微专题4 平抛运动与圆周运动的综合问题 s

合集下载

平抛运动与圆周运动综合专题

平抛运动与圆周运动综合专题
第15页
高考调研 ·高三总复习 ·物理
(1)A、B 两点的高度差; (2)小球能否到达最高点 如能到达,小球对 C 点的压力 大小为多少? 【答案】 (1)0.8 m (2)能 4 N
第16页
高考调研 ·高三总复习 ·物理
【解析】 (1)小球在A点的速度分解如图,则
vy=v0tan53°=4 m/s A、B两点的高度差为:h=v2yg2=2×4210 m=0.8 m.
t′=
2gH,水平位移大小为:x=v0t′=rkt
2H g
,根据几何
知 识 可 得 落 地 点 到 转 盘 中 心 的 水 平 距 离 为 : d2 = r2 + x2= r2 +
(rkt 2gH)2=r2+2Hgr2k2t2,故 C 项正确,D 项错误.
第7页
高考调研 ·高三总复习 ·物理
例2 (2017·哈尔滨质检)如图所示,在圆柱 形房屋天花板中心O点悬挂一根长为L的细绳, 绳的下端挂一个质量为m的小球,已知绳能承受 的最大拉力为2mg,小球在水平面内做圆周运 动,当速度逐渐增大到绳断裂后,小球恰好以速 度v2= 7gL落到墙脚边.求:
水平方向 x=v1t 竖直方向 h1=g2t2 又有 R= r2+x2 解得 R=3L
第12页
高考调研 ·高三总复习 ·物理
平抛运动与竖直面内圆周运动的综合 1.两种类型 (1)物体先做平抛运动后做圆周运动; (2)物体先做圆周运动后做平抛运动.
第13页
高考调研 ·高三总复习 ·物理
2.解题思路 (1)抓住两种运动衔接点处的速度是解题的关键. (2)除了应用平抛和圆周运动相关规律,通常还要结合能量 关系分析求解. (3)注意应用物体到达竖直圆周运动最高点的临界条件. (4)注意应用速度方向与圆周的几何关系,找出平抛运动两 个位移的几何关系.

高考物理一轮复习单元综合专题四平抛运动与圆周运动课件新人教版201908021257

高考物理一轮复习单元综合专题四平抛运动与圆周运动课件新人教版201908021257

小球在 A 点的速度 vA=cosv503°=5 m/s 从 A→C 机械能守恒: 12mvA2=12mvC2+mgR(1+cos53°) vC=3 m/s> 5 m/s 所以小球能到达 C 点 由牛顿第二定律得:FN+mg=mRvC2 解得 FN=4 N 由牛顿第三定律知,小球对 C 点的压力为 4 N.
题型透析
平抛运动与水平面内圆周运动的综合 此类问题往往是物体先做水平面内的匀速圆周运动,后做平 抛运动,解题思路是: 1.分析物体做匀速圆周运动的受力,根据牛顿第二定律和 向心力公式列方程. 2.平抛运动一般是沿水平方向和竖直方向分解速度或位移. 3.两种运动衔接点处的速度是联系前后两个过程的关键物 理量.
例 1 如图所示,在圆柱形房屋天花板中心 O 点 悬挂一根长为 L 的细绳,绳的下端挂一个质量为 m 的 小球,已知绳能承受的最大拉力为 2mg,小球在水平 面内做圆周运动,当速度逐渐增大到绳断裂后,小球 恰好以速度 v2= 7gL落到墙脚边.求:
(1)绳断裂瞬间的速度 v1; (2)圆柱形房屋的高度 H 和半径.
例 2 如图所示,P 是水平面上的 圆弧轨道,从高台边 B 点以速度 v0 水 平飞出质量为 m 的小球,恰能从固定 在某位置的圆弧轨道的左端 A 点沿圆 弧切线方向进入.O 是圆弧的圆心,θ是 OA 与竖直方向的夹 角.已知:m=0.5 kg,v0=3 m/s,θ=53°,圆弧轨道半径 R= 0.5 m,g=10 m/s2,不计空气阻力和所有摩擦,求:
设小球由平抛至落地的水平射程为 x,如图所 示.
水平方向 x=v1t 竖直方向 h1=g2t2 又有 R= r2+x2 解得 R=3L.
平抛运动与竖直面内圆周运动的综合 1.两种类型 (1)物体先做平抛运动后做圆周运动; (2)物体先做圆周运动后做平抛运动.

第五章-专题四平抛与圆周运动组合问题的分析

第五章-专题四平抛与圆周运动组合问题的分析

专题四 平抛与圆周运动组合问题的分析 考纲解读 1.掌握运用平抛运动规律、圆周运动知识解决综合性问题的方法.2.掌握程序法在解题中的应用. 考点一 平抛运动与直线运动的组合问题1. 一个物体平抛运动和直线运动先后进行,要明确直线运动的性质,关键抓住速度是两个运动的衔接点.2. 两个物体分别做平抛运动和直线运动,且同时进行,则它们运动的时间相等,同时满足一定的空间几何关系. 例1 如图1所示,一小球从平台上水平抛出,恰好落在邻近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h =0.8 m ,重力加速度取g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:(1)小球水平抛出时的初速度v 0;(2)斜面顶端与平台边缘的水平距离x ; 图1(3)若斜面顶端高H =20.8 m ,则小球离开平台后经多长时间到达斜面底端?解析 (1)由题意可知,小球落到斜面上并刚好沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,如图所示,v y =v 0tan 53°,v 2y =2gh代入数据,得v y =4 m /s ,v 0=3 m/s.(2)由v y =gt 1得t 1=0.4 sx =v 0t 1=3×0.4 m =1.2 m(3)小球沿斜面做匀加速直线运动的加速度a =mg sin 53°m=8 m/s 2 初速度v = =5 m/sH sin 53°=v t 2+12a 22t 代入数据,解得t 2=2 s 或t 2′=-134s(不合题意舍去) 所以t =t 1+t 2=2.4 s.答案 (1)3 m/s (2)1.2 m (3)2.4 s 技巧点拨抓住小球平抛到斜面顶端“刚好沿光滑斜面下滑”这一关键条件,利用斜面倾角和速度的分解与合成求合速度.突破训练1 如图2所示,我某集团军在一次空地联合军事演习中,离地面H 高处的飞机以水平对地速度v 1发射一颗炸弹欲轰炸地面目标P ,反应灵敏的地面拦截系统同时以初速度v 2竖直向上发射一颗炮弹拦截(炮弹运动过程看做竖直上抛).设此时拦截系统与飞机的水平距离为x ,若拦截成功,不计空气阻力,则v 1、v 2的 图2关系应满足 ( )A .v 1=H x v 2B .v 1=v 2 x HC .v 1=x Hv 2 D .v 1=v 2答案 C解析 由题意知从发射到拦截成功水平方向应满足:x =v 1t ,同时竖直方向应满足:H=12gt 2+v 2t -12gt 2=v 2t ,所以有x v 1=H v 2,即v 1=x Hv 2,C 选项正确. 考点二 平抛运动与圆周运动的组合问题例2 如图3所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m /s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:图3(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6)解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m /s ,竖直分量为v Cy =4 m/s 下落高度h = =0.8 m(2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°)=12m v 2D -12m v 2C 解得v D =29 m/s小球在D 点时由牛顿第二定律得N -mg =m v D 2R代入数据解得N =68 N由牛顿第三定律得N ′=N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行的过程中,小物块与长木板的加速度大小分别为a 1=μg =3 m/s 2,a 2=μmg M=1 m/s 2 速度分别为v =v D -a 1t ,v =a 2t对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2 解得L =3.625 m ,即木板的长度至少是3.625 m答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度.突破训练2 在我国南方农村地区有一种简易水轮机,如图4所示,从悬崖上流出的水可看做连续做平抛运动的物体,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动,输出动力.当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h =5.6 m ,轮子半径R =1 m .调整轮轴O 的位置,使水流与轮边缘切点对应的半径 图4与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)问:(1)水流的初速度v 0大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?答案 (1)7.5 m /s (2)12.5 rad/s解析 (1)水流做平抛运动,有h -R sin 37°=12gt 2解得t = 2(h -R sin 37°)g=1 s 所以v y =gt =10 m/s ,由图可知:v 0=v y tan 37°=7.5 m/s.(2)由图可知:v =v 0sin 37°=12.5 m/s , 根据ω=v R可得ω=12.5 rad/s.27.直线运动、平抛运动和圆周运动组合问题的分析解析 (1)在C 点:mg =m Rv C 2(2分) 所以v C =5 m/s (1分)(2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分) 在D 点:mg +N =m v D 2r(2分) 所以N =333.3 N (1分)由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则h =12gt 2 (1分) s =v 2t (1分)解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意. 解得H =7.2 m (3分)答案 (1)5 m/s (2)333.3 N (3)7.2 m 技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点.突破训练3 水上滑梯可简化成如图6所示的模型,斜槽AB 和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m=30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空 图6气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小;(3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移s 的大小.答案 (1)4.4 m /s 2 (2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛顿第二定律得:mg sin θ-f =ma ①又f =μN ②N =mg cos θ ③联立①②③式解得:a =4.4 m/s 2 ④(2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -f ·H sin θ+mgR (1-cos θ)=12m v 2-0 ⑤ 联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R⑦ 联立⑥⑦式解得:F C =1 300 N . ⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨ s =v t ⑩联立⑥⑨⑩式解得:s =4 m. 高考题组1. (2012·福建理综·20)如图7所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦 图7力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0;(2)物块与转台间的动摩擦因数μ.答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2 ① 在水平方向上有s =v 0t ②由①②式解得v 0=s g 2H代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 0 2R ③f m =μN =μmg ④由③④式得μ=v 0 2gR代入数据得μ=0.22. (2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图8所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. 图8(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)113mg (3)d 2 2 33d 解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有 竖直方向:14d =12gt 2 水平方向:d =v 1t解得v 1=2gd 由机械能守恒定律有12m v 32=12m v 21+mg (d -34d ) 解得v 2= 52gd (2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d 由圆周运动向心力公式,有F max -mg =m v 1 2R得F max =113mg (3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 3 2l, 解得v 3= 83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1 得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d . 模拟题组3. 如图9所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点 图9到B 点的距离为R ,且AB 的距离为s =10R .试求:(1)小球在C 点对滑杆的压力;(2)小球在B 点的速度大小;(3)BC 过程小球克服摩擦力所做的功.答案 (1)32mg ,方向竖直向下 (2)23gR (3)31mgR 4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2 ① 水平方向:R =v C t ②解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -N C =2m v C 2R解得N C =3mg 2由牛顿第三定律有,小球在C 点对滑杆的压力N C ′=N C =3mg 2,方向竖直向下 (2)在A 点对小球受力分析有:N +F sin 37°=2mg ③小球从A 到B 由动能定理有:F cos 37°·s -μN ·s =12·2m v 2B ④ 解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B 解得W f =31mgR 44. 如图10所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高 图10度h =0.75 m ,取g =10 m/s 2,试求:(1)摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小;(3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 1 2R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒定律得:12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为N ,由牛顿第二定律得:N -mg =m v 2 2R联立解得:N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为:N ′=N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得: t =1510s 设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α,则:v x =v 2 v y =gttan α=v x v y解得:tan α= 3所以:α=60°由几何关系得:θ=α=60°.专题突破练 平抛与圆周运动组合问题的分析(限时:45分钟)►题组1 平抛运动与直线运动的组合1. 如图1所示,在距地面高为H =45 m 处,有一小球A 以初速度v 0=10 m /s 水平抛出,与此同时,在A 的正下方有一物块B 也以相同的初速度v 0同方向滑出,B 与地面间的动摩擦因数为μ=0.5.A 、B 均可视做质点,空气阻力不计,重力加速度g 取10 m/s 2,求:(1)A 球从抛出到落地的时间和这段时间内的水平位移;(3)A 球落地时,A 、B 之间的距离.答案 (1)3 s 30 m (2)20 m 图1解析 (1)对A 球,由平抛运动规律得水平方向:s 1=v 0t竖直方向:H =12gt 2 解得s 1=30 m ,t =3 s(2)对于物块B ,根据牛顿第二定律得,-μmg =ma解得a =-5 m/s 2当B 速度减小到零时,有0=v 0+at ′得t ′=2 s判断得:在A 落地之前B 已经停止运动,由运动学公式v t 2-v 20=2as 2得:s 2=10 m则Δs =s 1-s 2=20 m.2. 如图2所示,一物块质量m =1.0 kg 自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,粗糙斜面BC 倾角为β=37°,足够长.物块与两斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .物块在斜面上运动的过程中始终未脱离斜面,不计在B 点的机械能损失.最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8.(g 取10 m/s 2)图2(1)物块水平抛出的初速度v 0是多少?(2)若取A 所在水平面为零势能面,求物块第一次到达B 点的机械能.(3)从滑块第一次到达B 点时起,经0.6 s 正好通过D 点,求B 、D 之间的距离.答案 (1)0.6 m/s (2)-4 J (3)0.76 m解析 (1)物块离开平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s由于物块恰好沿斜面下滑,则v A =v y sin 53°=0.80.8m /s =1 m/s v 0=v A cos 53°=0.6 m/s(2)物块在A 点时的速度v A =1 m/s从A 到B 的运动过程中由动能定理得mgH -μmg cos 53°H sin 53°=12m v 2B -12m v 2A 在B 点时的机械能:E B =12m v 2B -mgH =-4 J (3)物块在B 点时的速度v B =4 m/s物块沿BC 斜面向上运动时的加速度大小为:a 1=g (sin 37°+μcos 37°)=10 m/s 2物块从B 点沿BC 斜面向上运动到最高点所用时间为t 1=v B a 1=0.4 s ,然后沿斜面下滑,下滑时的加速度大小为:a 2=g (sin 37°-μcos 37°)=2 m/s 2B 、D 间的距离s BD =v B 22a 1-12a 2(t -t 1)2=0.76 m 题组2 平抛运动与圆周运动组合问题3. 水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图3所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则下列说法错误的是 ( )A .小球到达c 点的速度为gR 图3B .小球到达b 点时对轨道的压力为5mgC .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 R g答案 B解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R,v c =gR ,A 项正确; 小球由b 到c 过程中,由机械能守恒定律得: 12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:N -mg =m v b 2R,联立解得 N =6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2 R g,x =2R ,C 、D 项正确.4. 如图4所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与竖直方向的夹角,θ2是BA 与竖直方向的夹角.则 ( )A .tan θ2tan θ1=2 B .tan θ1·tan θ2=2 图4 C .1tan θ1·tan θ2=2 D .tan θ1tan θ2=2 答案 B解析 由题意可知:tan θ1=v y v x =gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt ,所以tan θ1·tan θ2=2,故B 正确.5. 如图5所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:图5(1)物块离开A 点时水平初速度的大小;(2)物块经过C 点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离.答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2ghv y =4 m/s在B 点:tan θ2=v y v A,v A =3 m/s (2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2B v B =v A 2+v y 2=5 m/s解得v 2C =33 m 2/s 2在C 点:N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为N ′=N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma ,a =3 m/s 2P A 间的距离s P A =v A 22a=1.5 m.6. 如图6所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道. 图6已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求:(1)物块经过轨道上的C 点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下? 答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得:12m v 2B +mg (R +R sin 37°)=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为s 1、s 2 ,则:对物块有:v C -a 1t =vv 2-v 2C =-2a 1s 1对木板有:a 2t =vv 2=2a 2s 2设木板长度至少为L ,由题意得:L ≥s 1-s 2联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.7. 某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg , 图7通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2 解得v 1=x g 2h=3 m/s 设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动 定律及机械能守恒定律得mg =m v 22/R12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -fL =12m v 2m in ,由此解得t =2.53 s。

