.为了丰富学生的课外活动,某校决定购买一批体育活动用品,经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每副球拍贵50元,两个篮球与三副球拍的费用相等,经洽谈,甲体育用品商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球超过80个,则购买羽毛球拍打八折.该校购买100个篮球和a(a>10)副羽毛球拍.(1)求每个篮球和每副羽毛球拍的价格分别是多少?(2)请用含a的式子分别表示出到甲商店和乙商店购买体育活动用品所花的费用;(3)当该校购买多少副羽毛球拍时,在甲、乙两个商店购买所需费用一样?19.学校“数学魔盗团”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买1个A种魔方比1个B种魔方多花5元.(1)求这两种魔方的单价;“双(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).11期间”某商店有两种优惠活动,如图所示.请根据以上信息填空:购买A种魔方个时选择活动一盒活动二购买所需费用相同.20.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?22.某公路收费站的收费标准是大客车20元,大货车10元,轿车5元,某天通过收费站的这三种车辆的数量之比是5:7:6,共收费4.8万元,问这天通过收费站的大货车是多少辆?23.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?24.一辆客车以每小时30千米的速度从甲地出发驶向乙地,经过45分钟,一辆货车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,求甲、乙两地的距离.25.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?26.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?27.“五一”期间,小明一家人乘坐高铁前往某市旅游,计划第二天开始租用新能源汽车自驾出游.经了解,甲、乙两公司的收费标准如下:甲公司:按日收取固定租金80元,另外再按租车时间计费,每小时的租费是15元;乙公司:无固定租金,直接以租车时间计费,每小时的租费是30元.(1)若租车时间为x小时,则租用甲公司的车所需费用为元,租用乙公司的车所需费用为元(结果用含x的代数式表示);(2)当租车时间为11小时时,选择哪一家公司比较合算?(3)当租车多少时间时,两家公司收费相同?28.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)29.某商场开展春节促销活动出售A 、B 两种商品,活动方案如下两种:(1)某单位购买A 商品30件,B 商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A 商品x 件(x 为正整数),购买B 商品的件数是A 商品件数的2倍少1件,若两方案的实际付款一样,求x 的值.30.2018年元旦期间,某商场打出促销广告,如下表所示: (1)用代数式表示(所填结果需化简)设一次性购买的物品原价是x 元,当原价x 超过200元但不超过500元时,实际付款为 元;当原价x 超过500元时,实际付款为 元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?31.某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.32.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小敏乘坐滴滴快车,行车里程5公里,行车时间20分钟,写小敏下车时付多少车费?(2)小红乘坐滴滴快车,行车里程10公里,下车时所付车费29.4元,则这辆滴滴快车的行车时间为多少分钟?33.列一元一次方程解应用题.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?34.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?35.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x|=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图(25﹣1)可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图(25﹣2),在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.36.两种移动电话计费方式表如下:设主叫时间为t分钟.(1)请完成下表(2)问主叫时间为多少分钟时,两种方式话费相等?(3)问主叫时间超过400分钟时,哪种计费方式便宜?便宜多少元?(用含t的式子表示)37.如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C 出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C→D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示);(2)求点P原来的速度.(3)判断E点的位置并求线段DE的长.38.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.39.成都某网络约车公司的收费标准是:起步价8 元,不超过3 千米时不加价,行程在3 千米到5 千米时,超过3 千米但不超过5 千米的部分按每千米1.8 元收费(不足1 千米按1 千米计算),当超过5 千米时,超过5 千米的部分按每千米2 元收费(不足1 千米按1 千米计算).(1)若李老师乘坐了2.5 千米的路程,则他应支付费用为元;若乘坐的5 千米的路程,则应支付的费用为元;若乘坐了10 千米的路程,则应支付的费用为元;(2)若李老师乘坐了x(x>5 且为整数)千米的路程,则应支付的费用为元(用含x 的代数式表示);(3)李老师周一从家到学校乘坐出租车付了19.6元的车费(且他所乘路程的千米数为整数),若李老师改骑电动自行车从家到学校与乘坐出租车所走路程相等,李老师骑电动自行车的费用为每千米0.1元,不考虑其他因素,问李老师可以节约多少元钱?40.甲乙两地相距400千米,一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,相向而行.已知客车的速度为60千米/小时,出租车的速度是100千米/小时.(1)多长时间后两车相遇?(2)若甲乙两地之间有相距100km的A、B两个加油站,当客车进入A站加油时,出租车恰好进入B站加油,求A加油站到甲地的距离.(3)若出租车到达甲地休息40分钟后,按原速原路返回.出租车能否在到达乙地或到达乙地之前追上客车?若不能,则出租车往返的过程中,至少提速为多少才能在到达乙地或到达乙地之前追上客车?是否超速(高速限速为120千米/小时)?为什么?七年级上册数学一元一次方程参考答案与试题解析一.选择题(共2小题)1.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10 B.20 C.30 D.25【分析】设乙中途离开了x天,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设乙中途离开了x天,根据题意得:×40+×(40﹣x)=1,解得:x=25,则乙中途离开了25天.故选:D.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.2.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1 B.C.D.2【分析】利用总共量为1,进而表示出甲、乙的工作量得出等式求出答案.【解答】解:设两小组合做1h后,再由乙小组单独做,还需x小时才能完成这台机器的检修任务,根据题意可得:2(+)+x•=1,解得:x=.答:还需小时后才能完成这台机器的检修任务.选:C.【点评】此题主要考查了一元一次方程的应用,根据总共量为1得出等式是解题关键.二.解答题(共38小题)3.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50,y=答:爸爸第一次追上小明后,在第二次相遇前,再经过分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.4.一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟,若每小时行驶50km,就要迟到6分钟,求快递员所要骑行的路程.【分析】设路程为xkm,根据时间=路程÷速度、“若每小时行驶60km,就早到12分钟;若每小时行驶50km,就要迟到6分钟”,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设路程为xkm,以每小时60km的速度到达目的地所需的时间为;以每小时50km的速度到达目的地所需的时间为.根据题意得:+=﹣,解得:x=90.答:快递员需要骑行90km.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据时间=路程÷速度表示出两种速度下将快递送到某地所需时间;(2)根据两种速度下所需时间之间的关系,列出关于x的一元一次方程.5.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【解答】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,。

