电力自动化新技术分析
智能电网中自动化技术的应用分析
智能电网中自动化技术的应用分析随着社会经济的快速发展和科技的不断进步,人们对电力的需求日益增长,对电力供应的质量和可靠性也提出了更高的要求。
智能电网作为一种新型的电力网络架构,融合了先进的信息技术、通信技术和自动化技术,为实现高效、可靠、安全的电力供应提供了有力的支撑。
其中,自动化技术在智能电网中的应用发挥了至关重要的作用,极大地提升了电网的运行效率和管理水平。
自动化技术在智能电网中的应用范围广泛,涵盖了发电、输电、变电、配电和用电等各个环节。
在发电环节,自动化技术可以实现对发电机组的智能监控和优化控制,提高发电效率和稳定性。
通过实时监测机组的运行参数,如温度、压力、转速等,并采用先进的控制算法对机组进行调节,可以确保机组在最佳状态下运行,减少故障发生的概率。
在输电环节,自动化技术主要应用于输电线路的监测和保护。
利用传感器和通信技术,可以实时获取输电线路的运行状态信息,如电压、电流、功率等,以及线路的环境参数,如温度、湿度、风速等。
基于这些数据,通过智能分析和判断,能够及时发现线路的故障和异常情况,并采取相应的保护措施,避免事故的扩大。
此外,自动化技术还可以实现输电线路的无功补偿和优化调度,提高输电效率,降低输电损耗。
变电环节是智能电网中的关键环节之一,自动化技术的应用使得变电站的运行更加智能化和高效化。
智能变电站采用了数字化的测量、控制和保护设备,实现了信息的数字化采集、传输和处理。
通过智能监控系统,可以对变电站内的设备进行实时监测和诊断,提前发现设备的潜在故障,并进行预防性维护。
同时,自动化技术还支持变电站的自动化倒闸操作和智能控制,提高了变电站的运行可靠性和操作效率。
配电环节直接面向用户,其供电质量和可靠性直接影响用户的用电体验。
在智能电网中,自动化技术在配电环节的应用主要体现在配电自动化系统的建设上。
配电自动化系统通过对配电网络的实时监测和控制,实现了故障的快速定位、隔离和恢复供电,缩短了停电时间,提高了供电可靠性。
配电自动化的发展新趋势及社会效益分析
配电自动化的发展新趋势及社会效益分析随着社会的发展和科技的进步,配电自动化技术也不断得到创新和应用。
配电自动化是指利用先进的自动化技术和设备进行电力系统的监测、控制和管理,以实现电力系统的安全、可靠和高效运行。
近年来,配电自动化的发展出现了一些新的趋势,这些趋势不仅推动了技术的进步,也带来了社会效益的提升。
一、趋势一:智能化和数字化随着物联网、大数据、云计算等技术的发展,智能化和数字化已成为配电自动化的一大趋势。
智能化配电系统可以实现对电网的全面监测和实时控制,实现了对电力系统的智能化管理。
数字化技术的应用使得配电系统的数据采集、传输和分析更加准确和高效,实现了智能化运行。
智能化和数字化的配电系统可以实现对设备的远程监控和实时调控,提高了电力系统的可靠性和安全性。
智能化配电系统可以通过对线路的实时监测和故障诊断,能够快速切换故障区域,减少停电时间,提高供电可靠性。
数字化技术的应用也使得配电系统的运行更加高效,可以实现对电力设备的设备状态监测和预测,提高了运维效率,降低了运维成本。
二、趋势二:可持续发展和节能减排在当前环境保护和可持续发展的形势下,节能减排已成为配电自动化发展的重要方向。
配电自动化技术的应用可以实现对电力系统的能源利用优化,提高了电网的能效,降低了能源消耗。
智能化配电系统可以通过对电力设备的负荷预测和能源分配优化,实现对电力系统的能源管理,降低了能源的浪费,提高了电网的能效。
配电自动化技术的应用还可以实现对电力设备的远程调度和控制,提高了电力系统的运行效率,节约了能源。
配电自动化还可以实现对电力系统的电能质量和能效的监测和管理,以满足节能减排的要求。
三、趋势三:服务型和智慧城市配电自动化技术的应用也可以实现对城市电网的数据化管理和分析。
通过对电力系统的数据采集和分析,可以实现对城市电网运行情况的实时监测和分析,为城市电力系统的规划和建设提供了重要的数据支持。
通过配电自动化技术的应用,可以实现对城市电力系统的优化运行,实现了智慧城市的发展目标。
电力系统自动化的技术分析
电力系统自动化的技术分析摘要:近些年来,国家在科学技术方面有了飞速的发展。
在电力系统中也是如此,电力系统中自动化的应用范围越来越广泛,方便了人们的日常生活。
近年来,科技人员开发出了多种多样的新型电子电元器件,并广泛应用在计算机的网络通信中,取得了很好的效果。
当前,国内电力自动化的发展速度和质量都表现出良好的发展趋势。
在本文中,针对当前电力系统中电气自动化技术的发展情况进行了分析。
关键词:电力系统;电气自动化;技术分析0.前言在我国电气技术的发展进程中,电力自动化技术历经了半个多世纪的发展,已经发生了很大的变化。
电力自动化技术的发展并不顺利,从国外引入国内后,需要结合国内的实现情况进行不断的消化吸收和变革。
我国的电力自动化水平同发达国家相比,在技术研发能力和应用水平上仍然有很大的差距。
虽然近年来国内的技术也在不断地进步和发展,电力自动化水平也有了很大地进步,但在电力系统的关键技术和核心技术的研发中,还需要不断地探索和完善。
1.现阶段电力自动化的发展1.1 电力自动化的维护在上世纪五十年代,由于我国的经济实力和科学水平还比较落后,电力自动化技术基本没有发展。
近年来,随着我国内经济社会的快速发展,随着改革的不断深入,科学技术有了很大的进步,电力自动化技术在各个领域内的应用也越来越广泛,也发挥了越来越重要的作用。
可编程逻辑控制器标准是由国际电工委员会制定研发的(IEC61131),自从颁布以后,伴随着OPC 技术的产生,借助电子计算机技术与多媒体技术的发展,电力自动化技术的发展进入了快车道。
在当前的技术来看到,从现在电力自动化的系统平台仍然在使用微软公司的Windows NT 与IE作为主要的技术开发平台。
在电力系统自动化技术的发展过程中,通过与计算机技术的融合,目前的操作方工和编程语言已经非常标准化,同时技术开发平台也实现了统一。