重难点04 平抛运动与圆周运动(教师版含解析)

重难点04 平抛运动与圆周运动(教师版含解析)

2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。

【专题3】平抛运动与圆周运动(含答案)

【专题3】平抛运动与圆周运动(含答案)

高考定位平抛运动和圆周运动是典型的曲线运动,而处理平抛运动的方法主要是运动的合成与分解,因此运动的合成与分解、平抛运动、圆周运动是每年必考的知识点.复习中要注意理解合运动与分运动的关系,掌握平抛运动和圆周运动问题的分析方法,能运用平抛运动知识和圆周运动知识分析带电粒子在电场、磁场中的运动.考题1对运动的合成和分解的考查例1(单选)(2014·四川·4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1审题突破根据去程时船头指向始终与河岸垂直,结合运动学公式,可列出河宽与船速的关系式,当回程时路线与河岸垂直,可求出船过河的合速度,从而列出河宽与船速度的关系,进而即可求解.解析设大河宽度为d,小船在静水中的速度为v0,则去程渡河所用时间t1=dv0,回程渡河所用时间t 2=dv20-v2.由题知t1t2=k,联立以上各式得v0=v1-k2,选项B正确,选项A、C、D错误.答案 B1.(单选)如图1所示,细绳一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()图1A.v sin θB.v cos θC.v tan θD.v cot θ答案 A解析由题意可知,线与光盘的交点参与两个运动,一是逆着线的方向运动,二是垂直线的方向运动,则合运动的速度大小为v,由数学三角函数关系,则有:v线=v sin θ;而沿线方向的速度大小,即为小球上升的速度大小,故A正确,B、C、D错误.2.(单选)质量为2 kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图2甲、乙所示.下列说法正确的是()图2A.前2 s内质点处于超重状态B.2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小答案 D解析由题图甲知,质点在竖直方向向下加速运动,即加速度的方向向下,故处于失重状态,所以A错误;2 s末v y=4 m/s,水平方向匀速运动v x=43m/s,故此时质点的速度v=v2x+v2y=4103m/s,可得B错误;质点的加速度竖直向下,初速度斜向下,故不垂直,所以C错误;由题图甲可求加速度a =1 m/s 2,根据牛顿第二定律可得mg -F f =ma ,即质点在下落的过程中受竖直向上的力,该力做负功,所以质点的机械能减小,所以D 正确.1.分运动与合运动具有等时性和独立性.2.运动的合成与分解属矢量的合成分解,满足平行四边形、三角形和正交分解.3.分析运动的合成与分解问题,要注意运动的分解方向,一般情况按实际运动效果进行分解,切记不可按分解力的思路来分解运动.考题2 对平抛运动的考查例2 (2014·浙江·23)如图3所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g =10 m/s 2)图3(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围.审题突破 (1)由匀变速直线运动规律求解.(2)子弹做平抛运动,选地面为参考系,求解第一发子弹的弹孔离地的高度;数学关系结合平抛规律求解靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,说明第一颗子弹没有击中靶,第二颗子弹能够击中靶,平抛运动规律求解L 的范围.解析 (1)装甲车的加速度a =v 202s =209 m/s 2(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s第一个弹孔离地高度h 1=h -12gt 21=0.55 m第二个弹孔离地的高度h 2=h -12g (L -sv )2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m(3)若使第一发子弹恰好打到靶的下沿,装甲车离靶的距离为L 1L 1=(v 0+v ) 2hg =492 m若使第二发子弹恰好打到靶的下沿,装甲车离靶的距离为L 2L 2=v 2hg+s =570 m为使靶上只有一个弹孔,则此弹孔一定是第二发子弹在靶上留下的弹孔 故L 的范围为492 m<L ≤570 m答案 (1)209 m/s 2 (2)0.55 m 0.45 m(3)492 m<L ≤570 m3.(单选)如图4所示,可视为质点的小球位于半圆柱体左端点A 的正上方某处,以初速度v 0水平抛出,其运动轨迹恰好与半圆柱体相切于B 点,过B 点的半圆柱体半径与水平面夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g )( )图4A.23v 203gB.23v 209gC.(43-6)v 20gD.(4-23)v 20g答案 C解析 在B 点,据题可知小球的速度方向与水平方向成60°角,由速度的分解可知,竖直分速度大小v y =v 0tan 60°=3v 0,v 0t =R +R cos 30°,v y =gt ,得R =(43-6)v 20g ,故选C.4.(单选)(2014·新课标Ⅱ·15)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.5π12答案 B解析 设物块水平抛出的初速度为v 0,高度为h ,由题意知12m v 20=mgh ,得:v 0=2gh .物块在竖直方向上的运动是自由落体运动,落地时的竖直分速度v y =2gh =v x =v 0,则该物块落地时的速度方向与水平方向的夹角θ=π4,故选项B 正确,选项A 、C 、D 错误.5.(单选)如图5所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A 、B 两处.不计空气阻力,则落到B 处的石块( )图5A .初速度大,运动时间短B .初速度大,运动时间长C .初速度小,运动时间短D .初速度小,运动时间长 答案 A解析 由于B 点在A 点的右侧,说明水平方向上B 点的距离更远,而B 点距抛出点的高度较小,故运动时间较短,二者综合说明落在B 点的石块的初速度较大,故A 正确,B 、C 、D 错误.1.平抛运动、类平抛运动处理的方法都是采用运动分解的方法,即分解为沿初速度方向的匀速直线运动和垂直于初速度方向的初速度为零的匀加速直线运动. 2.在平抛(类平抛)运动中要注意两个推论,在解答选择题时常用到:(1)做平抛(类平抛)运动的物体任意时刻速度的反向延长线一定通过此时水平位移的中点,如图甲所示.(2)如图乙,设做平抛(类平抛)运动的物体在任意时刻、任意位置处瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.考题3 对圆周运动的考查例3 如图6所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.图6(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围.解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l 因此钉子所在位置的范围为76l ≤x ≤54l . 答案 (1)7mg (2)76l ≤x ≤54l6.(2014·新课标Ⅰ·20)如图7所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图7A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω= kg2l 是b 开始滑动的临界角速度D .当ω= 2kg3l 时,a 所受摩擦力的大小为kmg答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa = kg l ;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb= kg 2l ,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b=mω2·2l ,f a <f b ,选项B 错误;当ω= kg 2l 时b 刚开始滑动,选项C 正确;当ω= 2kg3l时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.7.(单选)(2014·新课标Ⅱ·17)如图8所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图8A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.1.圆周运动的基本规律(1)向心力:F =mω2r =m v 2r =m (2πT )2r =m (2πf )2r =m (2πn )2r .(2)向心加速度①大小:a =ω2r =v 2r =(2πT)2r =(2πf )2r =(2πn )2r .②注意:当ω为常数时,a 与r 成正比;当v 为常数时,a 与r 成反比;若无特定条件,不能说a 与r 成正比还是成反比.考题4 平抛与圆周运动组合问题的综合分析例4 (17分)如图9所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求:图9(1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m/s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v y v 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为F N .则由向心力公式得:F N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有F N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821m(2014·福建·21)(19分)如图10所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.图10(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩知识专题练 训练3题组1 运动的合成和分解1.(单选)如图1所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经P 点到达N 点,已知弧长MP 大于弧长PN ,质点由M 点运动到P 点与从P 点运动到N 点所用的时间相等.则下列说法中正确的是( )图1A .质点从M 到N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在M 、N 间的运动不是匀变速运动 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误.2.(单选) 公交车是人们出行的重要交通工具,如图2所示是公交车内部座位示意图,其中座位 A 和 B 的边线和车前进的方向垂直,当车在某一站台由静止开始匀加速启动的同时,一个乘客从A 座位沿 AB 连线相对车以2 m/s 的速度匀速运动到 B ,则站在站台上的人看到该乘客( )图2A .运动轨迹为直线B .运动轨迹为抛物线C .因该乘客在车上匀速运动,所以乘客处于平衡状态D .当车速度为5 m/s 时,该乘客对地速度为7 m/s 答案 B解析 人相对地面参与了两个方向的运动,一个是垂直于车身方向的匀速运动,一个是沿车身方向的匀加速直线运动,类似于一个物体做平抛运动,所以运动轨迹是抛物线,故A 错误,B 正确;乘客受到沿车身方向的合外力,处于非平衡状态,C 错误;速度的合成遵循平行四边形定则,当车速为5 m/s 时,乘客对地速度为29 m/s ,D 错误. 题组2 平抛运动3.(单选)如图3所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地,有( )图3A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的2倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能可能相同 答案 D解析 设P 点离地面高度为h ,两小球的初速度大小为v 0,则a 落地的时间t a =2hg,a 的位移x a =h 2+(v 0t a )2;对b 分段求时间t b =v 0g +4h g ,又有h =v 202g,解得t a =(2-1)t b ,b 的位移x b =h ,a 的位移x a =5h ,故x ax b=5,所以A 、B 错误.由机械能守恒可知,a 、b 落地时速度大小相等,方向不同,若a 、b 质量相等,则动能相等,选项C 错误,D 正确. 4.(单选)如图4所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为60°,重力加速度为g ,则小球抛出时的初速度为()图4A. 3gR2 B. 33gR2C.3gR2D. 3gR3答案 B解析 飞行过程中恰好与半圆轨道相切于B 点,知速度与水平方向的夹角为30°设位移与水平方向的夹角为θ,则tan θ=tan 30°2=36因为tan θ=y x =y 32R ,则竖直位移y =3R 4,v 2y =2gy =3gR2.所以tan 30°=v yv 0,v 0=3gR 233=33gR2,故B 正确,A 、C 、D 错误. 5.如图5所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;若A 点小球抛出的同时,在C 点以初速度v 2沿BA 方向平抛另一相同质量的小球并也能击中D 点.已知∠COD =60°,且不计空气阻力,则( )图5A .两小球同时落到D 点B .两小球在此过程中动能的增加量相等C .在击中D 点前瞬间,重力对两小球做功的功率不相等 D .两小球初速度之比v 1∶v 2=6∶3 答案 CD解析 由于两球做平抛运动下落的高度不同,则知两球不可能同时到达D 点;重力做功不等,则动能的增加量不等;在击中D 点前瞬间,重力做功的功率为P =mg v y =mg ·gt ,t 不等;设半圆的半径为R .小球从A 点平抛,可得R =v 1t 1,R =12gt 21,小球从C 点平抛,可得R sin 60°=v 2t 2,R (1-cos 60°)=12gt 22,联立解得v 1v 2=63,故D 正确.6.(单选)静止的城市绿化洒水车,由横截面积为S 的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t ,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,以下说法正确的是( )A .水流射出喷嘴的速度为gt tan θB .空中水柱的水量为Sgt 22tan θC .水流落地时位移大小为gt 22cos θD .水流落地时的速度为2gt cot θ 答案 B解析 由题意知,水做平抛运动,θ为总位移与水平方向的夹角,tan θ=y x =gt2v x,可得水流射出喷嘴的速度为v x =gt 2tan θ,故A 错误;下落的高度y =12gt 2,水流落地时位移s =y sin θ=gt 22sin θ,所以C 错误;空中水柱的体积V =S v x t =Sgt 22tan θ,所以B 正确;水流落地时的速度v =(gt )2+v 2x=gt 1+14tan 2θ,所以D 错误.7.(单选)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1B .2∶1C .3∶2D .2∶3 答案 C解析 小球A 做平抛运动,根据分位移公式,有: x =v 1t ① y =12gt 2② 又tan 30°=yx③联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt ⑤则得v 2=33gt ⑥由④⑥得:v 1∶v 2=3∶2.8.如图7所示,ab 为竖直平面内的半圆环acb 的水平直径,c 为环上最低点,环半径为R .将一个小球从a 点以初速度v 0沿ab 方向抛出,设重力加速度为g ,不计空气阻力,则( )图7A .当小球的初速度v 0=2gR2时,掉到环上时的竖直分速度最大 B .当小球的初速度v 0<2gR2时,将撞击到环上的圆弧ac 段C .当v 0取适当值,小球可以垂直撞击圆环D .无论v 0取何值,小球都不可能垂直撞击圆环 答案 ABD解析 当下落的高度为R 时,竖直分速度最大,根据R =12gt 2得,t =2R g ,则v 0=R t =2gR 2,故A 、B 正确;设小球垂直击中环,则其速度反向沿长线必过圆心,设其速度与水平方向的夹角为θ,R sin θ=12gt 2,R (1+cos θ)=v 0t ,且tan θ=gtv 0,可解得θ=0,但这是不可能的,故C错误,D 正确,故选A 、B 、D. 题组3 圆周运动9.(单选)如图8所示,质量相同的钢球①、②分别放在A 、B 盘的边缘,A 、B 两盘的半径之比为2∶1,a 、b 分别是与A 盘、B 盘同轴的轮,a 、b 轮半径之比为1∶2.当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为( )图8A .2∶1B .4∶1C .1∶4D .8∶1 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误.10.(单选)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图9所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上的A 、B 两点,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )图9A .23mgB .3mgC .2.5mg D.73mg2答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3F T -mg =m v 2232L ③联立①②③得,F T =23mg 故A 正确,B 、C 、D 错误.11.(单选)(2014·安徽·19)如图10所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s 2.则ω的最大值是( )图10A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.12.如图11所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m/s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)图11答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:F T +mg sin α=m v 21l①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°. 题组4 平抛与圆周运动组合问题的综合13.(2014·天津·9(1))半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v的方向相同,如图12所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h =________,圆盘转动的角速度大小ω=________.图12答案gR 22v 2 2n πv R(n =1,2,3,…) 解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度 θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR(n =1,2,3,…)14.一长l =0.80 m 的轻绳一端固定在O 点,另一端连接一质量m =0.10 kg 的小球,悬点O 距离水平地面的高度H =1.00 m .开始时小球处于A 点,此时轻绳拉直处于水平方向上,如图13所示.让小球从静止释放,当小球运动到B 点时,轻绳碰到悬点O 正下方一个固定的钉子P 时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g =10 m/s 2.求:图13(1)当小球运动到B 点时的速度大小;(2)绳断裂后球从B 点抛出并落在水平地面上的C 点,求C 点与B 点之间的水平距离; (3)若OP =0.6 m ,轻绳碰到钉子P 时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s(2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离x =v B 2(H -l )g=0.80 m(3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。

高一下学期物理人教版必修第二册习题课件6.4专题训练3平抛运动与圆周运动的综合问题

高一下学期物理人教版必修第二册习题课件6.4专题训练3平抛运动与圆周运动的综合问题

等高,且距离 P 专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
点为
L.当飞镖以初速度
v0
专题训练3 平抛运动与圆周运动
垂直盘面瞄准 P 专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
点抛出的同时,圆盘以经过盘心
O
点的水平轴
专题训练3 平抛运动与圆周运动
专专题题训 训在练练33竖平平直抛抛运运平动动与 与面圆圆周周内运运动动匀速转动.忽略空气阻力,重力加速度为 g,若飞
专题训练3 专题训练3
平 平1抛 抛.运 运动 动抓与与圆 圆住周 周运 运两动 动 种运动衔接点的速度是解题的关键.
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
平平2抛抛.运运动动沿与 与圆圆水周周运运平动动 方向和竖直方向建立平抛运动关系式.
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
5.如图所示,在链球运动中,运动员 使链球高速旋转,在水平面内做圆周运 动.然后突然松手,由于惯性,链球向远 处飞去.链球做圆周运动的半径为 R,链 球做圆周运动时离地高度为 h.设圆心在地面的投影点为 O,链球 的落地点为 P,OP 两点的距离即为运动员的成绩.若运动员某 次掷链球的成绩为 L,空气阻力不计,重力加速度为 g,则链球 从运动员手中脱开时的速度 v 为( )
专题训练3 平抛运动与圆周运动
专题训练3 平抛运动与圆周运动
专题训练3 专题训练3
2.(多选)如 平抛运动与圆周运动
平抛运动与圆周运动
图所
示,
一位

学玩
飞镖

专题训练3 平抛运动与圆周运动
戏.圆盘最上端有一 专题训练3 平抛运动与圆周运动

4.4讲 微专题——平抛运动与圆周运动的综合问题

4.4讲 微专题——平抛运动与圆周运动的综合问题

第4讲微专题——平抛运动与圆周运动的综合问题核心考点·分类突破——析考点 讲透练足此类问题往往是物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题形式考查。