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案七年级数学上册《一元一次方程单元测试卷》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=52.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣33.(3分)若关于x的一元一次方程A.B.1C.的解是x=﹣1,则k的值是()D.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣XXX5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2C.x+1=(26﹣x)﹣2B.x﹣1=(13﹣x)+2D.x+1=(13﹣x)﹣26.(3分)某市肆有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在此次生意中,这家市肆()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程精确的是()A.x•30%×80%=312C.312×30%×80%=xB.x•30%=312×80%D.x(1+30%)×80%=3128.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同砚做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.20 9.(3分)若2x+1=4,则4x+1等于()第1页(共17页)A.6B.7C.8D.910.(3分)甲比乙大15岁,5年前甲的年岁是乙的年岁的2倍,乙目前年岁是()A.30岁二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是.12.(3分)如果关x的方程值是.13.(3分)轮船沿江从A港顺流行驶到B港,比从B 港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=.15.(3分)关于x的方程=4的解是x=4,则a=.与的解相同,那么m的B.20岁C.15岁D.10岁16.(3分)当x=时,3x+4与4x+6的值相等.17.(3分)如果单项式3a4x+1b2与应分别为.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x=.20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.可以合并为一项,那么x与y的值22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用几何张制瓶身,几何张制瓶底,第2页(共17页)可以恰好制成成套的饮料瓶?23.(10分)收拾整顿一批图书,如果由一个人零丁做要用30h,现先放置一局部人用1h收拾整顿,随后又增长6人和他们一起又做了2h,恰好完成收拾整顿事情.假定每一个人的事情效率相同,那么先放置收拾整顿的职员有几何?24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生XXX同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=.(2)若该用户九月份的均匀电费为0.36元,则九月份共用电千瓦时,应交电费是元.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,该厂家出产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.第3页(共17页)(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的计划中,为使销售利润最多,你选择哪一种进货计划?第4页(共17页)七年级数学上册《一元一次方程》单元测试卷参考答案与试题剖析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只要一项为哪一项吻合问题要求的,将此选项的字母填在答题卡上)1.(3分)以下方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项精确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;应选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是.2.(3分)以下方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣3【分析】方程的解的定义,就是可以使方程摆布两边相等的未知数的值.以是把x=﹣1分别代入四个选项举行检验便可.【解答】解:A、把x=﹣1代入方程的左侧=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左侧=﹣14≠右边,以是不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选:A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.第5页(共17页)3.(3分)若关于x的一元一次方程A.B.1C.的解是x=﹣1,则k的值是()D.【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣XXX﹣=1,【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a ﹣4=0,解得:a=8.故选:D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2C.x+1=(26﹣x)﹣2B.x﹣1=(13﹣x)+2D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量第6页(共17页)关系比较隐藏,要注意仔细审题,耐心寻找.6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数目关系树立方程求出其解便可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1﹣20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元故选:C.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312C.312×30%×80%=xB.x•30%=312×80%D.x(1+30%)×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选:D.【点评】此题考察了由实际问题抽象出一元一次方程,把握找出等量关系是解题的枢纽.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19第7页(共17页)D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同砚做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.