随着技术的不断创新和发展,电力自动化的操作界面内容也丰富,功能也更强化,更方便操作。
电力配电自动化技术的应用及发展趋势
电力配电自动化技术的应用及发展趋势随着经济的快速发展和人们对电力需求的不断增长,电力配电自动化技术逐渐成为了现代电力系统的重要组成部分。
本文将从该技术的应用和发展趋势两个方面来探讨电力配电自动化技术。
一、电力配电自动化技术的应用1. 智能电网智能电网是当前电力系统的重点发展方向,也是电力配电自动化技术的重要应用领域。
通过智能电网技术,可以实现电力系统的信息化、自动化、智能化。
智能电网中包括了智能感知、智能传输、智能配电和智能应用等多个方面,其中智能配电是整个智能电网系统的关键环节。
2. 远程监控电力配电自动化技术可以实现对电力系统的远程监控。
通过监控系统,可以实时监测各个配电设备的工作状态、负荷情况以及故障信息等,从而提高配电系统的可靠性和稳定性。
远程监控技术的应用可以减少人工巡检的成本,提高电力系统的运维效率。
3. 自动化装置电力配电自动化技术的核心是自动化装置,其中包括自动开关、遥控设备、自动保护装置等。
这些自动化装置可以实现对电力系统的自动控制和保护,提高配电系统的可靠性和安全性。
同时,自动化装置也可以优化电力系统的运行方式,提高电力系统的经济效益。
4. 能源管理电力配电自动化技术可以有效地应用于能源管理领域。
通过对电力系统的监测和调度,可以实现对能源的高效利用和合理分配。
同时,配电自动化技术还可以与可再生能源技术相结合,实现对可再生能源的接纳和调度,进一步提高能源利用效率。
二、电力配电自动化技术的发展趋势1. 5G技术的应用随着5G技术的发展,电力配电自动化技术也将得到进一步的提升。
5G技术具有高带宽、低延迟和大连接数的优势,可以实现对电力系统的高速传输和实时控制。
通过5G技术,可以进一步提高电力系统的智能化和自动化水平,实现对电力系统的更加精细化管理。
2. 大数据和人工智能的应用大数据和人工智能技术的不断发展,也将对电力配电自动化技术带来新的机遇和挑战。
通过对大数据的分析和挖掘,可以更好地了解电力系统的运行状态和负荷需求,从而实现对电力系统的优化调度。
电力系统自动化技术的应用现状及发展趋势
电力系统自动化技术的应用现状及发展趋势电力系统自动化技术是指运用现代信息技术和控制技术,实现电力系统运行、维护和管理的全过程自动化。
随着信息技术的快速发展以及电力行业的不断发展和变革,电力系统自动化技术的应用范围和水平不断提高,其应用现状呈现以下几个方面的发展趋势。
一、自动化设备智能化水平提高传统的电力系统自动化设备主要是以集中控制为主,而现在随着智能设备的广泛应用,越来越多的智能传感、智能开关等设备进入电力系统,极大提高了电力系统的智能化水平。
智能化设备可以实现远程监测、自动调节和故障提醒等功能,为电力系统运行和维护提供更加便捷和高效的手段。
二、实时监测与控制能力增强随着电力系统规模的不断扩大,负荷的增加以及新能源的接入,电力系统各个节点之间的信息交互和相互协调变得越来越重要。
当前的电力系统自动化技术已经实现了对电力系统实时监测与控制的要求,通过智能检测装置、在线监测系统等设备,实时采集和传输电力系统各个节点的状态参数,并通过远程控制系统完成对电力系统的整体控制和调度。
三、数据分析与处理能力提高大数据技术的快速发展为电力系统自动化技术的应用提供了更加强大的数据分析和处理能力。
通过对电力系统运行数据的深度分析和处理,可以更加准确地预测电力系统的负荷需求,优化电力系统的运行策略,提高电力系统的经济性和可靠性。
通过大数据技术可以更好地优化电力系统的调度和运行,提高电力系统的整体效率。
四、智能化运维管理能力提高电力系统的运维管理涉及到巨大的数据量和复杂的业务流程,传统的运维管理方式已经无法满足现代化电力系统的需求。
随着智能化技术的应用,电力系统的运维管理也朝着智能化方向发展。
智能化运维管理系统可以实现对电力系统运行情况的智能监控、故障诊断和维护计划的智能生成与优化等功能,提高电力系统的运维管理效率。
电力系统及自动化发展趋势及新技术应
电力系统及自动化发展趋势及新技术应关键词:电力系统;自动化;发展趋势;新技术;应用引言电力作为我国经济的支柱,一直以来都受到各界的广泛关注。
利用自动化技术能够让电力系统更好的发展,促进电力工程更好的服务运转。
电力自动化技术能够较好的保障技术设备的安全性能,减少电力工程操作中的事故发生,同时保障系统数据和参数信息的有效处理,保障系统的正常运转。
1.电力系统自动化新技术的特点1.1技术涵盖面广泛在电力系统中,自动化技术得到了广泛的应用,所以将自动化技术引入到电力系统之中,除了需要提高电力系统自动化的软件设计,还需要加强对自动化的硬件设计,以确保计算机网络能够更好地适应电力系统自动化新技术发展需求。
1.2对电子技术具有较强的依赖性目前,我国电力系统自动化新技术的发展需要电子技术的支持,尤其是要想提高电力系统自动化新技术的完整性,就需要对自动化系统中的信号采集和传感器等进行改进和提升,从而实现对信号的有效控制。
电子技术是确保电力系统自动化新技术研发的关键技术,从而说明电力系统自动化新技术对电子技术具有较强的依赖性。
2.电力系统中自动化发展趋势电力工程的电力自动化技术具有很大的发展前景,不仅仅实现了电网经济、绿色、高效、安全的发展要求。
同时,具有集成性、兼容性、自愈性、安全性等多方面的特征。
其性能的实现主要是通过利用高新的设备,精准的传感和测量技术,先进的控制方法,以及精密的决策支持系统。
在给顾客提供高质量的电能同时,支持各种发电形式的接入,从而启动电力市场以及电力资金的高效运行。
能够将我们的生活质量,提升到更高的层面,有效的解决电力系统现存的问题。
2.1从运用范围上来说变电站在整个电力工程中是一个核心的组成,通过自动化技术可以实现计算器和网络设备的信息收集和处理,加大对变电站信息功能的处理,通过对系统信息的重组和优化,从而达到变电站安全数据处理和可靠运营。
