驱动电机管理系统
电机驱动系统名词解释
电机驱动系统名词解释
电机驱动系统名词解释
1.启动控制:启动控制又称为启动器控制或启动调节,它是电动机启动过程中所需的电器设备,是控制电动机转速的重要部件。
2.变频器:变频器是一种电机驱动系统,它使用电子元件将内部输入电源的频率及电压调节为固定频率,以控制和调整电机的转速及功率,从而控制电机的输出功率。
3.数字化控制装置:数字化控制装置是一种用于对电机驱动系统及其他控制设备进行数字化控制的装置,通常用于更精确地控制电机的转速及功率。
4.自动化控制器:自动化控制器是一种具有定时和定压功能的控制装置,用于自动控制电机的转速及功率,从而实现按指定要求控制电机。
5.传感器:传感器是一种装置,它可以感测到电机的运行状态,具有检测电机转速、功率、温度、负载和电流等功能。
使用传感器进行反馈可以精确地控制电机的输出功率。
6.驱动箱:驱动箱是电机驱动系统中主要的元件,由电机、变频器、启动装置及控制装置等组成,为整个驱动系统提供动力源。
第四章 驱动电机及控制系统
组通过的线电流值。
额定转速
在额定电压输入下以额定功率输出时对应的电机最低转速。
额定功率
额定条件下,电机轴上输出的机械功率。
峰值功率
在规定的时间内,电机允许输出的最大功率。
最高工作转速 相应于电动汽车最高设计车速的电机转速。
最高转速
在无带载条件下,电机允许旋转的最高转速。
额定转矩
电机在额定功率和额定转速下的输出转距。
整车控制器(VCU)根据驾驶员意图发出各种指令,电机 控制器响应并反馈,实时调整驱动电机输出,以实现整车的 怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机 控制器另一个重要功能是通信和保护,实时进行状态和故障 检测,保护驱动电机系统和整车安全可靠运行。
第四章 驱动电机及控制系统
2.电动汽车对驱动电机性能的要求
由于存在电刷、 换向器等易损件, 所以必须进行定期维护 或更換。
第四章 驱动电机及控制系统
2.新能源汽车直流电动机的性能要求 (1)低能耗性
为了延长一次充电续驶里程以及抑制电动机的温升、 尽量 保持低损耗和高效率成为直流电动机的重要特性 。 近年来, 由 于稀土系列永磁体的研究开发, 直流电动机的效率已明显提高, 能耗明显减低。 (2)环境适应性
直流电动机作为新能源汽车的驱动电机时, 与在室外使用时 的环境大致相同, 所以要求在设计时充分考虑密封的问题, 防止 灰尘和水汽侵入电动机, 另外还要考虑电动机的散热性能。
第四章 驱动电机及控制系统
(3)抗振动性 由于直流电动机具有较重的电枢, 所以在颠簸的路况行驶时,
车辆振动会影响到轴承所承受的机械应力, 对这个应力进行监 控和采取相应的对策是很有必要的。 同时由于振动, 很容易影 响到換向器和电刷的滑动接触, 因此必须采取提高电刷弹簧预 紧力等措施。
电机驱动系统(完整)
八、开关磁阻电机控制系统
1. 开关磁阻电机结构
定、转子为结构双凸结构。 定、转子齿满足错位原理, 即错开1/m转子齿距。 通电一周,转过一个转子齿。 需要转子位置传感器。
6/4极的开关磁阻电动机
2. 开关磁阻电动机工作原理
靠磁通收缩产生转矩
转矩:
开关磁阻电机的 转矩瞬时值正比于 电流的平方, 也正比于电感对转 子位置角的变化率。
+
+C
-C
PWM 输入
电动“1” 回馈制动“ 0”
驱动信号 输出
6. 无刷直流电机及其控制系统的优缺点
优点: 1. 具有直流电机的控制特性。 2. 控制相对简单。 3. 电机效率高,体积小。
缺点: 1. 由于永磁材料贵,电机价格较贵。 2. 过热容易导致永久性失磁。 3. 弱磁运行较困难。 4. 需要转子位置传感器。
功率变换器主电路
交流电机电枢绕组
六、无刷直流电机控制系统
1. 系统构成
三相功率 变换器
控制电路 控制器
永磁 同步电机
转子位置 传感器
自控式永磁 同步电机
2.无刷直流电机与永磁同步电机差别
B0(e0)
永磁同步电机
0
无刷直流电机
2π ωt
一对极下不同的气隙磁密分布图
3.无刷直流电机工作原理
有6个定子空间磁势。
A iA
根据转子位置传感器检
测到的转子位置和要求
FBA
FCA
转向来决定产生哪一个
X
磁势。
产生的平均转矩最大。 FBC
S
Z
iC
C
FAC
F0
N
FCB
Y
iB
电动汽车驱动电机ppt课件
26
第三章
驱动电机系统控制策略简介
驱动电机系统下电流程
27
第三章
驱动电机系统控制策略简介
驱动电机系统驱动模式