应选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)若2x+1=4,则4x+1等于()A.6B.7C.8D.9【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选:B.【点评】此题考察了代数式求值,利用了团体代入的思想,熟练把握运算法例是解此题的枢纽.10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁【分析】本题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,则甲为(x+15)岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x﹣5)岁,由题意得:x+15﹣5=2(x﹣5)解得x=20应选:B.【点评】解题关键是读懂题意,找到合适的等量关系,列出方程.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9.第8页(共17页)【分析】方程去分母,移项合并,把x系数化为1,便可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考察了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程值是±2.【分析】此题中有两个方程,且是同解方程,普通思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程收拾整顿得:15x﹣3=42,解得:x=3,把x=3代入得=x+4+2|m|=与的解相同,那么m的=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺风行驶到B港,比从B 港返回A港罕用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距504km.【分析】根据逆流速率=静水速率﹣水流速率,逆流速率=静水速率+水流速率,表示出逆流速率与逆流速率,根据题意列出方程,求出方程的解便可获得成效.【解答】解:设A港与B港相距xkm,第9页(共17页)根据题意得:解得:x=504,+3=,则A港与B港相距504km.故答案为:504.【点评】此题考察了一元二次方程的应用,找出题中的等量关系是解此题的枢纽.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=1.【分析】根据的绝对值为,得3y﹣2=0,解方程得x,y 的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程【分析】把x=4代入方程【解答】解:把x=4代入方程XXX:a=0.故填.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x=﹣2时,3x+4与4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,XXX:x=﹣2.故填﹣2.【点评】办理此类问题的枢纽是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2与应分别为1和2.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字第10页(共17页)=4的解是x=4,则a=.=4得关于a的方程,再求解即得a的值.=4,得:=4,可以合并为一项,那么x与y的值母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=4.【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题首要考察了一元一次方程解的定义.解答此题的枢纽是熟知方程组有公共解的含义,考察了学生对题意的了解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x=.【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x ﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27.【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一第11页(共17页)个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题枢纽是要读懂问题标意思,根据问题给出的前提,找出合适的数目关系,列出方程,再求解.此题中要熟悉连续奇数的表示办法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,便可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,便可求出解.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;(2)去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,通过理解题意可知本题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.第12页(共17页)【解答】解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.(10分)收拾整顿一批图书,如果由一个人零丁做要用30h,现先放置一局部人用1h收拾整顿,随后又增长6人和他们一起又做了2h,恰好完成收拾整顿事情.假定每一个人的事情效率相同,那么先放置收拾整顿的职员有几何?【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设第一放置收拾整顿的职员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,第13页(共17页)首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k ﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生XXX同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电根本代价为每千瓦时0.40元,若每月用电量跨越a千瓦时,则跨越局部按根本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的均匀电费为0.36元,则九月份共用电90千瓦时,应第14页(共17页)交电费是32.40元.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×XXX(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳跨越800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应征税224元,若王老师获得的稿费为4000元,则应征税440元;(2)若王老师获稿费后征税420元,求这笔稿费是几何元?【分析】本题列出了不同的判断条件,要将本题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:(1)若王老师获得的稿费为2400元,则应征税224元,若王老师获得的稿费为4000元,则应征税440元;第15页(共17页)(2)因为XXX纳税420元,所以由(1)可知XXX的这笔稿费高于800元,而低于4000元,设XXX老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:XXX的这笔稿费为3800元.【点评】解题枢纽是要读懂问题标意思,依据问题给出的不同前提举行判断,然后分类会商,再根据问题给出的前提,找出合适的等量关系,列出方程,求解.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,该厂家出产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则解得:.第16页(共17页),③设购乙种电视机y台,丙种电视机z台.则解得:(分歧题意,舍去);(2)计划一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程 练习题
一、填空题(每题3分,共30分)
1.关于x 的方程(k-1)x-3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.