调度技术的自动化技术控制核心是计算机,调度技术主要在数据监控和信息整合技术上,不仅可以保障信息的正常显示,对整个电网的运营状态具有较为全面的数据信息,能够有效的根据数据对系统进行调度和指挥,通过电网的调度技术自动化,能够有效的解决工程监控,及时发现问题,并有效处理突发紧急事件,保障整个系统的有条不紊。
配电自动化技术现状及发展分析报告
配电自动化技术现状及发展分析报告在当今社会,电力作为现代生活和工业生产的重要能源支撑,其稳定供应和高效分配至关重要。
配电自动化技术作为提升电力系统可靠性和运行效率的关键手段,正经历着快速的发展和变革。
一、配电自动化技术的现状1、设备智能化水平不断提高如今,配电设备如开关柜、变压器等逐渐实现了智能化。
这些智能设备能够实时监测自身的运行状态,包括温度、电压、电流等关键参数,并将数据上传至监控系统,为运维人员提供了及时准确的设备信息,有助于提前发现潜在故障,降低停电风险。
2、通信技术的广泛应用通信技术在配电自动化中发挥着关键作用。
从传统的有线通信到如今的无线通信,如 4G、5G 等,数据传输的速度和稳定性有了显著提升。
此外,光纤通信在一些重要的配电区域也得到了广泛应用,确保了大量数据的高速可靠传输。
3、监控与管理系统的完善监控与管理系统能够实现对整个配电网络的实时监控和远程控制。
通过可视化界面,运维人员可以直观地了解电网的运行情况,迅速定位故障点,并远程操作开关设备进行故障隔离和恢复供电,大大缩短了停电时间,提高了供电可靠性。
4、分布式能源的接入与管理随着太阳能、风能等分布式能源的快速发展,配电自动化技术需要更好地适应其接入和管理。
目前,相关技术能够实现对分布式能源的有效监测和控制,确保其与电网的安全稳定运行,并实现能源的优化配置。
二、当前面临的挑战1、技术标准尚未统一由于配电自动化技术涉及众多设备和系统,不同厂家的产品在通信协议、数据格式等方面存在差异,导致系统之间的兼容性和互操作性存在问题,增加了系统集成和运维的难度。
2、信息安全风险随着配电自动化系统与网络的深度融合,信息安全问题日益突出。
黑客攻击、数据泄露等风险可能导致电网运行失控,给电力系统的安全稳定带来严重威胁。
3、投资与成本压力实施配电自动化需要大量的资金投入,包括设备购置、系统建设、运维等方面。
对于一些经济欠发达地区或小型电力企业来说,可能面临较大的投资和成本压力。
关于电气自动化的新技术分析及应用分析
试点论坛shi dian lun tan228关于电气自动化的新技术分析及应用分析◎母秋晨摘要:当前电力行业正在加速向自动化、信息化和智能化的方向发展,提高了电力生产的效率和技术水平。
电气自动化新技术常与控制技术、信息技术等紧密相连。
本文详细分析了电气自动化新技术的实现原理,并介绍了电气自动化新技术的相关应用情况。
关键词:电气;自动化;新技术;应用采用电气自动化技术,能够推动电力科技的进步,降低电力企业的生产成本。
电气自动化新技术在电力生产的多个领域中都得到了应用,如智能电网终端、变电站备用电源自动投入装置、智能变电站监控信息自动验收技术、应急发电车自动投切技术等,基本涵盖了硬件和软件等方面,对于促进电气自动化技术的发展进步发挥了重要的作用。
本文着重以智能变电站监控信息自动验收技术、应急发电车自动投切等技术为例,分析电气自动化的新技术实现原理及在电力实际工程中的应用。
一、电气自动化技术电气自动化技术主要是采用控制技术、软件技术、通信技术、信息技术和自动化等技术,并将这些技术融入到传统的电力系统中,促进自动化技术在电力行业中的应用。
对于电气自动化技术的发展趋势,目前的电力生产正在经历较大的变革,随着新能源技术、信息技术、物联网技术等先进技术在电力行业中的广泛应用[1],今后电气自动化技术在电力行业中将具有宽阔的应用空间,可以实现电力生产的数字化和信息化。
二、智能变电站监控信息自动验收技术(一)采用智能变电站监控信息自动验收技术的必要性在传统的变电站监控信息验收中,一般在调度数据网通道调试完毕,并且主站和厂站都已将监控信息点表下灌之后,就可以进入到监控信息系统联调阶段。
在信息联调的过程中,按照设计好的变电站监控信息点表,分别对遥信、遥控、遥测和遥调等信息进行测试,保证每个点都能够正常准确送到调度自动化主站系统[1]。
但监控信息点表中的点号一般较多,如果采用传统的方式逐个信息点进行比对,则效率降低,难以满足现代智能变电站的发展需求。
新形势下的电力系统自动化及研究方向
新形势下的电力系统自动化及研究方向随着经济社会的发展、人民生活水平的提高和城市化的加快,电力需求呈现快速增长的趋势。
电力系统作为现代经济社会的基础设施,对经济发展和社会稳定起着至关重要的作用。
随着电力系统规模的不断扩大,电力系统面临着越来越多的挑战和问题。
为实现电力系统的高质量、高效率和高可靠性运行,电力系统自动化技术备受关注。
电力系统自动化是指应用现代科学技术手段,对电力系统进行实时监测、控制和调度,以提高电力系统的运行效率、可靠性和经济性。
在新形势下的电力系统中,电力系统自动化研究的方向主要包括以下几个方面:一、智能电网技术的研究方向智能电网是指利用先进的通信、传感、计算、控制和决策技术,对电力系统进行全面感知、优化调度和安全控制的电力系统。
智能电网技术是电力系统自动化的前沿研究领域,在新形势下,智能电网技术的研究方向主要包括以下几个方面:1. 新型能源集成与管理:随着可再生能源的快速发展,电力系统中出现了大规模的分布式能源和储能设备,如光伏发电、风力发电和电动汽车等。
智能电网技术需要对这些分布式能源和储能设备进行协调管理,以实现可再生能源的高效利用和系统的稳定运行。
2. 智能配电网技术:配电网是电力系统中最后一级的供电环节,对用户供电质量和可靠性要求较高。
智能配电网技术需要将传感器、通信和控制技术应用于配电设备和配电网中,实现对配电设备和用户的实时监测、故障定位和远程控制,以提高用户的供电质量和可靠性。