2.解题关键(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程。

(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移。

(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度。

[典题1] (2016·厦门质检)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。

现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m 。

设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2。

求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ。

[解析] (1)设物块做平抛运动所用时间为t ,竖直方向有H =12gt 2①水平方向有s =v 0t ②联立①②两式得v 0=s g2H=1 m/s ③(2)物块离开转台时,最大静摩擦力提供向心力,有μmg =m v 20R④联立③④得μ=v 20gR=0.2⑤[答案] (1)1 m/s (2)0.21.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R ,现将雨伞绕竖直伞杆以角速度ω匀速旋转,伞边缘上的水滴落到地面,落点形成一半径为r 的圆形,当地重力加速度的大小为g ,根据以上数据可推知伞边缘距地面的高度应为( )A.g (r 2-R 2)2ω2R 2B.g (r 2-R 2)2ω2r 2C.g (r -R )22ω2R 2D.gr 22ω2R2解析:选A 设伞边缘距地面的高度为h ,伞边缘水滴的速度v=ωR ,水滴下落时间t =2h g ,水滴平抛的水平位移x =v t =ωR 2hg,如图所示。

圆周运动与平抛运动的综合问题精讲

圆周运动与平抛运动的综合问题精讲

长为L的细绳,绳的下端挂一个质量为m
的小球,已知绳能承受的最大拉力为2mg,
小球在水平面内做圆周运动,当速度逐渐
增大到绳断裂后,小球恰好以速度v2= 7gL 落到墙脚边。求: (1)绳断裂瞬间的速度v1; (2)圆柱形房屋的高度H和半径。
【解析】(1)小球在绳断前瞬间受力如图所示: 由牛顿第二定律得: 竖直方向:FTmcosθ-mg=0
d;
(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落
点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算
说明你的观点。
【解析】(1)选手下摆的过程由动能定理得: mgl(1-cosα)=
1 mv 2 2
2 v 选手在最低点由牛顿第二定律得: F′-mg= m l
解得:F′=(3-2cosα)mg=1 080 N 由牛顿第三定律得选手对绳的拉力: F=F′=1 080 N (2)由动能定理得:mg(H-lcosα+d)-(f1+f2)d=0 解得:d=
2.解题关键:
(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定
律和向心力公式列方程。
(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移。 (3)速度是联系前后两个过程的关键物理量,前一个过程的末速 度是后一个过程的初速度。
【例证1】(2013·台州模拟)如图所示, 在圆柱形房屋天花板中心O点悬挂一根
1 2 1 2 2 得: mvM mvD mgR
2 v 在M点,设轨道对物块的压力为FN,则:FN+mg= m M R
2
2
2
联立以上两式,解得:FN=(1-
2 )mg<0
即物块不能到达M点
答案:(1)2.5 m (2)不能到达M点

(新高考)2021届高考物理二轮复习 热点4 平抛与圆周运动 作业

(新高考)2021届高考物理二轮复习 热点4 平抛与圆周运动 作业

热点4平抛与圆周运动一、选择题(1~9题为单项选择题,10~12题为多项选择题)1.[2020·河北邢台市调研]如图所示为公路自行车赛中运动员在水平路面上急转弯的情景,运动员在通过弯道时如果控制不当会发生侧滑而摔离正常比赛路线,将运动员与自行车看做一个整体,下列论述正确的是()A.运动员转弯所需向心力由地面对车轮的支持力与重力的合力提供B.运动员转弯所需向心力由地面对车轮的摩擦力提供C.发生侧滑是因为运动员受到的合力方向背离圆心D.发生侧滑是因为运动员受到的合力大于所需的向心力2.在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()A.速度方向和加速度方向都在不断变化B.速度方向与加速度方向之间的夹角一直减小C.在相等的时间间隔内,动量的改变量不相同D.在相等的时间间隔内,动能的改变量相等3.[2020·全国卷Ⅰ,16]如图,一同学表演荡秋千.已知秋千的两根绳长均为10 m,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计.当该同学荡到秋千支架的正下方时,速度大小为8 m/s,此时每根绳子平均承受的拉力约为()A.200 N B.400 NC.600 N D.800 N4.[2020·江苏苏州市期初调研]一小孩站在岸边向湖面抛石子.a、b两粒石子先后从同一位置抛出后,各自运动的轨迹曲线如图所示,两条曲线的最高点位于同一水平线上,忽略空气阻力的影响.关于a、b两粒石子的运动情况,下列说法正确的是() A.在空中运动的加速度a a>a bB.在空中运动的时间t a<t bC .抛出时的初速度v a >v bD .入水时的末速度v ′a <v ′b5.[2020·全国卷Ⅱ,16]如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )A .20B .18C .9.0D .3.0 6.一位网球运动员以拍击球,使网球沿水平方向飞出,第一只球落在自己一方场地的B 点,弹跳起来后,刚好擦网而过,落在对方场地的A 点处,如图所示,第二只球直接擦网而过,也落在A 点处,设球与地面的碰撞过程没有能量损失,且运动过程不计空气阻力,则两只球飞过球网C 处时水平速度之比为( )A .1:1B .1:3C .3:1D .1:9 7.如图所示,一重力不计的带电粒子以初速度v 0射入水平放置、距离为d 的两平行金属板间,射入方向沿两极板的中心线.当极板间所加电压为U 1时,粒子落在A 板上的P 点.如果将带电粒子的初速度变为2v 0,同时将A 板向上移动d2后,使粒子由原入射点射入后仍落在P 点,则极板间所加电压U 2为( )A .U 2=3U 1B .U 2=6U 1C .U 2=8U 1D .U 2=12U 1 8.AB 板间存在竖直方向的匀强电场,现沿垂直电场线方向射入三种比荷相同的带电微粒(不计重力),a 、b 和c 的运动轨迹如图所示,其中b 和c 是从同一点射入的.不计空气阻力,则可知粒子运动的全过程( )A .运动加速度:a a >a b >a cB .飞行时间:t b =t c >t aC .水平速度:v a >v b =v cD .电势能的减小量:ΔE c =ΔE b >ΔE a9.[2020·浙江稽阳联谊学校3月模拟]如图所示,乒乓球的发球器安装在足够大的水平桌面上,可绕竖直转轴OO ′转动,发球器O ′A 部分水平且与桌面之间的距离为h ,O ′A 部分的长度也为h .重力加速度为g .打开开关后,发球器可将乒乓球从A 点以初速度v 0水平发射出去,2gh ≤v 0≤22gh .设发射出去的所有乒乓球都能落到桌面上,乒乓球可视为质点,空气阻力不计.若使该发球器绕转轴OO ′在90°的范围内来回缓慢地水平转动,持续发射足够长时间后,乒乓球第一次与桌面碰撞区域的面积S 是( )A .2πh 2B .3πh 2C .4πh 2D .8πh 2 10.[2020·湖北八校第二次联考]如图,小球甲从A 点水平抛出,同时将小球乙从B 点自由释放,两小球先后经过C 点时速度大小相等,小球甲的速度方向夹角为30°,已知B 、C 高度差为h ,两小球质量相等,重力加速度为g ,不计空气阻力,由以上条件可知( )A .小球甲做平抛运动的初速度大小为2 gh3B .甲、乙两小球到达C 点所用时间之比为3:2C .A ,B 两点高度差为h4D .两小球在C 点时重力的瞬时功率大小相等 11.如图所示,某人从同一位置O 以不同的水平速度投出三枚飞镖A 、B 、C ,最后都插在竖直墙壁上,它们与墙面的夹角分别为60°、45°、30°.图中飞镖的指向可认为是击中墙面时的速度方向,不计空气阻力.下列说法正确的是( )A .三枚飞镖做平抛运动的初速度一定满足v A 0>vB 0>vC 0 B .三枚飞镖击中墙面时的速度一定满足v A <v B <v C C .插在墙上的三枚飞镖的反向延长线一定交于同一点D .三枚飞镖击中墙面时的速度一定满足v A =v C >v B 12.如图所示,两个质量均为m 的小球A 、B 套在半径为R 的圆环上,圆环可绕其竖直方向的直径旋转,两小球随圆环一起转动且相对圆环静止.已知OA 与竖直方向的夹角θ=53°,OA 与OB 垂直,小球B 与圆环间恰好没有摩擦力,重力加速度为g ,sin 53°=0.8,cos 53°=0.6.下列说法正确的是( )A .圆环旋转的角速度大小为 5g4RB .圆环旋转的角速度大小为 5g3RC .