整车控制器根据车辆运行的不同情况,包括车速、挡位、电池 SOC值来决定,电机输出扭矩/功率。
当电机控制器从整车控制器处得到扭矩输出命令时,将动力电池 提供的直流电,转化成三相正弦交流电,驱动电机输出扭矩,通过机械 传输来驱动车辆。
9
第二章
驱动电机系统关键部件简介
C33DB 驱动电机控制器结构
10
第二章
驱动电机系统关键部件简介
C33DB 驱动电机控制器结构
11
第二章
驱动电机系统关键部件简介
C33DB 驱动电机控制器主要零件
12
第二章
驱动电机系统关键部件简介
C33DB驱动电机系统工作原理
在驱动电机系统中,驱动电机的输出动作主要是靠控制单元给定命令执 行,即控制器输出命令。控制器主要是将输入的直流电逆变成电压、频 率可调的三相交流电,供给配套的三相交流永磁同步电机使用。
CAN总线接口
29 CAN_SHIELD
10
TH
9
TL
电机温度传感器接口
28
屏蔽层
8
485+
7
485-
RS485总线接口
15 HVIL1(+L1) 26 HVIL2(+L2)
高低压互锁接口
19
第二章
驱动电机系统关键部件简介
检修——驱动电机控制器低压插件
建议检修时先确认插件是否连接到位,是否有“退针”现象。
20
第二章
驱动电机系统关键部件简介
检修——确认高压动力线束连接
驱动电机系统的组成
驱动电机系统的组成使用驱动电机系统的组成:一、控制器:1. 电源-采用直流电源以驱动所需的电机;2. 伺服控制器-伺服控制器用于控制驱动电机的输出,并根据实时传感器输入更新驱动电机参数以适应环境变化;3. 步进控制器-步进控制器用于控制步进电机,实现定位移动功能;4. 放大器-放大器可以提高电机的输出功率,以达到较快的实现电机运转的速度和响应能力;5. 监控系统-与伺服控制系统配合使用,可以通过对电源的控制实时监控电机的运动状态,实现电机的负载自动调节等功能;二、电机:1. 直流电机-采用直流电机可以实现高速、高精度、低耗能,使用安全可靠;2. 步进电机-步进电机可实现低速、高精度、高耗能的电动控制,实现精细化定位移动;3. 驱动器-可以与电机相配合实现对动作控制和位置控制,例如恒定速度运行,定小范围位移。
三、元件:1. 传感器-可以通过实时监控电机的转速和加速度,精准控制电机的运行状态;2. 接口器-可以与控制器连接,如接收和传递电源、数据信号等;3. 线缆-用于连接传感器和控制器及电机之间,一般采用铜线或光纤缆进行配置;4. 保护装置-可以在出现错误时,及时关断电源,保护驱动电机的安全运行。
四、零件:1. 轴承-用于支撑、支持电机运行,有滚动轴承和滑动轴承等;2. 止动装置-用于控制电机的定位运动,消除电机的抖动,如液压减速机、机械、刹车及齿轮等;3. 接头-用于连接电机、控制器和电源等固定结构配件;4. 防护罩-用于防止异物入侵,保证安全运行,如传感器防护罩、驱动器防护罩等;5. 锁具-用于防止操作人员误操作的固定结构配件。
五、外围设备:1. 气动开关-控制电机的运行速度和起动,保护电路和设备的安全;2. 冷却系统-用于驱动电机过热时冷却电机,保护电动机系统正常运行;3. 变频器-通过变频器可以改变电机的转速,使电机在规定转速以内运行,以达到节能的效果;4. 传动系统-可以实现电动机动作的传动,如皮带传动、蜗杆传动等;5. 定位系统-用于判断电动机的实际位置,并可进行位置的实时跟踪;6. 气动装置-采用气动装置可以实现电机的快速响应及启动,达到快速定位的效果。
新能源汽车结构与检修课件-第四章驱动电机及控制系统
机械效率
在额定运行时电机轴上输出的机械功率与电机在额定运行时电源输入
到电机定子绕组上的功率之比值。
电机及控制器整 电机转轴输出功率除以控制器输入功率
体效率
温升
电机在运行时允许升高的最高温度。
(2)各种驱动电机的基本性能比较
项目 功率密度 过载能力(%) 峰值效率(%) 负荷效率(%) 功率因数(%) 恒功率区 转速范围(rpm) 可靠性 结构的坚固性 电机的外形尺寸 电机质量
却很大,因此产生一定的主磁通所需要的励磁电流较大, 一般为额定电流的20~50%。励磁电流是无功电流,励 磁电流较大是异步电动机功率因数较低的主要原因。为
提高功率因数,必须减小励磁电流,最有效的方法就是 减小气隙长度。异步电动机的气隙大小一般为0.2~1.5 mm左右。
(5)小型化、轻量化 直流电动机的转子部分含有较大比例的铜, 如电枢绕
组和换向器铜片, 所以与其他类型的电动机相比, 直流电 动机的小型化和轻量化更难以实现。 目前可以通过采用 高磁导率、 低损耗的电磁钢板减少磁性负荷, 虽然增加了 成本, 但可以实现轻量化 。