3. 智能调度与优化技术:智能电网需要根据电力系统的实时运行状态和用户的需求,进行智能调度和优化,以提高电力系统的运行效率和经济性。
智能调度与优化技术需要应用到电力市场、电力负荷预测和电力系统运行等方面,以实现电力系统的优化调度和运行。
1. 大数据分析与挖掘:电力系统生成的海量数据需要进行有效的分析和挖掘,以提取有价值的信息和知识。
大数据分析与挖掘技术可以应用于电力系统的负荷预测、故障诊断和设备状态评估等方面,以提高电力系统的运行效率和可靠性。
电力调度自动化中的智能电网技术分析
电力调度自动化中的智能电网技术分析摘要:科学技术的发展进一步推动智能控制技术的更新,近年来在电力调度自动化中应用有效的智能电网技术实现了整体运行效率和质量的提升,通过全新的智能电网技术能够对电力系统进行实时的监控与维护,加强电力设施的建设,优化整体运行效果。
所以,要想提高智能电网调度的自动化水平,需要创新控制系统设计,应用更多先进技术,推动我国电网调度自动化发展。
关键词:电力调度;自动化;智能电网技术引言我国经济快速发展对电力系统的需求量不断增加,为了保障人们生活的安全性、稳定性、舒适性,需要应用先进的技术进一步提高电力系统的自动化和智能化水平。
所以,针对电力系统中存在的电力调度问题,需要应用智能电网技术,通过有效的技术应用实现对电网调度的自动控制,提高电力系统的集成和兼容等功能,满足自动化调度的应用优势,这样才能促进我国智能电网系统的稳定性和安全性。
1电力调度自动化概述电网调度自动化指的是在数字化发展过程中,电网的应用模式也有所改变。
传统的电网大部分是由人工来进行监控,而通过电网调度进一步满足电网数字化发展。
目前社会各界对电力都有了更高的需求,所以对电网调度的可靠性和安全性提出了更高的挑战,如果一个部件出现问题,就会导致整个电力系统出现瘫痪和不稳定情况,如果长时间出现大范围停电现象,不仅会影响正常的社会生产,也会给人民的生命财产安全造成巨大威胁。
所以,当前电力企业一定要加强电力调度的科学性和系统性,通过严格的控制手段满足当前的实际需求。
在电力系统当中有许多的发电站、电力用户、变电站共同组成,不同级别的电压等级以及电力线路相互连接,在控制过程中通过电力调度自动化能够满足实际用电需求。
近年来,各种新型的设备和先进的软件使得运行操作越来越便捷,但是对于人们的技能需求也越来越高,所以当前通过电力调度自动化能够减轻电力企业的压力,一旦出现事故,电力调度自动化会进行提前预警,并采取相关的措施减少事故对电网运行产生的影响。
电力工程中电力系统自动化技术的应用剖析
电力工程中电力系统自动化技术的应用剖析电力系统自动化技术是指利用先进的电气设备和计算机技术,对电力系统进行监控、控制、保护和管理的一种技术。
它广泛应用于电力系统的运行、维护和管理过程中,具有提高电力系统安全性、稳定性和经济性的重要作用。
下面将从监控、控制、保护和管理四个方面对电力系统自动化技术进行应用剖析。
电力系统自动化技术在监控方面的应用较为广泛。
通过在电力系统中布置各种传感器和监测设备,可以对电力系统的各个部分的状态进行实时监测,包括电压、电流、功率、频率等参数的监测,以及设备的温度、湿度等环境参数的监测。
监测系统将这些数据进行采集、传输和处理,可实现对电力系统工况的全面监控,并及时发现异常情况和故障。
电力系统自动化技术在控制方面的应用也十分重要。
通过在电力系统中设置自动化控制装置和智能终端,可以对电力系统的运行进行自动调整和优化。
通过智能协调控制器对发电机组进行调度,使得发电机组能够在最佳状态下运行,提高发电效率;通过自动荷电调节装置对输电线路进行功率分配和电压控制,保持电力系统中的电压稳定和功率平衡。
电力系统自动化技术在保护方面的应用能够有效保障电力系统的安全运行。
通过在电力系统中设置保护装置和故障检测装置,可以实现对电力设备和电力线路的保护。
继电保护装置可以实现对发电机组、变压器、电缆等设备的过电流、过载、短路等故障的检测和切除,保护设备免受损坏,避免电力系统的级联故障。
电力系统自动化技术在管理方面的应用主要体现在对电力系统的运行和维护管理上。
通过应用电力系统自动化管理系统,可以实现对电力系统的运行数据的采集、存储和分析,对电力系统的运行状况进行评价和预测。
管理系统还可以通过对电力设备的维护管理和工作任务的分配,提高电力系统的运行效率和可靠性。
电力系统自动化技术在电力工程中的应用非常广泛,通过对电力系统的监控、控制、保护和管理,可以实现对电力系统的安全、稳定和经济运行。
随着电力系统的不断发展和电力工程的不断进步,电力系统自动化技术将发挥更大的作用,为电力工程的发展注入新的活力。
电力工程中的电力自动化技术应用分析
电力工程中的电力自动化技术应用分析摘要:社会的快速发展使得人们对电力的需求不断提升,这使得我国电力工程规模不断扩大,工程数量逐渐增多,人们对电力工程的要求也随之提升。
电力自动化技术在如今能够被大范围的应用到电力系统中得益于其强大的性能。
基于此,本文对电气自动化技术在电力系统中的应用意义以及电力工程中的电力自动化技术应用进行了分析。
关键词:电力工程;电力自动化技术;电力系统1 电气自动化技术在电力系统中的应用意义在技术方面,电气自动化技术是介于电控制技术与计算机技术之间的一种全新产物,它能够实现对电力系统工作中的各个环节进行自动编程,并以指令发送为主,实现电力系统运行的保障,而这时不仅能够通过智能操控来实现对电力系统的有效运作,而且也能将各项数据信息进行全面记录,并以运算结果应用为主,满足整个系统运行的实际需求。
因此,该技术的应用能够使其工作效率获得提升,还能真正实现低耗能的目标。
与此同时,对于信息的处理以及信息的应用来看,通过该技术的使用,能够实现对电力系统中所有的数据进行全面采集,并通过对有效信息的筛选实现对信息的分类与整合,这时,将分析的数据结果传递到相关环节,就能够实现以电力智能操作为主要手段对电力系统的运行作出保障。