小球A 与圆环间摩擦力的大小为75mgD .小球A 与圆环间摩擦力的大小为15mg二、非选择题 13.单板滑雪U 形池比赛是冬奥会比赛项目,其场地可以简化为如图甲所示的模型: U 形滑道由两个半径相同的四分之一圆柱面轨道和一个中央的平面直轨道连接而成,轨道倾角为17.2°.某次练习过程中,运动员以v M =10 m/s 的速度从轨道边缘上的M 点沿轨道的竖直切面ABCD 滑出轨道,速度方向与轨道边缘线AD 的夹角α=72.8°,腾空后沿轨道边缘的N 点进入轨道.图乙为腾空过程左视图.该运动员可视为质点,不计空气阻力,取重力加速度的大小g =10 m/s 2, sin 72.8°=0.96,cos 72.8°=0.30.求:(1)运动员腾空过程中离开AD 的距离的最大值d ;(2)M、N之间的距离L.14.[2020·江西南昌三模]冬奥会上自由式滑雪是一项极具观赏性的运动.其场地由助滑坡AB(高度差为10 m)、过渡区BDE(两段半径不同的圆弧平滑连接而成,其中DE半径为3 m、对应的圆心角为60°)和跳台EF(高度可调,取h=4 m)等组成,如图所示.质量60 kg的运动员由A点静止出发,沿轨道运动到F处飞出.运动员飞出的速度须在54 km/h到68 km/h 之间才能在空中完成规定动作.设运动员借助滑雪杆仅在AB段做功,不计摩擦和空气阻力,g取10 m/s2.则(1)为能完成空中动作,则该运动员在AB过程中至少做多少功?(2)为能完成空中动作,在过渡区最低点D处,求该运动员受到的最小支持力;(3)若将该运动员在AB段和EF段视为匀变速运动,且两段运动时间之比为t AB:t EF=3:1,已知AB=2EF,则运动员在这两段运动的加速度之比为多少?热点4 平抛与圆周运动1.答案:B 2.答案:B解析:由于小球只受重力作用,做平抛运动,故加速度不变,速度大小和方向时刻在变化,选项A 错误;设某时刻速度与竖直方向的夹角为θ,则tan θ=v 0v y =v 0gt ,随着时间t 变大,tan θ变小,θ变小,故选项B 正确;根据动量定理得Δp =mg Δt ,即在相等的时间间隔内,动量改变量相同,故选项C 错误;根据动能定理知,在某段时间内,动能的改变量等于重力做的功,即W G =mgh ,对于平抛运动,在相等时间间隔内,竖直位移不相等,所以动能的改变量不相等,故选项D 错误.3.答案:B解析:该同学荡秋千可视为做圆周运动,设每根绳子的拉力大小为F ,以该同学和秋千踏板整体为研究对象,在最低点根据牛顿第二定律得2F -mg =m v 2R ,代入数据解得F =410N ,故每根绳子平均承受的拉力约为400 N ,故B 项正确,A 、C 、D 项错误.4.答案:D解析:两石子在空中运动的加速度均为g ,选项A 错误;因两石子从同一位置抛出,它们的最高点又在同一水平线上,则竖直方向的运动相同,则在空中的运动时间相同,选项B错误;a 的水平射程小,则根据v 0=x t 可知,a 的初速度小,选项C 错误;根据v ′=v 20+(gt )2可知,a 入水的末速度小,选项D 正确.5.答案:B解析:由平抛运动规律有x =v 0t ,y =12gt 2,得v 0=xg 2y ;动能E k =12m v 20=mgx 24y ∝x 2y,故E 2E 1=⎝⎛⎭⎫x 2x 12·y 1y 2=⎝⎛⎭⎫3h h 2·h 0.5h =18,故B 正确. 6.答案:B解析:由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的.由于球与地面的碰撞没有能量损失,设第一只球自击出到落到A 点时间为t 1,第二只球自击出到落到A 点时间为t 2,则t 1=3t 2.由于两球在水平方向均为匀速运动,水平位移大小相等,设它们从O 点出发时的初速度分别为v 1、v 2,由x =v 0t 得:v 2=3v 1,有v 1v 2=13,所以两只球飞过球网C 处时水平速度之比为1︰3,选项B 正确.7.答案:D解析:板间距离为d ,射入速度为v 0,板间电压为U 1时,在电场中有:d 2=12at 2,a =qU 1md,t =x v 0,解得U 1=md 2v 20qx 2;A 板上移d 2,射入速度为2v 0,板间电压为U 2时,在电场中有:d =12a ′t ′2,a ′=2qU 23md ,t ′=x 2v 0,解得U 2=12md 2v 20qx2,即U 2=12U 1,选项D 正确. 8.答案:B解析:根据牛顿第二定律得,微粒的加速度为a =qE m ,据题qm相同,E 相同,所以a a =a b =a c ,选项A 错误;三个带电微粒在竖直方向都做初速度为零的匀加速直线运动,由y =12at 2得t = 2ya,由图有y b =y c >y a ,则t b =t c >t a ,选项B 正确;三个带电微粒水平方向都做匀速直线运动,由x =v 0t 得v 0=xt ,由图知x a >x b >x c ,又t b =t c >t a ,则v a >v b >v c ,选项C 错误;电场力做功为W =qEy ,由于三个微粒的电荷量关系不能确定,所以不能确定电场力做功的大小,也就不能确定电势能减少量的大小,选项D 错误.9.答案:C解析:设乒乓球做平抛运动的时间为t ,则t =2hg.当速度最大时,水平位移具有最大值x max =v max t =22gh ×2hg=4h ,当速度最小时,水平位移具有最小值x min =v min t =2gh×2h g =2h ,其中v max 、v min 为发射速度的最大值和最小值,又因为发球器O ′A 部分长度也为h ,故乒乓球的落点距竖直转轴距离的范围为3h ≤x ≤5h ,乒乓球第一次与桌面碰撞区域是一个圆心角为90°的宽度为2h 的环形带状区域,其面积为S =14×π[(5h )2-(3h )2]=4πh 2,故选项A 、B 、D 错误,C 正确.10.答案:BC解析:小球乙到C 点的速度为v =2gh ,则小球甲在C 点的速度大小也为2gh ,又因为小球甲在C 点速度与竖直方向成30°角,可知水平分速度为2gh2,故A 错误;小球乙运动到C 点时所用的时间满足h =12gt 2,得t =2hg,而小球甲到达C 点时竖直方向的速度为6gh 2,所以运动时间为t ′=6gh 2g,所以甲、乙两小球到达C 点所用时间之比为3︰2,故B 正确;A ,B 两点高度差Δh =12gt 2-12gt ′2=h4,故C 正确;由于两球在C 点时竖直方向上的速度不相等,所以两小球在C 点时重力的瞬时功率也不相等,故D 错误.11.答案:ACD解析:飞镖做平抛运动,水平方向上有x =v 0t ,速度与竖直方向的夹角的正切值为tan α=v 0v y =v 0gt ,联立解得v 0=gx tan α,故v A 0>v B 0>v C 0,A 正确;飞镖做平抛运动,速度的反向延长线通过水平方向上的位移的中点,而飞镖的指向表示瞬时速度的方向,故插在墙上的三枚飞镖的反向延长线一定交于同一点,C 正确;根据几何关系知,v =v 0sin α=gxsin αcos α=2gx sin 2α,则v A =v C =2gx sin 60°=43gx ,v B =2gx ,故v A =v C >v B ,B 错误,D 正确. 12.答案:AD 解析:小球B 与圆环间恰好没有摩擦力,则有小球B 所受到的支持力和重力的合力提供其所需的向心力,由牛顿第二定律得mg tan37°=mω2R sin37°,解得圆环旋转的角速度大小ω= 5g4R,选项A 正确,B 错误;对小球A 进行受力分析,如图所示,由牛顿第二定律得,在水平方向上F N sin θ-F f cos θ=mω2R sin θ,竖直方向上F N cos θ+F f sin θ-mg =0,解得F f =mg5,选项C 错误,D 正确. 13.答案:(1)4.8 m (2)12 m解析:(1)在M 点,设运动员在ABCD 面内垂直AD 方向的分速度为v 1,由运动的合成与分解规律得v 1=v M sin 72.8°①设运动员在ABCD 面内垂直AD 方向的分加速度为a 1,由牛顿第二定律得 mg cos 17.2°=ma 1②由运动学公式得d =v 212a 1③联立①②③式,代入数据得d =4.8 m ④(2)在M 点,设运动员在ABCD 面内平行AD 方向的分速度为v 2,由运动的合成与分解规律得v 2=v M cos 72.8°⑤设运动员在ABCD 面内平行AD 方向的分加速度为a 2,由牛顿第二定律得 mg sin 17.2°=ma 2⑥设腾空时间为t ,由运动学公式得t =2v 1a 1⑦L =v 2t +12a 2t 2⑧联立①②⑤⑥⑦⑧式,代入数据得L =12 m ⑨ 14.答案:(1)3 150 J (2)7 300 N (3)2︰3解析:(1)由动能定理得mgh AF +W 人=12m v 2FW 人=12m v 2F -mgh AF =3 150 J(2)从D 点到F 点,根据动能定理有-mg [h +R (1-cos 60°)]=12m v 2F -12m v 2D 其中v F 取为最小值 v F =54 km/h =15 m/s在D 点:F N -mg =m v 2DR解得运动员在D 点承受的最小支持力:F N =mg +m v 2F +2g [h +R (1-cos 60°)]R=7 300 N(3)两段运动的平均速度之比v 1︰v 2=AB t 1︰EFt 2=2︰3设滑到B 点速度为v 1,则滑到E 点速度也为v 1, 又设滑到F 点速度为v 2.则由v AB =v 12,vEF =v 1+v 22,得:v 1=2v 2 由a 1=v 1t 1,a 2=v 1-v 2t 2得:a 1︰a 2=2︰3.。