(6)免维护性 对于电刷, 根据负荷情况和运行速度等使用条件的不
直流电动机 低 200
85-89 80-87 ------------4000-6000 一般
差 大 重
三相异步电动机 中
300-500 94-95 90-92 82-85 1:5
12000-20000 好 好 中 中
永磁同步电动机 高 300
95-97 97-85 90-93 1:2.25 4000-10000 优良 一般
他励
并励
串励
图4-6直流电机的励磁方式
复励
直流电机励磁绕组所耗功率虽只占整个电机功率的1~3%, 但其性能随励磁方式不同产生很大差别,电动机的机械特性 也大不相同,如图4-7所示
新能源汽车电机与驱动系统教案系列项目四 驱动电机管理系统 任务1
— 1 —项目四驱动电机管理系统任务一驱动电机管理系统认知教案上课时间: 年 月 日— 2 —导课:一辆电动汽车无法运行,你的主管诊断结果为逆变器异常,让你协助他为一位电动汽车汽车服务人员,你知道逆变器属于哪个系统,具备哪些功能吗?理论教学内容:1.驱动电机管理统的主要部件驱动电机系统是电动汽车核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。
以下介绍驱动电机管理系统的主要部件结构和检测技术。
1)驱动电机管理模块v驱动电机管理模块(控制器),通常简称MCU ,主要用于管理和控制驱动电机的运转速度、方向以及将驱动电机作为逆变电机发电。
MCU 的功能类似于传统汽车的发动机控制模块。
目前使用在纯电动汽车上的驱动电机管理模块主要有两种类型,一种是仅用于控制驱动电机的,即MCU ;另一种是更具有集成控制功能的驱动电机管理模块,即MCU 与DC/DC 转换器功能,这类的驱动电机管理模块也被称为PCU (图4-1-1)。
DC/DC 转换器是直流-直流的电压变换器,用于将动力电池或逆变器产生的电能转换成12V 低压电能,用于给12V 蓄电池充电和车身电气设备供电。
将MCU 与DC/DC 转换器集成化是目前纯电动汽车与混合动力汽车驱动电机管理模块要发展的一个趋势,集成度更高的系统即节省了成本,也利于系统之间信息的共享与车辆部件位置的布置设计。
2)逆变器— 3 —为了提高电机驱动系统的效率,HEV 主要采用交流电机驱动。
为了驱动交流电机,从直流获得交流电力的电力转换装置就被称为逆变器。
(1)构成。
图4-1-2所示的是丰田普锐斯内置了逆变器之后的车载用动力控制单元(Poner Contol Unit )的构成,图4-1-3所示为主回路构成。
动力控制单元(PCU )由内置了动力装置元器件的IPM 、MWGECU(Moor/ Cenerator Elcetric Control Unit)、电容器、电抗器、冷却系统、电流传感器等构成。
电机驱动控制系统设计与优化
电机驱动控制系统设计与优化随着电机技术的不断发展,电机驱动控制系统在各个领域的应用也越来越广泛。
电机驱动控制系统是指通过电子技术手段对电机进行控制和调节,实现其精准运动和灵活控制的过程。
设计一个高效、稳定的电机驱动控制系统对于提高电机运行效率、降低能耗以及提升工作质量至关重要。
本文将介绍电机驱动控制系统的设计原理和优化方法。
一、电机驱动控制系统的设计原理1. 电机选型与参数确定:在进行电机驱动控制系统设计之前,需要根据实际需求选择合适的电机类型和规格。
根据负载特性、工作环境和功率需求等因素,选择适合的直流电机或交流电机,并确定其额定转速、额定功率等参数。
2. 电机驱动器的选择:根据电机类型的不同,选择合适的电机驱动器。
常见的电机驱动器包括直流电机控制器和交流电机变频器。
直流电机控制器一般采用PWM(脉宽调制)技术进行电机速度和转矩的控制,而交流电机变频器则通过改变电机供电频率和电压来调节电机的工作状态。
3. 传感器与反馈控制:在电机驱动控制系统中,传感器的安装和应用对于实现电机的精准控制至关重要。
通过传感器采集电机的转速、转角、温度、电流等参数,将这些数据反馈给控制器,可以实现对电机的闭环控制和优化调节。
4. 控制算法与逻辑设计:电机驱动控制系统的设计离不开合理的控制算法和逻辑设计。
根据电机的运行特性和控制目标,可以选择合适的控制算法,如PID控制算法、模糊控制算法等。
通过编程实现电机的自动控制、调速、定位等功能。
5. 电路布局与散热设计:在电机驱动控制系统设计过程中,合理的电路布局和散热设计可以有效提高系统的工作效率和稳定性。
应根据电机功率和工作温度,合理设置散热片、风扇和散热器,确保电机及其驱动控制器的稳定运行。