此外,对于系统的顺序控制来看,在该技术应用的过程中,能够实现通过独立模块进行信息控制,并通过信息通道的有效建立来进行信息连接,这也能实现促进电力系统相关产业的有效发展。
值得注意的是,对于信息模块的闭环控制环节来看,在原系统中,受多种因素的影响,会导致整体系统在运行时出现各类故障问题,但是这些问题都可以通过电气自动化技术来实现模拟闭环控制,这在一定程度上实现了通过调节作用的发挥来保证电力系统能够始终安全、稳定地运行。
2 电力工程中的电力自动化技术应用2.1 在变电组织中的应用在变电站运行期间,结合发电厂基本发电模式,可以实现电能集约性质的转化。
在这一过程中,相关人员要对变电站结构复杂的基本特点有正确认识,并依据这一特点实现运输电路的完整分配。
电力系统自动化技术的应用及发展分析
1512020.08爱情婚姻家庭 教育观察电力系统是关系到国家安全稳定的重要支持系统,能够影响到居民的生产和生活。
我国是世界上发电量和用电量最多的国家,我国的电力系统承担着电力的管理、传输和控制等多项重要职能。
电力系统自动化技术的应用在当前节能减排、产业升级中扮演者重要的角色,影响到我国经济整体的生产效率和用电的安全性和稳定性。
本文通过研究电力系统自动化技术的应用及发展分析,能够体现出自动化技术在电力系统中应用的重要意义。
一、自动化技术在电力系统中应用的重要价值当前的自动化技术融合了信息技术、大数据分析、云计算以及新材料工艺的应用等,自动化技术在电力系统的应用能够实现电力系统运营的高效稳定,通过智能设备的分析实现电力系统的精确化识别。
电力系统的工作效率在共享控制平台中实现高效运转,电力系统的事故率得到有效的控制。
工作人员通过数据的动态分析能够实现全过程的监管,人们的生产和生活的用电质量能够得到充分的保证。
最后是实现运营成本的降低,能源的消耗、管理人员等都实现了大幅度的缩减,电力系统的整体的运作成本得到控制。
可以看出,自动化技术的应用价值十分突出,尤其是和新技术新工艺的融合更能促进自动化技术在电力系统中的进步。
二、电力系统自动化技术的应用现状分析(一)电力系统智能控制技术智能控制技术在电力系统中有着重要的作用。
当前的人工智能在社会的多个领域有了广泛的应用,在电力系统中的应用可以更好的解决传统管理模式下难以解决的复杂控制问题,主要有神经网络控制技术以及线性最优控制技术等,可以很好的解决电力系统中的非线性问题以及不确定性的控制问题。
电力系统是一个非常复杂的动态的运行系统,运行过程中的有很多的不确定因素,尤其是电能的输送可能要涉及到跨区域合作,需要异地的协调控制。
随着智能技术的进步和完善,电力自动化控制系统也将不断进步和完善。
(二)柔性交流输电系统技术柔性交流输电系统技术是利用综合电子装置来有效的控制输电过程中的电压以及电抗等参数,确保输电过程更加的高效可靠。
电力系统自动化的技术分析
电力系统自动化的技术分析引言电力系统是一个复杂而庞大的体系,由发电、输电和配电系统组成。
为了提高电力系统的可靠性、安全性和经济性,电力系统自动化技术应运而生。
这种技术利用计算机、通信和控制技术来实现对电力系统的监控、保护和优化,为电力系统的稳定和正常运行提供支持。
本文将对电力系统自动化技术进行分析,讨论其目前的状况、发展趋势和未来的挑战。
1. 自动监控技术自动监控是电力系统自动化技术的基础。
通过安装传感器和装置,电力系统随时随地能够获取各种参数和状态信息,并实时传输给监控中心。
监控中心通过数据分析和处理,能够及时发现系统的异常状态并进行相应的调整和控制。
目前,随着传感器和通信技术的不断进步,电力系统的自动监控能力已经得到大幅提升。
2. 自动保护技术电力系统的安全性是首要考虑的因素之一。
自动保护技术通过将保护设备与监控系统相连接,实现对故障和异常情况的快速响应。
当电力系统发生故障时,自动保护系统能够自动切除故障部分,保护其他部分不受影响。
此外,自动保护技术还能够识别潜在的故障风险,并在故障发生前采取相应的预防措施。
这些技术的发展使得电力系统的安全性大大提高,减少了故障的发生和事故的损失。
3. 自动调控技术随着电力系统的规模不断扩大,为了保证电力系统的稳定性和正常运行,自动调控技术变得越来越重要。
通过自动调控技术,系统能够根据负荷情况和电力供应的变化,自动调整发电机的输出功率和输电线路的负载。
这样可以保持电力系统的平衡,避免过负荷和供电不足的问题。
自动调控技术还能够优化电力系统的运行,提高能源的利用效率。
4. 自动优化技术电力系统的运行需要严格的计划和调度。
自动优化技术通过数学模型和算法,分析电力系统的负荷需求和电力供应情况,制定最优的发电计划和输电方案。
自动优化技术考虑了发电成本、供电可靠性和环境影响等因素,以最大程度地满足社会和经济发展的需求。
通过自动优化技术,电力系统能够实现资源的合理配置和运行的高效性。
电气工程及其自动化的智能化技术分析
电气工程及其自动化的智能化技术分析随着科技的不断发展,电气工程及其自动化领域也在不断进步。
智能化技术的崛起,为电气工程带来了新的机遇和挑战。
本文将对电气工程及其自动化的智能化技术进行深入分析。
一、智能化技术在电力系统中的应用1. 智能电网技术智能电网是指通过智能化技术对电力系统的实时监测、智能感知、智能决策和智能控制等环节进行优化和升级,提高了电力系统的可靠性、安全性和经济性。
智能电网技术可以有效地降低电网的传输损耗,提高电网的供电质量,并能够更好地应对可再生能源的接入和分布式发电。
2. 智能电力设备智能电力设备是指通过智能化技术实现对电力设备的智能控制和管理,提高电力设备的效率和可靠性。
例如,智能电动机可以实时监测电机的运行状态,并根据运行数据进行智能调节,提高电机的运行效率。
智能断路器可以实现对电路的智能控制和管理,提高电路的安全性。
二、智能化技术在工业自动化中的应用1. 智能传感器技术智能传感器是指具有感知、存储、处理和传输等功能的传感器。
智能传感器可以实时感知环境的变化,并将感知到的数据传输给控制系统进行处理。
