高中物理圆周运动与动量综合问题题型总结精讲精练讲解

合集下载

高中物理圆周运动专题讲解

高中物理圆周运动专题讲解

圆周运动的向心力及其应用【要点梳理】要点一、物体做匀速圆周运动的条件要点诠释:物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。

要点二、关于向心力及其来源1、向心力要点诠释(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力.(2)向心力的作用:是改变线速度的方向产生向心加速度的原因。

(3)向心力的大小:22vF ma m mrrω===向向向心力的大小等于物体的质量和向心加速度的乘积;对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。

如果是匀速圆周运动则有:22222244vF ma m mr mr mr fr Tπωπ=====向向(4)向心力的方向:与速度方向垂直,沿半径指向圆心。

(5)关于向心力的说明:①向心力是按效果命名的,它不是某种性质的力;②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小;③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。

2、向心力的来源要点诠释(1)向心力不是一种特殊的力。

重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。

(2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):要点三、匀速圆周运动与变速圆周运动的区别1、从向心力看匀速圆周运动和变速圆周运动要点诠释:(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。

例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。

最新圆周运动知识要点、受力分析和题目精讲(张晓整理)

最新圆周运动知识要点、受力分析和题目精讲(张晓整理)

高中圆周运动知识要点、受力分析和题目精讲(复习大全)一、基础知识匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。

匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。

为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度(「)等物理量,涉及的物理量及公式较多。

因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。

1.匀速圆周运动的基本概念和公式s Y?(1)线速度大小:丁,方向沿圆周的切线方向,时刻变化;$ 2开(2)角速度丄「,恒定不变量;T二丄(3)周期与频率.■;2 2 屮二-- =a = — =(4)向心力,,总指向圆心,时刻变化,向心加速度”方向与向心力相同;(5)线速度与角速度的关系为]二了,1'> :」、」、「的关系为2 加r,-v =——二朝二Z测/丁。

所以在也、T、了中若一个量确定,其余两个量也就确定了,而r还和'有关。

【例1】关于匀速圆周运动,下列说法正确的是()A.线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。

【例2】在绕竖直轴匀速转动的圆环上有 A 、B 两点,如图1所示,过A 、B 的半径 与竖直轴的夹角分别为30°和60 °,则A 、B 两点的线速度之比为 ;向心加速度之比为。

7寻3A■30°60_ BO解析:A 、B 两点做圆周运动的半径分别为V A 5,:13--- -- ------ -- --- -- -------- -----它们的角速度相同,所以线速度之比V BrB 33aA加速度之比aB2. 质点做匀速圆周运动的条件 (1) 具有一定的速度;(2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。

高一物理 必修2 5.4圆周运动的运动学问题 知识点总结 题型总结 同步巩固 新高考 练习

高一物理  必修2  5.4圆周运动的运动学问题   知识点总结   题型总结   同步巩固  新高考  练习

高中物理 必修2 圆周运动的运动学问题1、描述圆周运动的物理量描述圆周运动的基本参量有:半径、线速度、角速度、周期、频率、转速、向心加速度等。

(1)v =∆l∆t =2πr T =2πrf(2)ω=∆θ∆t =2πT(3)T =1f =2πr v3、圆周运动中的运动学分析 (1)对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。

(2)对a =v 2r=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。

在分析传动装置中的各物理量时,要抓住不等量和想等量的关系,具体有: (1)同一转轴的轮上各点角速度ω相同,而线速度v=ωr 与半径r 成正比。

(2)当皮带(或链条、齿轮)不打滑时,传动皮带上各点以及用皮带连接的两轮边沿上的各点线速度大小相等,而角速度ω=vr 与半径r 成反比。

(3)齿轮传动时,两轮的齿数与半径成正比,角速度与齿数成反比。

1、如图所示装置中,A、B、C三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比,周期之比,转速之比,频率之比。

答案:①2:1:2:4;②2:1:1:1;③4:1:2:4;④1:2:2:2;⑤2:1:1:1;⑥2:1:1:12、一个环绕中心线AB以一定的角速度转动,P、Q为环上两点,位置如图所示,下列说法正确的是(A)A.P、Q两点的角速度相等B.P、Q两点的线速度相等C.P、Q两点的角速度之比为3∶1D.P、Q两点的线速度之比为3∶13、自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示.正常骑行时三轮边缘的向心加速度之比a A∶a B∶a C等于(C)A.1∶1∶8 B.4∶1∶4C.4∶1∶32 D.1∶2∶44、如图所示,传动轮A、B、C的半径之比为2︰1︰2,A、B两轮用皮带传动,皮带不打滑,B、C两轮同轴,a、b、c三点分别处于A、B、C三轮的边缘,d点在A轮半径的中点。