圆周运动与平抛综合

圆周运动与平抛综合

2.如图所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁上A 点高度为筒高的一半,内壁上A 点有一质量为m 的小物块(视为质点)。

求:(1)当物块在A 点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。

(2)若μ<R H且最大静摩擦力等于滑动摩擦力,求物块在A 点随筒做匀速转动时,求筒转动的角速度范围。

考点:向心力、线速度、角速度、转速(向心力来源、受力分析、临界、牛二)(1、3)答案及解析:2.ω=ω(1)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A 点时受到的重力和支持力作用,它们的合力提供向心力,设筒转动的角速度为ω有:2t a n 2Rm g m θω= 由几何关系得tan HR θ=联立以上各式解得ω=(2)如图当ω比较小时,对物体进行受力分析并建立正交坐标系如图所示,则有: 2cos sin 2Rm f N ωθθ=- mg f N =+θθsin cosN f μ=联立以上各式解得HR R gR H μμω+-=21)(2当ω比较大时,对物体进行受力分析并建立正交坐标系如图所示,则有: 2cos sin 2Rm f N ωθθ=+ mg f N =θθsin -cosN f μ= 联立以上各式解得HR R gR H μμω-)(222+=ω(10分)(2014•扬州模拟)如图所示,在投球游戏中,小明坐在可沿竖直方向升降的椅子上,停在不同高度处将小球水平抛出落入固定的球框中.已知球框距地面的高度为h 0,小球的质量为m ,抛出点与球框的水平距离始终为L ,忽略空气阻力.(1)小球距地面高为H 0处水平抛出落入球框,求此过程中小球重力势能的减少量;(2)若小球从不同高度处水平抛出后都落入了球框中,试推导小球水平抛出的速度v 与抛出点高度H 之间满足的函数关系;(3)为防止球入框时弹出,小明认为球落入球框时的动能越小越好.那么,它应该从多高处将球水平抛出,可以使小球入框时的动能最小?并求该动能的最小值.答案及解析:3.(1)此过程中小球重力势能的减少量为mg(H0﹣h0).(2)球水平抛出的速度v与抛出点高度H之间满足的函数关系是:(H>h0).(3)球应该从h0+L高处将球水平抛出,可以使小球入框时的动能最小,该动能的最小值是mgL.考点:机械能守恒定律;牛顿第二定律;向心力(2、3)专题:机械能守恒定律应用专题.分析:(1)小球重力势能的减少量等于等于重力做功mg(H0﹣h0).(2)小球做平抛运动,根据平抛运动的规律求解.(3)小球平抛运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律得到小球入框时的动能与高度的关系,由数学知识求解.解答:解:(1)小球重力势能的减少量为:△E p=mg(H0﹣h0).(2)设小球做平抛运动的时间为t,则水平方向有:L=vt竖直方向有:解得:(H>h0)或:.(3)小球平抛过程,只受重力,机械能守恒,则得:结合上题结论有:得:E K=+mg(H﹣h0)当H=h 0+L 时,E K 有极小值,得:E Kmin =mgL3.如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r =的14圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大?(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)1) (2)v N =5.0m/s【解析】(1)设钢珠在M 轨道最高点的速度为v ,恰过最高点,有:从发射前到最高点,根据机械能守恒定律,得:∴(2)钢珠从最高点飞出后做平抛运动,有:从最高点飞出到曲面N 上,由机械能守恒定律,得:∴v N =5.0m/s好25. (长沙市雅礼中学2014届高三模拟试卷) (13分)如图所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 等高的D 点,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 处的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上的时间t 。