智能传感器的应用可以提高工业自动化系统的自动化程度,提高生产效率和产品质量。
2. 人工智能技术人工智能技术在工业自动化中的应用也越来越广泛。
通过人工智能技术,可以实现工业生产过程的智能化和自动化。
例如,通过机器学习和深度学习算法,可以实现对工业生产过程的预测和优化,提高生产效率和产品质量。
同时,人工智能技术还可以实现对工业设备的智能监测和故障诊断,提高设备的可靠性和维护效率。
三、智能化技术在自动化控制系统中的应用1. 智能控制算法智能控制算法是指通过智能化技术对控制系统的控制算法进行优化和升级,提高控制系统的性能和稳定性。
智能控制算法可以根据系统的实时监测数据进行自适应调节,提高控制系统的响应速度和控制精度。
2. 无线传输技术无线传输技术在自动化控制系统中的应用也越来越广泛。
通过无线传输技术,可以实现对控制系统的远程监控和远程控制。
配电自动化的发展新趋势及社会效益分析
配电自动化的发展新趋势及社会效益分析随着信息技术的飞速发展和智能化水平的不断提高,配电自动化技术也在不断升级和完善。
配电自动化作为电力系统的重要组成部分,对于提高电力系统的可靠性、灵活性和安全性具有重要的意义。
在当前社会背景下,配电自动化的发展新趋势及其社会效益成为了人们热议的话题。
一、配电自动化的新趋势1. 智能化技术趋势随着智能化技术的快速发展,智能化已经成为了配电自动化的发展方向。
智能化配电系统具有自动化、自检、自诊断和自恢复等特性,能够在电网故障出现时迅速定位和处理问题,提高了电力系统的可靠性和安全性。
2. 大数据及云计算技术趋势大数据和云计算技术的应用为配电自动化提供了更强大的数据支持和分析能力。
通过大数据分析和云计算技术,可以实现对电网运行状态的实时监测和分析,优化运行策略,提高电网的资源利用率和运行效率。
3. 安全可靠性技术趋势在配电自动化领域,安全可靠性技术一直是关注的焦点。
随着安全可靠性技术的不断进步,配电自动化系统的安全性和可靠性得到了有效提升,能够更好地应对电网故障和灾害,保障电力系统的稳定运行。
随着新能源的快速发展和大规模接入电网,配电自动化系统需要适应新能源接入需求,提高对分布式新能源的智能管理和控制能力,实现对新能源并网、调度和管理的自动化。
二、配电自动化的社会效益分析1. 提高电网运行效率配电自动化技术能够实现对电网运行状态的实时监测、自动切换和在线诊断,提高了电网的运行效率和可靠性,减少了人为干预带来的误操作风险,降低了电网运行成本。
2. 减少电网故障损失配电自动化技术能够及时发现并隔离电网故障,快速恢复电力供应,减少了因故障停电带来的经济损失和社会影响,提高了电力系统的供电可靠性。
3. 提高电网安全性配电自动化技术能够实现对电网运行状态的实时监测和分析,对电网异常状态进行预警和快速响应,有效避免了电网事故的发生,提高了电网的安全性和稳定性。
4. 促进新能源发展5. 提高社会能源利用效率配电自动化技术能够实现对电网资源的智能调度和管理,优化了电网资源的利用效率,减少了能源浪费,促进了节能减排和资源可持续利用。
电气自动化技术的发展现状与未来趋势分析
电气自动化技术的发展现状与未来趋势分析近年来,电气自动化技术在各个领域中发挥着越来越重要的作用。
从传统的工业生产到现代的智能制造,电气自动化技术已经成为推动社会进步的重要驱动力。
本文将就电气自动化技术的现状以及未来的发展趋势进行分析。
一、电气自动化技术的现状电气自动化技术是指利用电子、计算机和通信技术对生产、制造和管理过程进行自动化控制的技术。
目前,在工业领域中,电气自动化技术已经广泛应用于机械制造、能源、化工、交通等方面。
并且,随着物联网技术的发展,电气自动化技术也开始向智能制造方向发展。
在工业制造领域,电气自动化技术的应用可以大大提升生产效率和产品质量。
通过引入自动化设备和系统,可以实现生产过程的高度精准控制和自动化操作,减少了人为因素的介入,降低了生产成本和能源消耗,并且大大提高了产品的一致性和稳定性。
再者,电气自动化技术在交通领域中也发挥着重要作用。
例如,交通信号灯的自动控制系统,可以根据道路交通流量自动调整红绿灯的时长,提高交通流畅性和效率。
而且,电气自动化技术还应用于轨道交通系统的自动驾驶和列车控制系统中,提高了运输效率和安全性。
此外,电气自动化技术还在能源领域中有着广泛的应用。
通过引入自动化系统,可以实现能源生产和供应的智能化管理和控制。
例如,在电力系统中,通过智能电网和自动化控制系统,能够实现对电力负载的准确预测和调度,优化能源供需的平衡,提高能源利用效率。
二、电气自动化技术的未来趋势随着科技的不断进步和社会需求的不断变化,电气自动化技术在未来将迎来更广阔的发展前景。
首先,与人工智能(AI)的结合将成为电气自动化技术的重要发展方向。
通过利用机器学习和深度学习等人工智能技术,电气自动化系统可以更好地适应和应对复杂的生产环境和任务需求。
例如,在智能制造中,通过结合机器人技术和人工智能,可以实现智能化生产线和自主作业,提高生产效率和灵活性。
其次,物联网技术也将对电气自动化技术的发展产生深远的影响。
电力系统自动化未来发展方向
电力系统自动化未来发展方向随着科技的不断发展,电力系统自动化在未来将迎来更加广阔的发展空间。
本文将从多个方面探讨电力系统自动化未来的发展方向。
一、智能化1.1 智能设备:未来电力系统自动化将更多地采用智能设备,如智能变电站、智能电表等,实现设备之间的智能互联。
1.2 人工智能:人工智能技术将广泛应用于电力系统自动化中,实现设备的智能控制和故障诊断。
1.3 大数据分析:通过大数据分析技术,电力系统可以更好地预测负荷变化和故障风险,提高系统的稳定性和可靠性。
二、数字化2.1 数字化监控:未来电力系统将实现全面数字化监控,实时监测电网运行情况,及时发现问题并进行处理。
2.2 云计算:云计算技术将被广泛应用于电力系统自动化中,实现数据的集中存储和处理,提高系统的运行效率。
2.3 虚拟仿真:通过虚拟仿真技术,可以对电力系统进行全面的仿真分析,提前发现潜在问题并采取相应的措施。