二、电机驱动控制系统的优化方法1. 电机参数优化:根据实际使用情况和需求,对电机参数进行优化调整。
通过改变电机的额定转速、额定功率和工作电压等参数,可以使电机在不同工况下具备更好的适应性和效率。
驱动电机系统工作原理
驱动电机系统工作原理1. 驱动电机系统简介驱动电机系统是指由电池组、电机、电控等部分组成的驱动系统,主要用于汽车、电动车、轮椅等各类电动交通工具中。
其工作原理是通过电量储存装置将电能转换为电力,再通过控制器对电机进行控制,使其输出扭矩并驱动车轮运动。
2. 电池组电池组是驱动电机系统的电源,负责储存电能供电机使用。
不同型号的电池组材料、结构和性能有着很大不同,如铅酸电池、锂离子电池、超级电容等。
但无论是何种电池,均需特殊的充放电管理系统作为支持。
3. 电机电机是驱动电动交通工具的心脏,是将电能转换为机械能的重要零部件。
常见的电机有直流电机、交流异步电机、交流同步电机等。
其中直流电机转速调节比较灵活,适用于小功率电动交通工具,而交流电机则适用于大功率电动交通工具,采用直流变交流的控制方法来实现调速和定位的功能。
4. 电控电控器是驱动电机系统的重要组成部分,主要功能是对电池组、电机的状态进行监测和控制。
通过内部现代化的芯片处理器,对电机的控制指令精准到微秒级别的调节。
电控器还具有相应的保护措施,当发生过流、过压、过温等异常情况时会自动保护,防止系单被损坏。
5. 工作原理驱动电机系统的工作原理是将电池组储存的电能转化为机械能,使车轮开始运动。
当驾驶员踩下油门时,电控器接收到控制信息,向电机发出指令,调节电机的输出功率扭矩大小和转速等参数。
通过驱动轴和传动装置传递力矩和动力,从而推动车轮前行。
当电池组放电至一定程度时,驱动电机系统需要进行充电,使电池组储存更多的电能,以便下一次使用。
6. 总结驱动电机系统是现代电动交通工具的关键部件,其技术的发展和进步将使电动交通工具更加普及和可靠。
未来,随着电动交通工具的不断更新换代,驱动电机系统也将持续发展,其制造和应用技术不断完善,为推动社会经济发展和环境保护发挥越来越重要的作用。
电机驱动系统工作原理
电机驱动系统工作原理今天咱们来聊聊电机驱动系统是咋工作的,这可有意思啦!你看啊,电机驱动系统就像是一个超级大力士,能让各种机器动起来。
那它到底是咋做到的呢?想象一下,电机驱动系统里面有个很重要的家伙,那就是电机。
这电机就像是一个充满能量的小宇宙,随时准备爆发。
电机里面有个东西叫定子,还有个叫转子。
定子呢,就稳稳地待在那,像个坚定的守护者。
而转子呢,就像是个调皮的小孩子,不停地转圈圈。
当电流通过定子的时候,就会产生一个神奇的磁场。
这个磁场就像一只无形的大手,推着转子开始转动。
这一转可不得了,力量就传递出来啦!这电流也不是随便乱流的。
得有个控制器来管着它,就像是一个严格的老师,让电流乖乖听话。
控制器会根据我们的需求,来调整电流的大小和方向。
比如说,我们想让机器转得快一点,控制器就会让电流变大,给电机更多的能量。
要是想让机器慢下来,控制器就会减小电流,让电机悠着点劲儿。
还有哦,电机驱动系统可不只是电机和控制器这么简单。
它还得有各种传感器,就像是电机的小眼睛,时刻观察着电机的工作状态。
比如说温度传感器,要是电机工作得太辛苦,热得不行了,温度传感器就会赶紧告诉控制器:“太热啦,得让电机歇会儿!”这样就能保护电机,不让它累坏啦。
另外,还有位置传感器,能知道转子转到哪儿了,好让控制器更精准地控制电机。
电机驱动系统在我们生活中到处都能用到。
比如说电动汽车,靠的就是电机驱动系统带着车跑起来。
还有工厂里的各种机器设备,也是靠它才能不停地工作,生产出各种各样的东西。
你想想,如果没有电机驱动系统,那得多麻烦呀!我们的生活可就没这么方便啦。
所以说,电机驱动系统虽然看起来有点复杂,但其实就像是一个默默付出的好朋友,一直在背后努力工作,让我们的生活变得更美好!是不是很厉害呀?怎么样,朋友,这下你对电机驱动系统的工作原理是不是有点了解啦?。
电动汽车驱动电机热管理系统设计与研究
电动汽车驱动电机热管理系统设计与研究随着环境保护意识的提高和资源能源日益紧张的现状,电动汽车作为一种清洁、高效的交通工具,正受到越来越多的关注和青睐。
电动汽车的核心部件之一是驱动电机,它起着引擎的作用,负责将电能转化为机械能,驱动汽车运行。
然而,由于电动汽车驱动电机在工作过程中会产生大量的热量,如果不能有效地控制和排除这些热量,将会对电动汽车的性能和寿命造成负面影响。
因此,电动汽车驱动电机热管理系统的设计与研究显得尤为重要。