高考物理专题平抛运动与斜面、圆周运动相结合问题

高考物理专题平抛运动与斜面、圆周运动相结合问题

四、平抛运动与斜面、圆周运动相结合问题平抛运动问题经常会与斜面、圆周等相结合,此类问题的运动情景与规律方法具有一定的规律性,总结如下:运动情景物理量分析方法归纳v y =gt,tan θ=v 0v y =v 0gt →t=v 0gtanθ→求x 、y分解速度,构建速度三角形,确定时间,进一步分析位移x=v 0t,y=12gt 2→ tan θ=y x →t=2v 0tanθg→求v 0,v y分解位移,构建位移三角形tan θ=v y v 0=gt v 0 →t=v 0tanθgP 点处速度与斜面平行,分解速度,求离斜面最远的时间落到斜面合速度与水平方向夹角φ→ tan φ=gt v 0=gt 2v 0t =2yx=2 tan θ→α=φ-θ 小球到达斜面时的速度方向与斜面的夹角α为定值,与初速度无关tan θ=v y v 0=gt v 0 →t=v 0tanθg小球平抛时沿切线方向进入凹槽时速度方向与水平方向夹角为θ,可求出平抛运动时间在半圆内的平抛运动(如图),由半径和几何关系知时间t,h=12gt 2,R+√R 2-h 2=v 0t联立两方程可求t水平位移、竖直位移与圆半径构筑几何关系可求运动时间几何约束与平抛规律结合的问题是平抛问题的常见题型,解答此类问题除要运用平抛的位移和速度规律外,还要充分运用几何,找出满足的其他关系,从而使问题顺利求解。

典例1 (多选)如图所示,从倾角为θ的足够长的斜面上的某点先后将同一小球以不同初速度水平抛出,小球均落到斜面上,当抛出的速度为v 1时,小球到达斜面时的速度方向与斜面的夹角为α1,当抛出的速度为v 2时,小球到达斜面时的速度方向与斜面的夹角为α2,则( )A.当v 1>v 2时,α1>α2B.当v 1>v 2时,α1<α2C.无论v 1、v 2大小如何,均有α1=α2D.2 tan θ= tan (α1+θ)答案 CD 建立数学模型,写出v 的函数表达式,讨论v 与α的关系。

高考物理专题---平抛运动-圆周运动及参考答案

高考物理专题---平抛运动-圆周运动及参考答案

高考专题四:平抛运动 圆周运动一、选择题。

本题共16小题。

(每小题6分,共96分。

第1—8题在每小题给出的四个选项中,只有一项符合题目要求,第9—16题有的有多项符合题目要求。

)1.如图所示,帆板在海面上以速度v 朝正西方向运动,帆船以速度v 朝正北方向航行,以帆板为参照物( )A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v2.取水平地面为重力势能零点。

一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。

不计空气阻力,该物块落地时的速度方向与水平方向的夹角为( ) A.6π B. 4π C. 3π D. 125π3.如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下。

重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A.Mg-5mgB.Mg+mgC. Mg+5mgD. Mg+10mg4.如图,一半径为R ,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平。

一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道。

质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小。

用W 表示质点从P 点运动到N 点的过程中客服摩擦力所做的功。

则( )A. mgR W 21=,质点恰好可以到达Q 点 B. mgR W 21>,质点不能到达Q 点C. mgR W 21=,质点到达Q 后,继续上升一段距离D. mgR W 21<,质点到达Q 后,继续上升一段距离5.小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放,在各自轨迹的最低点.( )A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度6.如图所示,汽车用跨过定滑轮的轻绳提升物块A.汽车匀速向右运动,在物块A到达滑轮之前,关于物块A,下列说法正确的是( )A.将竖直向上做匀速运动B.将处于超重状态C.将处于失重状态D.将竖直向上先加速后减速7.如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是( )A.A球的角速度等于B球的角速度B.A球的线速度大于B球的线速度C.A球的运动周期小于B球的运动周期D.A球对筒壁的压力大于B球对筒壁的压力8.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4 m,最低点处有一小球(半径比r小得多).现给小球一个水平向右的初速度v0,要使小球不脱离圆轨道,则v0应满足(取g=10 m/s2)( )①v0≥0 ②v0≥4 m/s③v0≥2 5 m/s ④v0≤2 2 m/sA.①和④B.②或④C.③或④D.②和③9.“水流星”是一种常见的杂技项目,该运动可以简化为细绳一端系着小球在竖直平面内的圆周运动模型,如图所示,已知绳长为l,重力加速度为g,则( )A.小球运动到最低点Q时,处于失重状态B.小球初速度v0越大,则在P、Q两点绳对小球的拉力差越大C.当v0>6gl时,小球一定能通过最高点PD.当v0<gl时,细绳始终处于绷紧状态10.为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片后,A 球水平抛出,同时B 球被松开,自由下落,关于该实验,下列说法中正确的有( ) A.两球的质量应相等 B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A 球在水平方向上做匀速直线运动11.如图所示,斜面倾角为θ,位于斜面底端A 正上方的小球以初速度v 0正对斜面顶点B 水平抛出,小球到达斜面经过的时间为t ,重力加速度为g ,则下列说法中正确的是( ) A.若小球以最小位移到达斜面,则t =2v 0g tan θB.若小球垂直击中斜面,则t =v 0g tan θC.若小球能击中斜面中点,则t =2v 0g tan θD.无论小球怎样到达斜面,运动时间均为t =2v 0tan θg12.质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图线分别如图甲、乙所示,由图可知( )A.最初4 s 内物体的位移为8 2 mB.从开始至6 s 末物体都做曲线运动C.最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D.最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动13.如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P 。

2020高考物理一轮复习单元综合专题(四)平抛运动与圆周运动课件新人教版

2020高考物理一轮复习单元综合专题(四)平抛运动与圆周运动课件新人教版

A.若 M 盘转动角速度 ω=2πrv0,则小球抛出时 O′的高度 为2gvr022
B.若小球抛出时到 O′的高度为2gvr022,则当 M 盘转动时角速 度必为 ω=2πrv0
C.只要 M 盘转动角速度满足 ω=2n5πrv0(n∈N+),小球就可 能落在 C 点
D.只要小球抛出时到 O′的高度恰当,小球就可能落在 C 点
(1)求 A 做匀速圆周运动时绳与竖直方向夹角 θ; (2)求摇动细管过程中手所做的功; (3)轻摇细管可使 B 在管口下的任意位置处于平衡,当 B 在 某一位置平衡时,管内一触发装置使绳断开,求 A 做平抛运动的 最大水平距离.
答案
例 1 如图所示,在圆柱形房屋天花板中心 O 点 悬挂一根长为 L 的细绳,绳的下端挂一个质量为 m 的 小球,已知绳能承受的最大拉力为 2mg,小球在水平 面内做圆周运动,当速度逐渐增大到绳断裂后,小球 恰好以速度 v2= 7gL落到墙脚边.求:
(1)绳断裂瞬间的速度 v1; (2)圆柱形房屋的高度 H 和半径.
5.(2018·江苏二模)如图所示,长为 3l 的不可伸 长的轻绳,穿过一长为 l 的竖直轻质细管,两端拴 着质量分别为 m、 2m 的小球 A 和小物块 B,开 始时 B 先放在细管正下方的水平地面上.手握细管 轻轻摇动一段时间后,B 对地面的压力恰好为零,A 在水平面内 做匀速圆周运动.已知重力加速度为 g,不计一切阻力.
(1)小球从 A 点进入圆筒时的速度大小可能值; (2)圆筒匀速转动的角速度的可能值.
【答案】 (1)v1=2 m/s,v2=0.5 m/s (2)ω1=5336π+10πk(k =0、1、2、3…),
ω 2=12376π+10πk(k=0、1、2、3…). 【解析】 如图所示,设小球离开圆筒时, 小孔 A 转到 B 或 C 位置. (1) 小 球 在 圆 筒 中 运 动 过 程 中 下 落 高 度 为 h, h=12gt2,

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题(含答案)

平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地 面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s下落高度h = =0.8 m(2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°)=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2,a 2=μmg M=1 m/s 2速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度.2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动,输出动力.当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h=5.6 m,轮子半径R=1 m.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)问:(1)水流的初速度v0大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?答案(1)7.5 m/s(2)12.5 rad/s解析(1)水流做平抛运动,有h-R sin 37°=1 2gt2解得t=2(h-R sin 37°)g=1 s所以v y=gt=10 m/s,由图可知:v0=v y tan 37°=7.5 m/s.(2)由图可知:v=v0sin 37°=12.5 m/s,根据ω=vR可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m RvC 2(2分)所以v C =5 m/s (1分)(2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分)在D 点:mg +F N =m v D 2r (2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则 12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t (1分)解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m (3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m=30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空 气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小. 答案 (1)4.4 m/s 2 (2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma ① 又F f =μF N ② F N =mg cos θ ③ 联立①②③式解得:a =4.4 m/s 2 ④ (2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0 ⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N . ⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2 ①在水平方向上有s =v 0t ②由①②式解得v 0=s g2H代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 0 2R ③f m =μN =μmg ④由③④式得μ=v 0 2gR代入数据得μ=0.26、 (2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)113mg (3)d 2 2 33d 解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2= 52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 1 2R得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 3 2l,解得v 3= 83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:(1)小球在C 点对滑杆的压力; (2)小球在B 点的速度大小;(3)BC 过程小球克服摩擦力所做的功. 答案 (1)32mg ,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2 ①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg ③ 小球从A 到B 由动能定理有:F cos 37°·s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:(1)摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 1 2R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 2 2R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510s 设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α=3 所以:α=60°由几何关系得:θ=α=60°.9、 水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图3所示,小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的 d 点,则 ( ) A .小球到达c 点的速度为gR B .小球到达b 点时对轨道的压力为5mg C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确;小球由b 到c 过程中,由机械能守恒定律得: 12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得F N =6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2 Rg ,x =2R ,C 、D 项正确.10、 如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则 ( )A .tan θ2tan θ1=2 B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2D .tan θ1tan θ2=2答案 B解析 由题意可知:tan θ1=v y v x =gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)物块离开A 点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2gh v y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2P A 间的距离x P A =v A 22a=1.5 m.12、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道. 已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求: (1)物块经过轨道上的C 点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°)=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.13、 某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg , 通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2m in ,由此解得t =2.53 s。

平抛与圆周运动综合

平抛与圆周运动综合

平抛与圆周运动综合【方法归纳】所谓平抛与圆周运动综合是指物体先做圆周运动后做平抛运动或先做平抛运动后做竖直面内的圆周运动。

解答此类题的策略是:根据物体的运动过程,分别利用平抛运动的规律和圆周运动的规律列方程解得。

例34.(2010重庆理综)晓明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动,当球某次运动到最低点时,绳突然断掉。

球飞离水平距离d 后落地,如图9所示,已知握绳的手离地面高度为d ,手与球之间的绳长为3d/4,重力加速度为g ,忽略手的运动半径和空气阻力。

(1) 求绳断时球的速度大小v 1,和球落地时的速度大小v 2。

(2) 问绳能承受的最大拉力多大?(3) 改变绳长,使球重复上述运动。

若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?【解析】(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向 41d=21gt 2水平方向d=v 1t ,联立解得v 1=gd 2。

由机械能守恒定律,有21mv 22=21mv 12+mg (d -3d /4) 解得v 2=gd 25。

(2) 设绳能承受的拉力大小为T ,这也是球受到绳的最大拉力。

球做圆周运动的半径为R =3d/4对小球运动到最低点,由牛顿第二定律和向心力公式有T-mg=m v 12/R , 联立解得T=311mg 。

(3) 设绳长为L ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有 T-mg=m v 32/L解得v 3=L g 38。