高中物理生活中的圆周运动技巧小结及练习题含解析

高中物理生活中的圆周运动技巧小结及练习题含解析

高中物理生活中的圆周运动技巧小结及练习题含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤3.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或 EP≥mgR .4.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s5.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.6.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02hgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为:【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.3.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ=, A、 C碰撞时间极短,且只碰一次,取重力加快度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2因此: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v =1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =;4. 如下图,一质量 M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。

高中物理圆周运动与动量综合问题题型总结精讲精练

高中物理圆周运动与动量综合问题题型总结精讲精练

30.(合肥)质量为m=1kg 的小物块轻轻放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆孤轨道下滑。

B 、C 为圆弧的两端点,其连线水平。

已知圆弧半径R=1.0m 圆弧对应圆心角︒=106θ,轨道最低点为O ,A 点距水平面的高度h=0.8m 。

小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,0.8s 后经过D 点,物块与斜面间的滑动摩擦因数为1μ=0.33(g=10m/s 2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A 点的水平初速度v 1 (2)小物块经过O 点时对轨道的压力 (3)斜面上CD 间的距离(4)假设小物块与传送带间的动摩擦因数为=2μ0.3,传送带的速度为5m/s ,则PA 间的距离是多少?39.(巢湖)质量为M 的圆环用细线(质量不计)悬挂着,将两个质量均为m 的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T 随cos θ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T 的极小值及相应的cos θ值;(2)小球与圆环的质量比Mm 至少为多大时圆环才有可能上升?23.福建摸底如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。

槽内放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“”形槽的宽度略小。

现有半径r(r<<R)的金属小球以水平初速度V 0冲向滑块,从滑块的一侧半圆形槽口边缘进入。

已知金属小球的质量为m ,木质滑块的质量为3m ,整个运动过程中无机械能损失。

求:(1)当金属小球滑离木质滑块时,金属小球和木质滑块的速度各是多大;(2)当金属小球经过木质滑块上的半圆柱形槽的最右端A 点时,金属小球的对地速度。

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.2.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R3.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =4.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。

高一物理必修2圆周运动知识点总结和超典型例题分析有答案

高一物理必修2圆周运动知识点总结和超典型例题分析有答案

知识点一、匀速圆周运动⒈定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运动。

⒉运动性质:匀速圆周运动是 运动,而不是匀加速运动。

因为线速度方向时刻在变化,向心加速度方向时刻沿半径指向圆心,时刻变化⒊特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度v 、加速度a 、合外力、动量是不断变化的。

4、受力提特点: 。

1.关于匀速圆周运动,下列说法正确的是( )A .匀速圆周运动是匀速运动B .匀速圆周运动是匀变速曲线运动C .物体做匀速圆周运动是变加速曲线运动D .做匀速圆周运动的物体必处于平衡状态 2.关于向心力的说法正确的是( )A .物体由于作圆周运动而产生一个向心力B .向心力不改变做匀速圆周运动物体的速度大小C .做匀速圆周运动的物体的向心力即为其所受合外力D .做匀速圆周运动的物体的向心力是个恒力3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中不变的是( ) (A )速度 (B )动能 (C )加速度 (D )向心力 答案:B知识点二、描述圆周运动的物理量 ⒈线速度⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。

⑵定义:圆周运动的物体通过的弧长l ∆与所用时间t ∆的比值,描述圆周运动的“线速度”,其本质就是“瞬时速度”。

⑶方向:沿圆周上该点的 方向 ⑷大小:=v =⒉角速度⑴物理意义:角速度反映了物体绕圆心转动的快慢。

⑵定义:做圆周运动的物体,围绕圆心转过的角度θ∆与所用时间t ∆的比值 ⑶大小:=ω= ,单位: (s rad )⒊线速度与角速度关系: ⒋周期和转速:⑴物理意义:都是用来描述圆周运动转动快慢的。

⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f):表示的是物体在单位时间内转过的圈数。

n 的单位是 (s r )或 (m inr )f 的单位:赫兹Hz ,Tf 1=5、两个结论⑴凡是直接用皮带传动(包括链条传动、齿轮咬合、摩擦传动)的两个轮子,两轮边缘上 各点的 大小相等;⑵凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点 相等(轴上的点除外)(共轴转动)。

高中物理--圆周运动--最全讲义及典型习题及答案详解

高中物理--圆周运动--最全讲义及典型习题及答案详解

第三节圆周运动【知识清单】(一)匀速圆周运动的概念1、质点沿圆周运动,如果______________________________,这种运动叫做匀速圆周运动。