3.若x=3是方程2x-10=4a 的解,则a=______.
4.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军. 5.(1)-3x+2x=_______. (2)5m-m-8m=_______.
6.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 7.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 8.某服装成本为100元,定价比成本高20%,则利润为________元.
9.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 10.当m 值为______时,
45
3
m 的值为0. 二、选择题(每题3分,共30分) 11.下列说法中正确的是( )
A .含有一个未知数的等式是一元一次方程
B .未知数的次数都是1次的方程是一元一次方程 D .2y-3=1是一元一次方程 12.下列四组变形中,变形正确的是( )
A .由5x+7=0得5x=-7
B .由2x-3=0得2x-3+3=0
C .由
6
x
=2得x=13 D .由5x=7得x=35
13.下列各方程中,是一元一次方程的是( ) A .3x+2y=5 B .y 2-6y+5=0 C .
13x-3=1
x
D .3x-2=4x-7
14.下列各组方程中,解相同的方程是( )
A .x=3与4x+12=0
B .x+1=2与(x+1)x=2x
C .7x-6=25与
71
5
x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )
44.1.1202012
202012
44.1.1202012
202012
x x x x A B x x x x C D =
--=
+-=++
=-+
16.(2006,江苏泰州)若关于x 的一元一次方程2332
x k x k
---
=1的解为x=-1,则k 的值为( ) A .
27 B .1 C .-13
11
D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.
A .24
B .40
C .15
D .16 18.解方程
1432
x x
---
=1去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1 C .2(x-1)-3(4-x )=6 D .2x-2-12-3x=6
19.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮
船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( ) A .280千米,240千米 B .240千米,280千米 C .200千米,240千米 D .160千米,200千米 三、解方程(共28分) 21.(1)
53-6x=-72x+1; (5分) (2)y-12(y-1)=2
3
(y-1); (5分)
(3)34 [43(12x-14)-8]= 3
2
x+1;(5分) (4)0.20.110.30.2x x -+-=
.(5分)
22.(8分)若关于x 的方程2x-3=1和2
x k
-=k-3x 有相同的解,求k 的值.
四、应用题(每题8分,共32分)
23.(8分)某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3•间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?
24.(8分)如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、•每条对角线上三个数的和相等,问图中的m是多少?
25.(8分)已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。

26.(8分)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零
售票,其中团体票占总数的2
3
,若提前购票,则给予不同程度的优惠,在五月份内,
团体票每张12元,共售出团体票数的3
5
;零售票每张16元,•共售出零售票数的一半,
如果在六月份内,团体票按每张16元出售,•并计划在六月份售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
答案
1.≠1 2.x=-5
3
3.-1 4.(1)-x (2)-4m 5.99-a 6.22 7.20 • •8.•0.7x=1000
9.5
4
10.6 11.D 12.A 13.D 14.C 15.C 16.B 17.C 18.C
19.B(点拨:设水路x千米,有方程
40 2440
x x+
=+3)
20.C
21.(1)x=
4
15
(2)y=7 (3)x=-
29114
(4)22.
4103
x k
=-=
23.设学校有x间教室,依题意得方程20(x+3)=24(x-1),解得x=21(间).24.设相应的方格中数为x1,x2,x3,x4,如图,由已知得
m+x1+x2=m+x3+x4=x1+x3+13=x2+19+x4,由此得2m+x1+x2+x3+x4=13+19+x1+x2+x3+x4.∴2m=13+19,即m=16.
25.设甲数是x,则乙数为3x,丙数为
2x.根据题意有 x+3x+
2
5
x=130.所以甲数为20,乙
数为60,丙数为50.
26.设总票数a张,六月份零售标价为x元/张,依题意,得
12×3
5
×
2
3
a+16×
1
2
×
1
3
a=16×
4
15
a+
1
6
ax
∴x=19.2,故六月份零售票应按每张19.2元定价.。

相关文档
最新文档