绳断后球做平抛运动,竖直位移为d-L ,水平位移为x ,飞行时间为t 1,根据平抛运动规律有d-L =21gt 12,x = v 3 t 1 联立解得x =4()3L d L -. 当L=d /2时,x 有极大值,最大水平距离为x max =332d . 【点评】此题将竖直面内的圆周运动和平抛运动有机结合,涉及的知识点由平抛运动规律、牛顿运动定律、机械能守恒定律、极值问题等,考查综合运用知识能力。

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(讲)(含解析)

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(讲)(含解析)

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.掌握平抛运动、圆周运动问题的分析方法.2.能利用动能定理、功能关系、能量守恒定律分析平抛运动和圆周运动组合问题.高考试题中常常以能量守恒为核心考查重力、摩擦力、电场力、磁场力的做功特点,以及动能定理、机械能守恒定律和能量守恒定律的应用.分析时应抓住能量核心和各种力做功的不同特点,运用动能定理和能量守恒定律进行分析.考点一 平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型案例★如图所示,遥控赛车比赛中的一个项目是“飞跃壕沟”,比赛要求:赛车从起点出发,沿水平轨道运动,通过遥控通电控制加速时间,使赛车可以在B 点以不同的速度“飞跃壕沟”,落在平台EF 段后竖直分速度将减为零,水平分速度保持不变。

已知赛车的额定功率P =10.0W ,赛车的质量m =1.0kg ,在水平直轨道AB 和EF 上受到的阻力均为 2.0f F N =,AB 段长110.0L m =,EF 段长2 4.5L m =,B 、E 两点的高度差h =1.25m ,B 、E 两点的水平距离x =1.5m 。

赛车车长不计,空气阻力不计,重力加速度210/g m s =。

(1)为保证赛车能停在平台EF 上,求赛车在B 点飞出的速度大小的范围。

(2)若在比赛中赛车通过A 点时速度1/A v m s =,且已经达到额定功率,要使赛车完成比赛,求赛车在AB 段的遥控通电时间范围。

【答案】(1)3.0~4.0m/s (2)2.4 s ~2.75s【名师点睛】本题要正确分析赛车在水平轨道上运动的运动情况,抓住牵引力与摩擦力平衡时速度最大是关键点之一.赛车从平台飞出后做平抛运动,如果水平位移大于等于壕沟宽度赛车就可以越过壕沟。

二轮复习专项分层特训专项4抛体运动和圆周运动(含答案)

二轮复习专项分层特训专项4抛体运动和圆周运动(含答案)

2023届二轮复习专项分层特训 专项4 抛体运动和圆周运动(含答案)一、单项选择题1.[2022·辽宁模拟卷]某小组的同学到劳动实践基地进行劳动锻炼,任务之一是利用石碾将作物碾碎,如图所示.两位男同学通过推动碾杆,可使碾杆和碾轮绕碾盘中心的固定竖直轴O 转动,同时碾轮在碾盘上滚动,将作物碾碎.已知在推动碾轮转动的过程中,两位男同学的位置始终关于竖直轴对称,则下列选项中两男同学一定相同的是( )A .线速度B .角速度C .向心加速度D .向心力的大小2.[2022·全国甲卷]北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示.运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h .要求运动员经过c 点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A .hk +1B .h kC .2hkD .2h k -13.[2022·广东卷]如图是滑雪道的示意图.可视为质点的运动员从斜坡上的M 点由静止自由滑下,经过水平NP 段后飞入空中,在Q 点落地.不计运动员经过N 点的机械能损失,不计摩擦力和空气阻力.下列能表示该过程运动员速度大小v 或加速度大小a 随时间t 变化的图像是( )4.[2022·广东卷,6]如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L .当玩具子弹以水平速度v 从枪口向P 点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t .不计空气阻力.下列关于子弹的说法正确的是( )A .将击中P 点,t 大于Lv B .将击中P 点,t 等于Lv C .将击中P 点上方,t 大于LvD.将击中P点下方,t等于L v5.[2022·广东茂名一模]大雾天气,司机以10 m/s的速度在水平路面上向前行驶,突然发现汽车已开到一个丁字路口(如图所示),前方15 m处是一条小河,司机可采用紧急刹车或紧急转弯两种方法避险.已知汽车与地面之间的动摩擦因数为0.6,g=10 m/s2,最大静摩擦力等于滑动摩擦力,下列措施中正确的是()A.紧急刹车B.紧急转弯C.两种都可以D.两种都不可以二、多项选择题6.[2022·河北省模拟题]智能呼啦圈轻便美观,深受大众喜爱.如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示.可视为质点的配重质量为0.5 kg,绳长为0.5 m,悬挂点P到腰带中心点O的距离为0.2 m.水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看作不动,重力加速度g取10 m/s2,sin 37°=0.6,下列说法正确的是()A.匀速转动时,配重受到的合力恒定不变B.若增大转速,腰带受到的合力变大C.当θ稳定在37°时,配重的角速度为15rad/sD.当θ由37°缓慢增加到53°的过程中,绳子对配重做正功7.[2022·重庆二诊]如图所示,空间中匀强磁场的方向为竖直方向(图中未画出),质量为m,电荷量为+q的小球在光滑圆锥上以速度大小v做匀速圆周运动(从上往下看是逆时针),其运动平面与圆锥轴线垂直且到圆锥顶点的距离为h,已知重力加速度为g,圆锥半顶角为θ,下列说法正确的是()A.磁场方向竖直向下B.小球转一圈的过程中,重力的冲量为0C.圆锥对小球的支持力大小为mg sin θD.磁感应强度大小为mgq v tan θ+m vqh tan θ三、非选择题8.[2022·全国甲卷]将一小球水平抛出,使用频闪仪和照相机对运动的小球进行拍摄,频闪仪每隔0.05 s发出一次闪光.某次拍摄时,小球在抛出瞬间频闪仪恰好闪光,拍摄的照片编辑后如图所示.图中的第一个小球为抛出瞬间的影像,每相邻两个球之间被删去了3个影像,所标出的两个线段的长度s1和s2之比为3∶g=10 m/s2,忽略空气阻力.求在抛出瞬间小球速度的大小.9.[2022·湖北省模拟题]2022年2月8日,18岁的中国选手谷爱凌在北京冬奥会自由式滑雪女子大跳台比赛中以绝对优势夺得金牌,这是中国代表团在北京冬奥会上的第三枚金牌,被誉为“雪上公主”的她赛后喜极而泣.现将比赛某段过程简化成如图可视为质点小球的运动,小球从倾角为α=30°的斜面顶端O 点以v 0飞出,已知v 0=20 m/s ,且与斜面夹角为θ=60°.图中虚线为小球在空中的运动轨迹,且A 为轨迹上离斜面最远的点,B 为小球在斜面上的落点,C 是过A 作竖直线与斜面的交点,不计空气阻力,重力加速度取g =10 m/s 2.求:(1)小球从O 运动到A 点所用时间t ; (2)小球离斜面最远的距离L ; (3)O 、C 两点间距离x .10.动画片《熊出没》中有这样一个情节:某天熊大和熊二中了光头强设计的陷阱,被挂在了树上(如图甲),聪明的熊大想出了一个办法,让自己和熊二荡起来使绳断裂从而得救,其过程可简化如图乙所示,设悬点为O ,离地高度为2L ,两熊可视为质点且总质量为m ,绳长为L2且保持不变,绳子能承受的最大张力为3mg ,不计一切阻力,重力加速度为g ,求:(1)设熊大和熊二刚好在向右摆到最低点时绳子刚好断裂,则他们的落地点离O 点的水平距离为多少;(2)改变绳长,且两熊仍然在向右到最低点绳子刚好断裂,则绳长为多长时,他们的落地点离O 点的水平距离最大,最大为多少;(3)若绳长改为L ,两熊在水平面内做圆锥摆运动,如图丙,且两熊做圆锥摆运动时绳子刚好断裂,则他们落地点离O 点的水平距离为多少.专项4 抛体运动和圆周运动1.解析:线速度、向心加速度都是矢量,两同学的线速度和向心加速度的大小相等,但方向相反,所以不相同,故A 、C 错误;两同学的运动为同轴传动,故两者的角速度一定相同,故B 正确;两同学的质量大小未知,所以无法判断两者所受向心力的大小关系,故D 错误.答案:B2.解析:运动员从a 处滑至c 处,mgh =12 m v 2c -0,在c 点,N -mg =m v 2c R ,联立得N =mg ⎝⎛⎭⎫1+2hR ,由题意,结合牛顿第三定律可知,N =F 压≤kmg ,得R ≥2hk -1,故D 项正确.答案:D3.解析:根据题述可知,运动员在斜坡上由静止滑下做加速度小于g 的匀加速运动,在NP 段做匀速直线运动,从P 飞出后做平抛运动,加速度大小为g ,速度方向时刻改变、大小不均匀增大,所以只有图像C 正确.答案:C4.解析:由于子弹水平射出后做平抛运动,小积木做自由落体运动,二者竖直方向运动状态相同,所以将击中P 点.子弹水平方向做匀速直线运动,由L =v t 可得t =Lv ,B 项正确.答案:B5.解析:由题意知紧急刹车的位移为x =v 22a ,又由牛顿第二定律得μmg =ma ,解得x ≈8.3m<15 m ,故紧急刹车是安全的,转弯时静摩擦力提供向心力,最大静摩擦力为μmg ,根据向心力公式有μmg=m v2r m,解得r m=16.7 m>15 m,如果转弯半径小于r m=16.7 m时需要更大的向心力,汽车容易发生侧翻是不安全的,选项A正确.答案:A6.解析:匀速转动时,配重受到的合力提供向心力,大小恒定不变,方向指向圆心,时刻改变,故A错误;腰带受力平衡,受到的合力为0,故B错误;对配重受力分析如图所示:根据向心力公式有:mg tan θ=m(d+l sin θ)ω2, d=0.2, l=0.5, θ=37°,解得:ω=15 rad/s,故C正确;当θ由37°缓慢增加到53°的过程中,需要加速,动能增加,同时配重高度上升,重力对配重做负功,故绳子对配重做正功,故D正确.答案:CD7.解析:由左手定则可知,磁场方向竖直向下,故A正确;小球转一圈的过程中,重力的冲量等于重力与时间的乘积,所以重力的冲量不等于零,故B错误;对小球进行受力分析可知,小球受到重力mg,垂直圆锥母线的支持力F N,水平方向的洛伦兹力q v B,沿水平和竖直方向正交分解,有F N sin θ=mg, q v B-F N cos θ=m v2h tan θ,解得F N=mgsin θ,磁感应强度大小为B=mgq v tan θ+m vqh tan θ,故C错误,D正确.答案:AD8.解析:依题意,相邻两球影像间隔的时间t =4t 0=0.2 s设初速度大小为v 0,如图所示:由O 到A ,水平方向:x 1=v 0t 竖直方向:y 1=12 gt 2又s 1=x 21 +y 21由A 到B ,水平方向:x 2=v 0t 竖直方向:y 2=12 g (2t )2-12 gt 2又s 2=x 22 +y 22s 1s 2 =37联立解得v 0=255 m/s答案:255 m/s9.解析:(1)将速度分解,如图,当小球速度与斜面平行时到达A 点 垂直斜面方向:v 1=v 0sin θ,a 1=g cos α,t =v 1α1 ,得:t =2 s(2)垂直斜面方向v 1匀减速至0时有:L =v 212a 1 ,代入数据得:L =103 m(3)由垂直斜面方向运动对称性可得小球从O 到A 与A 到B 所用时间相等 平行斜面方向:a 2=g sin α,v 2=v 0cos θ,x OB =v 22t +12 a 2(2t )2小球在水平方向做匀速直线运动,C 为OB 中点,则x =12 x OB代入数据解得:x =40 m答案:(1)2 s (2)103 m (3)40 m 10.解析:(1)在最低点3mg -mg =m v 21 L 2绳子断后,两熊做平抛运动,则32 L =12 gt 21两熊落地点离O 点的水平距离x 1=v 1t 1联立可得x 1=3 L(2)设绳长为d ,则在最低点3mg -mg =m v 22d绳子断后,两熊做平抛运动,则2L -d =12 gt 22两熊落地点离O 点的水平距离x 2=v 2t 2即x 2=2(2L -d )d则当d =L 时,两熊落地点离O 点水平距离最远,此时最大值x 2=2L(3)两熊做圆锥摆运动时,设绳子与竖直方向的夹角为θ时,绳子被拉断.竖直方向3mg cos θ=mg 水平方向3mg sin θ=m v 23L sin θ此时两熊离地面的高度为h =2L -L cos θ 此后两熊做平抛运动h =12 gt 23水平位移x 3=v 3t 3由几何关系:落地点到O 点的水平距离s =(L sin θ)2+x 23联立可求得s =2223L答案:(1)3 L (2)d =L 时 2L (3)2223 L。