三、可靠性3.1 弹性网络:未来电力系统将更加注重网络的弹性和韧性,实现网络的自愈能力,提高系统的可靠性。
3.2 多元化能源:未来电力系统将更多地采用多元化能源,如风能、太阳能等,提高系统的供电可靠性。
3.3 智能配电网:智能配电网将成为未来电力系统的重要组成部分,实现电力的智能分配和管理,提高系统的可靠性和效率。
四、安全性4.1 数据安全:未来电力系统将更加注重数据安全,加强对系统数据的加密和保护,防止数据泄露和攻击。
4.2 物理安全:加强电力系统设备的物理安全措施,防止设备被恶意破坏,保障系统的正常运行。
4.3 风险评估:定期进行风险评估和漏洞修复,及时发现并解决潜在的安全隐患,确保系统的安全性。
五、可持续发展5.1 节能减排:未来电力系统将更加注重节能减排,采用更加环保和高效的技术,降低系统的能耗和排放。
5.2 可再生能源:加大对可再生能源的开发和利用,推动电力系统向可持续发展方向转型,实现绿色能源的大规模应用。
5.3 社会责任:电力系统将更多地承担社会责任,促进能源的可持续利用和环境的保护,实现经济、社会和环境的协调发展。
电气自动化的现状与发展趋势分析
电气自动化的现状与发展趋势分析电气自动化是指利用电气设备和控制系统来实现对工业生产过程的自动化管理和控制。
随着科技的不断发展,电气自动化在工业生产中扮演着越来越重要的角色,成为提高生产效率、降低生产成本的重要工具。
在当前的经济环境下,电气自动化的现状与发展趋势备受关注,本文将对其进行分析。
一、电气自动化的现状1. 技术水平不断提高随着信息技术的迅速发展,电气自动化技术也得到了极大的提升。
传感器、控制器、执行器等设备不断更新换代,整个控制系统的响应速度和精度都得到了大幅度的提高,使得生产过程的自动化程度大大提高。
2. 应用领域不断扩大电气自动化已经从传统的工业生产领域扩展到了能源、交通、医疗、建筑等各个领域。
在电力系统中,电气自动化能够实现对电网的远程监控和调度,提高了电网的安全性和可靠性。
在交通领域,智能交通系统通过电气自动化技术,能够实现对交通信号灯、路灯等设备的集中控制,提高了交通系统的效率和安全性。
3. 产业市场规模不断扩大随着我国经济的不断发展和产业结构的不断优化,电气自动化市场规模也在不断扩大。
据统计,我国电气自动化市场规模已经达到了上千亿元,成为了我国国民经济的重要支柱产业之一。
二、电气自动化的发展趋势1. 智能化发展成主流未来,电气自动化将向着智能化发展的方向迈进。
通过引入人工智能、大数据、云计算等先进技术,电气自动化系统将实现更加智能、灵活的控制,提高生产过程的智能化程度。
2. 网络化将成为基础未来的电气自动化系统将更加注重网络化、通信技术的应用。
通过物联网技术,设备之间将实现信息的共享和互联,实现设备之间的智能协作,从而提高整个生产系统的效率和灵活性。
3. 安全性和可靠性将得到进一步保障随着电气自动化技术的不断发展,安全性和可靠性将成为未来的发展重点。
通过引入数据加密、网络安全技术等手段,保障整个系统的安全和可靠性,防止外部恶意攻击和内部故障的发生。
4. 智能制造将成为未来的方向未来的电气自动化将向着智能制造的方向发展。
电力配电系统自动化技术分析
电力配电系统自动化技术分析
电力配电系统自动化技术是现代电力系统中不可或缺的一部分,其作用是实现对电力配电过程的自动化控制,提高配电系统的可靠性、经济性和安全性。
电力配电系统自动化技术主要包括以下几个方面:
1. 远动控制技术
远动控制技术是指利用远动信号,对电力设备进行远程控制,例如远程合闸、分闸、跳闸等。
这种控制方式可以避免人工操作带来的风险和误操作,提高了电力设备的安全性和可靠性。
2. 保护自动化技术
保护自动化技术是指利用保护装置和自动化装置实现配电系统的自动保护。
当电力系统发生故障时,保护自动化系统可以自动检测故障位置和类型,并采取相应的保护措施,保证电力系统的稳定运行。
3. 负荷管理技术
负荷管理技术是指通过对电力负荷的实时监测和分析,使得电力系统能够更好地进行负荷控制和优化。
这种技术可以在整个电力系统中均衡地分配电力负荷,防止因负荷过大导致设备过载和损坏,同时提高电力系统的经济性和安全性。
4. 数据采集和处理技术
数据采集和处理技术是指通过对配电系统各个环节进行监测和数据采集,将监测到的数据传输给数据中心进行处理,并根据处理结果进行配电系统的控制和管理。
这种技术可以通过对电力系统数据的实时监测和分析,提高电力系统的效率和可靠性,同时避免人工操作的误差和风险。
总之,电力配电系统自动化技术在电力系统中具有非常重要的作用,它可以提高电力系统的可靠性、经济性和安全性,为电力系统的稳定运行和高效运行提供必要的支持和保障。
随着电力系统的不断发展和升级,在未来,这种自动化技术也将得到更广泛的应用和推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力自动化新技术分析
【摘要】现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。
电力系统自动化技术不断地由低到高、由局部到整体发展,文章对此进行了详细的阐述。
【关键词】电力;自动化
1.电力自动化发展趋势分析
1.1当今电力系统的自动控制技术正趋向于
(1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。
(2)在设计分析上日益要求面对多机系统模型来处理问题。
(3)在理论工具上越来越多地借助于现代控制理论。
(4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。
(5)在研究人员的构成上益需要多“兵种”的联合作战。
1.2整个电力系统自动化的发展则趋向于
(1)由开环监测向闭环控制发展,例如从系统功率总加到agc (自动发电控制)。
(2)由高电压等级向低电压扩展,例如从ems(能量管理系统)到dms(配电管理系统)。