电动汽车驱动电机热管理系统主要包括散热系统、冷却系统和温控系统三大部分。
散热系统通过散热片、风扇等设备将电机产生的热量散发到外界,以降低电机温度。
冷却系统则通过循环水冷却或者直接喷水冷却的方式,将电机表面的热量带走。
而温控系统则是根据电机的工作状态和温度变化,智能地控制散热和冷却系统的工作,以保证电机始终处于最佳工作温度范围内。
这三个系统密切配合,共同保障电动汽车驱动电机的正常工作。
在中,首先要对电机的热特性进行深入的分析和研究。
电动汽车驱动电机在工作时会受到外界环境温度、电机工作负载、车辆速度等因素的影响,从而产生不同程度的热量。
通过实验测试和数值模拟,可以获得电机的热特性曲线,进而为热管理系统的设计提供依据。
此外,还需要考虑到电机材料、散热结构、冷却介质等因素对热管理系统的影响,以确保系统设计的科学性和可靠性。
在热管理系统设计中,散热系统是至关重要的一部分。
散热系统的设计要考虑到散热效率和空间占用两个方面。
通常情况下,散热片的表面积越大,散热效率就越高,但也会占用更多的空间。
因此,设计人员需要在散热系统的设计中找到一个平衡点,既要保证散热效果,又要尽量减小系统的体积和重量。
此外,还可以考虑采用强制风冷或者液冷的方式,进一步提高散热效率。
冷却系统是另一个需要重点关注的部分。
冷却系统的设计要考虑到冷却介质的选择、流动速度、管道布局等因素。
一般来说,循环水冷却是比较常用的方式,通过水泵将冷却液循环流动,带走电机产生的热量。
【新能源汽车技术】第五章 电动汽车驱动电机及控制系统
4. 不同类型的电机
2.交流三相感应电动机
U1 V2
W2
W1
V1
U2
笼型三相异步电动机的结构 3. 永磁无刷直流电动机 永磁无刷直流电动机是一种高性能的电动机。具有直流电动机特性的
无刷直流电动机,反电动势波形和供电电流波形都是矩形波,所以又 称为矩形波同步电动机。 它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定 子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无 线电干扰,寿命长,运行可靠,维修简便。 它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可 以在每分钟高达几十万转运行。永磁无刷直流电动机机系统相比具有 更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景。
比拟的优良控制特性。
由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步 提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。
由于损耗存在于转子上,使得散热困难, 限制了电机转矩质量比的进一步提高。 鉴于直流电动机存在以上缺陷, 在新研制的电动汽车上已基本不采用 直流电动机。
4. 不同类型的电机
的结构比其它任何一种电动机都要简单,在电动机的转子上没有滑环 、绕组和永磁体等,只是在定子上有简单的集中绕组,绕组的端部较 短,没有相间跨接线,维护修理容易。 开关磁阻电动机具有高度的非线性特性,因此,它的驱动系统较为复 杂。它的控制系统包括功率变换器。但近年来的研究表明,采用合理 的设计、制造和控制技术,开关磁阻电动机的噪声完全可以得到良好 的抑制。
8.电气系统安全性和控制系统的安全性应达到有关的标准和规定。
9.电机能够在恶劣条件下可靠工作。电动机应具有高的可靠性、耐温 和耐潮性,并在运行时噪声低,能够在较恶劣的环境下长期工作。
电机驱动系统的设计与控制
电机驱动系统的设计与控制电机驱动系统是电子与电气工程中的重要领域之一,它涉及到电机的设计、控制和优化等方面。
在现代工业中,电机驱动系统广泛应用于各种机械设备中,如电动车辆、机器人、工业自动化等。
本文将探讨电机驱动系统的设计与控制的一些关键问题。
1. 电机驱动系统的设计电机驱动系统的设计是一个复杂的过程,需要考虑多个因素,如电机类型、功率需求、效率要求等。
首先,选择合适的电机类型是至关重要的。
常见的电机类型包括直流电机、交流电机和步进电机。
每种类型的电机都有其独特的特点和适用范围,设计者需要根据具体需求选择最合适的电机类型。
其次,功率需求是设计电机驱动系统时需要考虑的另一个重要因素。
功率需求可以通过负载特性和运行条件来确定。
负载特性包括负载的转矩和速度要求,而运行条件包括电源电压和频率等。