2020-2021【名校提分专用】年高考物理一轮复习 专题4.10 平抛运动与圆周运动综合问题千题精练

2020-2021【名校提分专用】年高考物理一轮复习 专题4.10 平抛运动与圆周运动综合问题千题精练

专题4.10 平抛运动与圆周运动综合问题一.选择题1. (2018徐州期中)如图所示,链球上面安有链子和把手。

运动员两手握着链球的把手,人和球同时快速旋转,最后运动员松开把手,链球沿斜向上方向飞出,不计空气阻力。

关于链球的运动, 下列说法正确的有A.链球脱手后做匀变速曲线运动B.链球脱手时沿金属链方向飞出C.链球抛出角度一定时,脱手时的速率越大,则飞得越远D.链球脱手时的速率一定时,抛出角度越小,一定飞得越远 【参考答案】AC2(2018湖北荆州第一次质检)如图所示,一位同学玩飞镖游戏。

圆盘最上端有一P 点,飞镖抛出时与P 等高,且距离P 点为L 。

当飞镖以初速度v 0垂直盘面瞄准P 点抛出的同时,圆盘以经过盘心O 点的水平轴在竖直平面内匀速转动。

忽略空气阻力,重力加速度为g ,若飞镖恰好击中P 点,则v 0可能为 ( )A .2LωπB .2L ωπC .3L ωπD .4L ωπ.【参考答案】C3. 如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰。

已知半圆形管道的半径R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2。

则( )A.小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB.小球在斜面上的相碰点C 与B 点的水平距离是1.9 mC.小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND.小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【参考答案】AC【名师解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误。

高二学考专题11平抛运动与圆周运动组合问题

高二学考专题11平抛运动与圆周运动组合问题

高二学考专题11平抛运动与圆周运动组合问题考点一平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型例题★如图甲所示,在高h =0.8m的平台上放置一质量为M=1kg的小木块(视为质点),小木块距平台右边缘d =2m。

现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。

小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:(1)小木块滑出时的速度v;(2)小木块在水平面滑动的时间t;(3)小木块在滑动过程中产生的热量Q。

★针对练习1★如图所示,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上。

忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是:()A.v0越大,运动员在空中运动时间越长B.B.v0越大,运动员落地时重力的瞬时功率越大C.v0越大,运动员落地时机械能越大D.v0越大,运动员落地时偏离水平水平方向的夹角越大考点二平抛运动与圆周运动的组合问题1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.2.平抛运动与圆周运动的衔接点的速度是解题的关键.★典型例题★如图所示为圆弧形固定光滑轨道,a点切线方向与水平方向夹角53o,b点切线方向水平。

一小球以水平初速度6m/s做平抛运动刚好能沿轨道切线方向进入轨道,已知轨道半径1m ,小球质量1kg 。

(sin53o =0.8,cos53o =0.6,g =10m/s 2)求 (1)小球做平抛运动的飞行时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题四 平抛运动与圆周运动的综合问题
1.(多选)由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是 ( )
A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2
B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2
C .小球能从细管A 端水平抛出的条件是H >2R
D .小球能从细管A 端水平抛出的最小高度H min =52
R 答案:BC 解析:设小球从A 端水平抛出的速度为v A ,由机械能守恒,得mgH =mg ·2R +12m v 2A ,得v A =2gH -4gR ,设空中运动时间为t ,由2R =12
gt 2,得t =2R g ,水平位移x 水=v A t =2gH -4gR ·2R g
=22RH -4R 2,故B 正确.小球能从细管A 端水平抛出的条件是D 点应比A 点高,即H >2R ,C 正确.
2.半径为R 的光滑半圆轨道BCD 与光滑水平抛道BA 在B 处相切,小球弹射器P 弹射的小钢球恰能从半圆轨道的最高点D 处沿切线进入轨道内,并沿半圆轨道做圆周运动,弹射器射管轴线与水平面成θ角,射管管口到B 点的距离为x ,管口到水平面的高度不计,取重力加速度为g ,不计空气阻力,则下列结论不正确的是( )
A .x 有最小值,且最小值x min =2R
B .θ有最大值,且最大值的正切值tan θmax =2
C .若增大x ,要保证小球仍从
D 处切入圆轨道,则小球过D 点时对轨道的压力减小
D .若减小θ,要保证小球仍从D 处切入圆轨道,则小球弹出时的速度增大
答案:C 解析:小球从最高点D 进入圆轨道并做圆周运动,应满足F N +mg =m v 2x R ,则进入轨道的最小速度v min =gR .小球从射出到进入圆轨道,可看作反向的平抛运动,水平方
向x =v x t ,竖直方向2R =12
gt 2,代入最小速度得x 的最小值x min =2R ,A 选项正确;小球的竖直速度v y =gt =2gR 为定值,则v x 越小,θ越大,故tan θmax =v y v min
=2,反之,θ越小,v x 越大,小球射出时的速度v =v 2x +v 2y 越大,B 、D 两项正确;由于小球在空中的运动时间
t =2R g 是定值,因此x 越大,v x 越大,由F N +mg =m v 2x R
可知小球在D 点对轨道的压力越大,C 选项错误.
3.如图所示,质量为m =0.2 kg 的小球(可视为质点)从水平桌面右端点A 以初速度v 0水平抛出,桌面右侧有一竖直放置的光滑轨道MNP ,其为半径R =0.8 m 的圆环剪去了左上角135°的圆弧,MN 为其竖直直径.P 点到桌面的竖直距离为R .小球飞离桌面后恰由P 点无碰撞地落入圆轨道,取g =10 m/s 2.
(1)求小球在A 点的初速度v 0及AP 间的水平距离x ;
(2)求小球到达圆轨道最低点N 时对N 点的压力;
(3)判断小球能否到达圆轨道最高点M .
答案:见解析
解析:(1)小球由A 点做平抛运动,在P 点恰好沿圆轨道的切线进入轨道,则小球在P 点的竖直分速度为v y =v tan 45°=v 0
由平抛运动规律得v y =gt ,R =12
gt 2,x =v 0t 解得v 0=4 m/s ,x =1.6 m.
(2)小球在P 点的速度为v =v 20+v 2y =4 2 m/s
小球从P 点到N 点,由动能定律得
mgR (1-cos 45°)=12m v 2N -12
m v 2 小球在N 点,由牛顿第二定律得
F N -mg =m v 2N R
解得小球所受支持力F N =(14-22) N
由牛顿第三定律得,小球对N 点的压力为F N ′=(14-22) N ,方向竖直向下.
(3)假设小球能够到达M 点,对小球由P 点到M 点由动能定理得
mgR (1+cos 45°)=12m v 2-12
m v ′2 解得v ′=16-8 2 m/s
小球能够完成圆周运动,在M 点须有mg ≤m v 2M R
即v M ≥gR =8 m/s
由v ′<v M 知,小球不能到达圆轨道最高点M .
4.(2015·青岛模拟)如图所示,水平放置的圆盘半径为R =1 m ,在其边缘C 点固定一个高度不计的小桶,在圆盘直径CD 的正上方放置一条水平滑道AB ,滑道与CD 平行.滑道右端B 与圆盘圆心O 在同一竖直线上,其高度差为h =1.25 m .在滑道左端静止放置质量为m =0.4 kg 的物块(可视为质点),物块与滑道间的动摩擦因数为μ=0.2.当用一大小为F =4 N 的水平拉力向右拉动物块的同时,圆盘从图示位置以角速度ω=2π rad/s ,绕穿过圆心O 的竖直轴匀速转动,拉力作用一段时间后撤掉,物块在滑道上继续滑行,过B 点水平抛出,恰好落入小桶内.取重力加速度g =10 m/s 2.
(1)求拉力作用的最短时间;
(2)若拉力作用时间为0.5 s ,求所需滑道的长度.
答案:(1)0.3 s (2)4 m
解析:(1)物块做平抛运动,设水平初速度为v ,所用时间为t ,则
水平方向R =v t 竖直方向h =12
gt 2 解得物块离开滑道时的速度v =2 m/s ,t =0.5 s
设拉动物块时的加速度为a 1,所用时间为t 1,由牛顿第二定律得
F -μmg =ma 1
解得a 1=8 m/s 2
撤去拉力后,设物块的加速度大小为a 2,所用时间为t 2,由牛顿第二定律得
μmg =ma 2
解得a 2 =2 m/s 2
盘转过一圈时落入,拉力时间最短,盘转过一圈时间
T =2πω
=1 s
物块在滑道上先加速后减速,则
v =a 1t 1-a 2t 2
物块滑行时间、抛出在空中时间与圆盘周期关系为 t 1+t 2+t =T
解得t 1=0.3 s.
(2)物块加速t 1′=0.5 s 的末速度
v 1=a 1t 1′=4 m/s
则滑道长L =x 1+x 2=12a 1t 1′2+v 2-v 21-2a 2
=4 m.。

相关文档
最新文档