高考数学圆周运动综合复习(含知识点和例题详解)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动
一、描述述圆周运动物理量: 1、线速度=
时间弧长 t
s
v = 矢量方向――切向 理解:单位时间内通过的弧长
匀速圆周运动不匀速,是角速度不变的运动 可理解为前面学过的即时速度 2、角速度=
时间角度 t
ϕ
ω= 矢量方向――不要求 单位:rad / s 弧度/ 秒 理解:单位时间内转过的角度
3 线速度和角速度是从两个不同的角度去描速同一个运动的快慢
3、周期和频率
周期(T )――物体运动一周所用的时间
频率(f )――单位时间内完成多少个圆周, 周期倒数(Hz S -
1) f
T 1=
转速(n )――单位时间内转过的圈数 (r/s r/min )
【例1】如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、加速度之比。
解析:v a = v c ,而v b ∶v c ∶v d =1∶2∶4,所以v a ∶ v b ∶v c ∶v d =2∶1∶2∶4;ωa ∶ωb =2∶1,而ωb =ωc =ωd ,所以ωa ∶ωb ∶ωc ∶ωd =2∶1∶1∶1;再利用a =v ω,可得a a ∶a b ∶a c ∶a d =4∶1∶2∶4 二、向心力和加速度 1、大小F =m ω2 r r
v
m
F 2
= 2、方向: 把力分工—切线方向, 改变速度大小
半径方向, 改变速度方向,充当向心力 注意:区分匀速圆周运动和非匀速圆周运动的力的不同 3、来源:一个力、某个力的分力、一些力的合力
向心加速度a :(1)大小:a =ππω44222
2===r T
r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。
三、应用举例
(临界或动态分析问题)
提供的向心力 需要的向心力r
v m 2
= 圆周运动 > 近心运动
< 离心运动 =0 切线运动
1、火车转弯
如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供
r
v m mg 2
tan =ααtan gr v =⇒,v 增加,外轨挤压,如果v 减小,内轨挤压
问题:飞机转弯的向心力的来源
2、汽车过拱桥
r
v m N mg 2
cos =-θ
mg sin θ = f 如果在最高点,那么
r
v m N mg 2
=- 此时汽车不平衡,mg ≠N
说明:F =mv 2 / r 同样适用于变速圆周运动,F 和v
补充 :r
v m mg N 2
=- (抛体运动)
3、圆锥问题
θ
ωωθωθθtan tan cos sin 22
r g r
g
r m N mg
N =
⇒=
⇒==
例:小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直
方向的夹角)与线速度v 、周期T 的关系。
22
sin sin tan θωθ
θmR R mv mg ==,
由此可得:g
h g R T gR v πθπ
θθ2cos 2,sin tan ===,
4、绳杆球
N
F
θ
绳
F
G G
F N
mg
N
mg
这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。
①弹力只可能向下,如绳拉球。这种情况下有mg R
mv mg F ≥=+2
即gR v ≥,否则不能通过最高点。
②弹力只可能向上,如车过桥。在这种情况下有:gR v mg R
mv F mg ≤∴≤=-,2
,否则车将离开桥面,做平抛运动。
③弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v 可以取任意值。但可以进一步讨论:①当gR v >
时物体受到的弹力必然是向下的;当gR v <时物体受到的弹力必然是向上的;当
gR v =时物体受到的弹力恰好为零。②当弹力大小F
力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。
四、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题)
1.向心力 (1)大小:R f m R T
m R m R v m ma F 22222
244ππω=====向 (2)方向:总指向圆心,时刻变化
2.处理方法:
一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。
做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:F n =ma n 在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用R T m R m R mv 2
222⎪⎭
⎫ ⎝⎛πω或或等各种形式)。 【例1】 如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h 的A 处静止开始下滑,沿轨道ABC 运动后进入圆环内作圆周运动。已知小球所受到电场力是其重力的3/4,圆滑半径为R ,斜面倾角为θ,s BC =2R 。若使小球在圆环内能作完整的圆周运动,h 至少为多少?
解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F ,如图
所示。可知F =1.25mg ,方向与竖直方向左偏下37º,从图6中可知,能否作完整的圆周运动的临界点是能否通过D 点,若恰好能通过D 点,即达到D 点时球与环的弹力恰好为零。
由圆周运动知识得:R v m F D 2= 即:R
v m mg D
225.1=