根据功率需求,设计者可以选择合适的电机功率和驱动器。
此外,效率也是电机驱动系统设计中需要关注的一个重要指标。
提高电机驱动系统的效率可以节约能源和降低成本。
为了提高效率,设计者可以采用高效率的电机和驱动器,合理选择电机的工作点,以及优化控制算法等。
2. 电机驱动系统的控制电机驱动系统的控制是实现电机运行和性能优化的关键。
传统的电机控制方法包括开环控制和闭环控制。
开环控制是指通过给定的电压或电流信号直接驱动电机,而闭环控制是指通过测量电机的转速或位置反馈信号来调整驱动信号,以实现精确的控制。
现代电机驱动系统通常采用闭环控制,其中最常见的方法是采用PID控制器。
PID控制器通过比较实际输出和期望输出的误差来调整控制信号,以实现稳定的控制。
此外,还可以采用先进的控制算法,如模糊控制、自适应控制和预测控制等,以进一步提高控制性能。
除了控制算法,还需要考虑电机驱动系统的硬件实现。
驱动器是电机控制系统中的关键组件,它负责将控制信号转换为电机驱动信号。
常见的驱动器类型包括直流驱动器、交流驱动器和步进驱动器。
选择合适的驱动器类型和规格是确保电机驱动系统正常运行的重要一步。
浅谈纯电动汽车驱动电机及控制系统
浅谈纯电动汽车驱动电机及控制系统纯电动汽车驱动电机及控制系统是纯电动汽车最重要的组成部分之一。
顾名思义,这个系统由两个主要组成部分组成——电动汽车的驱动电机和电机控制器。
如果说油车的发动机和变速器是油车的心脏,那么电动汽车的驱动电机和控制系统就可以说是电动汽车的心脏。
以下将详细介绍驱动电机及控制系统的概念,种类、结构、工作原理和发展趋势。
一、驱动电机的概念驱动电机是指电动汽车中负责电能转化为机械能,并将车辆推动的电动机。
它是纯电动汽车最重要的动力源。
驱动电机有很多种类,其中最常见的是异步电机和永磁同步电机。
异步电机与传统的交流电动机相似,但它的结构更为简单,并且由于其转速受电源频率的限制,因此已经被淘汰。
永磁同步电机则是最常见的驱动电机类型之一,由于其具有高效率、高功率因数、高转矩密度和较小的转子惯量,因此在纯电动汽车中被广泛采用。
二、控制系统的概念控制系统是指负责控制驱动电机正常工作的系统。
它由控制器、传感器组成。
控制器是控制电机运转的“智能大脑”,是纯电动汽车中最重要的部分之一。
它不仅负责控制电机的启动、停止和转速,还将车速信息、加速度信息、电池电压信息等反馈给其他控制系统完成整车系统的协同控制。
三、纯电动汽车驱动电机的结构纯电动汽车驱动电机的结构大致分为电机电器、轴承端盖、轴承、转子、定子几部分。
其中,电机电器也称为电机本体,由定子、转子等组成。
定子通常由铜线绕制成线圈,线圈由垫片、断路器、导体等构成。
转子由永磁体和导体组成,永磁体是负责产生相应磁场的重要部分。
四、驱动电机和控制系统的工作原理纯电动汽车驱动电机和控制系统的工作原理首先需要知道的是,驱动电机是一种交流电动机,其转矩与电机电流的平方成正比。
控制器发出开机指令之后,电机通过转子和定子间的转换相互作用产生旋转力,推动车辆运动。
控制器负责电能的传输和电机的控制,可以提高电池使用时间,最大化驱动电机的效能。
随着技术的不断发展,纯电动汽车驱动电机和控制系统也在不断地升级改进。
电机驱动系统的组成
电机驱动系统主要由以下几个部分组成:
电机:电机是电机驱动系统的核心部件,它是一种将电能转化为机械能的装置。
根据实际需要,可以选择不同类型的电机,如直流电机、交流电机、步进电机等。
控制器:控制器是电机驱动系统的大脑,它负责控制电机的转速、转向和运动轨迹。
控制器通常由微处理器或单片机等集成电路组成,可以通过编程实现不同的控制策略。
传感器:传感器是电机驱动系统中的重要组成部分,它用于检测电机的转速、位置和运动状态等信息。
根据需要,可以选择不同类型的传感器,如光电编码器、霍尔传感器、拉线传感器等。
电源:电源是电机驱动系统中的能源供应单元,它负责提供电能给电机和控制器。
根据电机的类型和功率需求,可以选择不同类型的电源,如直流电源、交流电源、电池等。
散热系统:由于电机在运转过程中会产生大量的热量,因此需要散热系统来降低电机和控制器的温度,以保证系统的稳定运行。
散热系统通常包括散热器、风扇等部件。
保护电路:保护电路是电机驱动系统中的重要组成部分,它用于保护电机和控制器的安全运行。
保护电路通常包括过流保护、过压保护、欠压保护等。
以上是电机驱动系统的主要组成部分,它们协同工作可以实现电机的驱动和控制。
根据实际应用场景的不同,电机驱动系统的组成和配置也有所不同。
典型数字化电机驱动控制系统的组成