(3)由单个元件向部分区域及全系统发展,例如scada(监测控制与数据采集)的发展和区域稳定控制的发展。
(4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。
(5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。
(6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。
(7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如mis(管理信息系统)在电力系统中的应用。
近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(computer)、控制(control)、通信(communication)和电力装备及电力电子(power system equiqments and power electronics)的统一体,简称为“cccp”。
其内涵不断深入,外延不断扩展。
电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。
2.电力自动化新技术探析
2.1电力系统的智能控制
电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。
电力系统控制面临的主要技术困难有:
(1)电力系统是一个具有强非线性的、变参数(包含多种随机
和不确定因素的、多种运行方式和故障方式并存)的动态大系统。
(2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。
(3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。
智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。
智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的asvg(新型静止无功发生器)的自学习功能等。
2.2 facts和dfacts
2.2.1 facts概念的提出
在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术——柔性交流输电系统(facts)技术悄然兴起。
所谓“柔性交流输电系统”技术又称“灵活交流输电系统”技术简称facts,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。
这是一种将电力电子技术、微机处理技术、控制技术等高
新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。
2.2.2 facts的核心装置之一——asvc的研究现状
各种facts装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。
asvc是包含了facts装置的各种核心技术且结构比较简单的一种新型静止无功发生器。
asvc由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。
它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。
与旋转同步调相机相比,asvc的调节范围大,反应速度快,不会发生响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声,并且因为asvc是一种固态装置,所以能响应网络中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。
2.2.3 dfacts的研究态势
随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。
可以说,信息时代对电能质量提出了越来越高的要求。
dfacts是指应用于配电系统中的灵活交流技术,它是hingorani 于1988年针对配电网中供电质量提出的新概念。
其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。
2.3基于gps统一时钟的新一代ems和动态安全监控系统
2.3.1基于gps统一时钟的新一代ems
目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(scada)系统。
前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。
两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。
2.3.2基于gps的新一代动态安全监控系统
基于gps的新一代动态安全监控系统,是新动态安全监测系统与原有scada的结合。
电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。
采用gps实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。
gps技术与相量测量技术结合的产物——pmu(相量测量单元)设备,正逐步取代rtu设备实现电压、电流相量测量(相角和幅值)。
电力系统调度监测从稳态/准稳态监测向动态监测发展是必然趋势。
gps技术和相量测量技术的结合标志着电力系统动态安全监测和实时控制时代的来临。
随着计算机技术,控制技术及信息技术的发展,电力系统自动化面临着空前的变革。
多媒体技术、智能控制将迅速进入电力系统自动化领域,而信息技术的发展,不仅会推动电力系统监测的发展,
也会推动电力系统控制向更高水平发展。