典型数字化电机驱动控制系统的组成随着科学技术的不断发展,数字化电机驱动控制系统已经成为现代工业生产中不可或缺的一部分。
它通过数字化技术对电机的驱动和控制进行精准调节,提高了生产效率,降低了能耗,提升了生产质量。
本文将从硬件和软件两个方面,详细介绍典型数字化电机驱动控制系统的组成。
一、硬件部分1. 电机典型的电机驱动控制系统中使用的电机主要有直流电机和交流电机两种。
直流电机由于其稳态性好,起动、制动和调速性能优良,被广泛应用于各个领域。
而交流电机由于结构简单、易于维护和调试,成本较低,同样受到了广泛的关注。
2. 变频器变频器是数字化电机驱动控制系统的核心部件之一。
它主要由整流器、滤波器、逆变器、控制电路和继电器等组成。
变频器能够根据负载的要求,通过控制输出电压、频率和相数,实现对电机的精确驱动和控制,提高电机的效率和性能。
3. 传感器传感器是用来检测电机运行状态和环境参数的设备,是数字化电机驱动控制系统中不可或缺的部分。
常见的传感器包括温度传感器、速度传感器、压力传感器、湿度传感器等。
通过传感器采集到的数据,系统可以实时监测电机的运行情况,及时调整电机的驱动和控制参数。
4. 控制器控制器是数字化电机驱动控制系统的大脑,它通过对传感器采集到的数据进行分析和处理,生成相应的控制信号,控制电机的运行。
控制器通常由嵌入式系统、PLC(可编程逻辑控制器)、DSP(数字信号处理器)等组成,能够实现电机的高精度驱动和控制。
二、软件部分1. 控制算法控制算法是数字化电机驱动控制系统中的关键部分。
常见的控制算法包括PID控制、模糊控制、神经网络控制等。
控制算法能够根据电机的运行状态和负载的变化,智能调整电机的转速、扭矩和位置,保证电机的稳定运行和高效工作。
2. 监控软件监控软件是数字化电机驱动控制系统中的重要组成部分,它能够实时监测电机的运行参数、报警信息和故障诊断结果。
监控软件通过图形界面直观地显示电机的运行状况,方便操作人员进行远程监控和调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
5.辅助开关检查
检查辅助开关时应测量开关触点的接触 阻值,同时还需检查机械部件的工作情 况。
此外,在高速开关使用到一定期限时, 应更换机构内所有底色弹簧部件。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
6 销座
11 沉头螺钉
7 导向组件 12 左连接
8 连接
13 螺母
9 防护扭矩螺母 (8 Nm)
10 双头螺栓
高速断路器典型结构和主要部件
城市轨道交通车辆检修
脱扣装置
1 杠杆 2 移动磁铁 3 板组 4 脱扣盒
5 脱扣装置盖 6 左弹簧 7 右弹簧 8 旋钮
9 前刻度板 10 脱扣指示器 11 紧固件 12 锁紧螺钉
城市轨道交通车辆检修
6.2 牵引及控制系统检修
二
牵引逆变器检修Leabharlann 一)牵引逆变器简介VVVF牵引逆变器采用PWM脉宽调制模 式,早期城轨车辆VVVF的功率元件是 GTO,近年来,随着IGBT技术的不断发 展,目前VVVF的功率元件已经普遍采用 IGBT元件。牵引逆变器的设计一般为模 块化。
城市轨道交通车辆检修
20 销钉 21 弹簧 *1 间隙X = 0.7±0.3 mm
闭合装置
高速断路器典型结构和主要部件
城市轨道交通车辆检修
灭弧罩
1 上变流装置 2 顶板 3 螺杆 4 去离子器
5 灭弧罩板 9 平垫圈 6 变流装置 10 连接 7 黑头螺母 (1.5 Nm) 8 六角螺母 (2.2 Nm)
城市轨道交通车辆检修
高速开关检修完成后,应对载跳闸装置 整定值进行调整。通过外接电源模拟过 载电流,检查高速开关是否能在整定值 处断开。
城市轨道交通车辆检修
6.2 牵引及控制系统检修
二
牵引逆变器检修
一)牵引逆变器简介
VVVF逆变器将1500V恒定电压转换为用 于牵引电机的三相电流输出(针对不同的 速度和力矩,频率和振幅可变)。
6.2 牵引及控制系统检修
二
牵引逆变器检修
一)牵引逆变器简介
VVVF牵引逆变器采用PWM脉宽调制模 式,早期城轨车辆VVVF的功率元件是 GTO,近年来,随着IGBT技术的不断发 展,目前VVVF的功率元件已经普遍采用 IGBT元件。牵引逆变器的设计一般为模 块化。
城市轨道交通车辆检修
6.2 牵引及控制系统检修
任务1 驱动电机管理系统认知
提出任务
一辆电动汽车无法运行,你的主管诊断结果为逆变器异常,让你协 助他进一步检查。作为一位电动汽车汽车服务人员,你知道逆变器属于 哪个系统,具备哪些功能吗?
任务1 驱动电机管理系统认知
任务要求
知识要求
1.能够描述驱动电机管理统的主要部件; 2.能够描述常见车型驱动电机管理系统主要部件的位置、结构与特 点。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
2. 动、静触点检查
检查动、静触点的“熔化”程度,如 “熔化”程度厉害,应更换触点。
触点应成对更换,更换完毕后还应检 查动、静接触面接触情况。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
3. 接线端检查
高速断路器典型结构和主要部件
城市轨道交通车辆检修
高速断路器典型结构
1 主电路 2 脱扣装置 3 闭合装置 4 辅助触点
5 灭弧罩 6 下部连接 7 动触点 8 左连接
9 右连接 10 盖子 11 托盘 12 导轨
高速断路器典型结构和主要部件
城市轨道交通车辆检修
主电路
1 上部连接 2 动触点 3 下部连接 4 构架 5 叉杆
清洁、打磨主要线端及电缆的接触面, 使两接触面的接触保持密贴,防止接触 电阻增大而损坏电揽及主接线端。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
4. 灭弧罩检查
将灭弧罩分解,检查灭弧栅片的情况。 对于烧灼厉害的灭弧栅片应更换。
在灭弧栅片组装过程中,应注意栅片的 安装角度。
项目四 驱动电机管理系统
项目四 驱动电机管理系统
驱动电机管理系统是纯电动汽车和油电混合汽车的核心部件,它担 负着采集车辆运行工况,并计算车辆需要的动力及输出方式,合理利用 动力电池存储的能量任务。本项目包括2个任务:
任务1 驱动电机管理系统认知; 任务2 驱动电机管理系统检测。 通过以上2个任务的学习,你将可以了解驱动电机管理控制模块的功 能,直流-直流的原理,直流变交流的原理,以及驱动电机管理模块的检 测与诊断。
高速断路器典型结构和主要部件
城市轨道交通车辆检修
1 叉杆 2 闭合杆 3 前盖板 4 闭合线圈 5 线圈芯组件 6 后盖板
7 闭合装置盒 8 触点压力弹簧
9 闭合装置盖 10 气缸 11 MVQ环 12 滚筒 13 六角内螺帽螺钉 14 接地柱
15 圆头螺钉 16 弹性垫圈
17 弹簧环 18 杆 19 杆
能力要求
能够检索资料,归纳并描述主流车型驱动电机控制器、DC/DC转换 器的结构与特点。
城市轨道交通车辆检修
6.2 牵引及控制系统检修
一
高速断路器检修
二
牵引逆变器检修
三
接触器检修
四
牵引控制单元检修
五
制动电阻检修
城市轨道交通车辆检修
6.2 牵引及控制系统检修
一
高速断路器检修
一)高速断路器简介
在列车牵引系统的电路出现严重干扰的 情况下(如过电流、逆变器故障或线路 短路),高速断路器(HSCB)能够将各牵 引设备从受电弓线路上安全断开。
二
牵引逆变器检修
一)牵引逆变器简介
牵引逆变器,主要由下列部件组成: 输入电路 逆变单元 牵引控制单元 传感器 除以上主要部件外,牵引逆变器还包括各
种辅助的电源供应、散热部件等。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 一)牵引逆变器简介
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
1. 合闸装置检查
测量螺管线圈的阻值,若阻值与标称 值不相符应更换线圈。
检查线圈与铁心之间是否有喷擦痕迹, 检查铁心是否动作自如。
城市轨道交通车辆检修
6.2 牵引及控制系统检修 二)高速断路器检修
1. 合闸装置检查
对机械联锁机构进行润滑,正常情况 下润滑能延长高速开关寿命,润滑脂 应是专用油脂,不准有其他油脂。