2、匀速圆周运动的各点速度不同,这是因为线速度的______时刻在改变。

(二)描述匀速圆周运动的物理量1、匀速圆周运动的线速度大小是指做圆周运动的物体通过的弧长与所用时间的比值。

方向沿着圆周在该点的切线方向。

2、匀速圆周运动的角速度是指做圆周运动的物体与圆心所连半径转过的角度跟所用时间的比值。

3、匀速圆周运动的周期是指____________________________所用的时间。

(三)线速度、角速度、周期1、线速度与角速度的关系是V=ωr ,角速度与周期的关系式是ω=2π/T。

2、质点以半径r=0.1m绕定点做匀速圆周运动,转速n=300r/min,则质点的角速度为_______rad/s,线速度为_______m/s。

3、钟表秒针的运动周期为_______s,频率为_______Hz,角速度为_______rad/s。

(四)向心力、相信加速度1、向心力是指质点做匀速圆周运动时,受到的总是沿着半径指向圆心的合力,是变力。

2、向心力的方向总是与物体运动的方向_______,只是改变速度的_______,不改变线速度的大小。

3、在匀速圆周运动中,向心加速度的_______不变,其方向总是指向_______,是时刻变化的,所以匀速圆周运动是一种变加速曲线运动。

4、向心加速度是由向心力产生的,在匀速圆周运动中,它只描述线速度方向变化的快慢。

5、向心力的表达式_______________。

向心加速度的表达式_______________。

6、向心力是按照效果命名的力,任何一个力或几个力的合力,只要它的作用效果是使物体产生_______,它就是物体所受的向心力。

7、火车拐弯时,如果在拐弯处内外轨的高度一样,则火车拐弯所需的向心力由轨道对火车的弹力来提供,如果在拐弯处外轨高于内轨,且据转弯半径和规定的速度,恰当选择内外轨的高度差,则火车所需的向心力完全由__________和________的合力来提供。

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

6.1圆周运动-高一物理精讲与精练高分突破考点专题系列(新教材人教版必修第二册)

6.1圆周运动-高一物理精讲与精练高分突破考点专题系列(新教材人教版必修第二册)

第六章 圆周运动6.1:圆周运动一:知识精讲归纳一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v =Δs Δt. 如果Δt 取的足够小,v 就为瞬时线速度.此时Δs 的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt 的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n :做圆周运动的物体单位时间内转过的圈数,常用符号n 表示.(2)周期T :做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T =1n. 4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v =2πr T. 2.角速度与周期的关系:ω=2πT. 3.线速度与角速度的关系:v =ωr .四、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA =ωB ,T A =T B .(2)线速度的关系:v A v B =r R .2.皮带(齿轮)传动(1)线速度的关系:v A =v B(2)角速度(周期)的关系:ωA ωB =r R 、T A T B =R r.二:考点题型归纳一:匀速圆周运动1.物体做匀速圆周运动时,在任意相同时间间隔内,速度的变化量( )A .大小相同、方向相同B .大小相同、方向不同C .大小不同、方向不同D .大小不同、方向相同2.关于匀速圆周运动,下列说法正确的是A .匀速圆周运动的线速度大小保持不变,所以做匀速圆周运动的物体处于平衡状态B .做匀速圆周运动的物体,速度的方向时刻都在改变,所以必有加速度C .做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速曲线运动D .做匀速圆周运动的物体,其合外力提供向心力,是恒力作用下的曲线运动3.下列说法正确的是( )A .做匀速圆周运动的物体处于平衡状态B .做匀速圆周运动的物体所受的合外力是恒力C .做匀速圆周运动的物体的加速度大小恒定D .做匀速圆周运动的物体的速度恒定二:圆周运动的各物理量的关系4.甲、乙两个做匀速圆周运动的物体,它们的半径之比为1:2,周期之比是2:1,则( )A .甲与乙的线速度之比为1:4B .甲与乙的线速度之比为1:1C .甲与乙的角速度之比为2:1D .甲与乙的角速度之比为1:15.一物体做匀速圆周运动的半径为r ,线速度大小为v ,角速度为ω,周期为T .关于这些物理量的关系,下列关系式正确的是( )A .v r ω= B .2v T π= C .2R T πω= D .v r ω=6.A 、B 两物体都做匀速圆周运动,在 A 转过45°角的时间内, B 转过了60°角,则A 物体的角速度与B 的角速度之比为A .1:1B .4:3C .3:4D .16:9三、同轴转动与皮带传动问题7.两个大轮半径相等的皮带轮的结构如图所示,A 、B 两点的半径之比为2:1,C 、D 两点的半径之比也为 2:1,下列说法正确的是( )A .A 、B 两点的线速度之比为v A :v B = 1:2B .A 、C 两点的角速度之比为:1:2A C ωω=C .A 、C 两点的线速度之比为v A :v C = 1:1D .A 、D 两点的线速度之比为v A :v D = 1:28.如图所示,一匀速转动的水平转盘上有两物体A ,B 随转盘一起运动(无相对滑动).则下列判断正确的是( )A .它们的线速度V A >V BB .它们的线速度V A =V BC .它们的角速度ωA =ωBD .它们的角速度ωA >ωB9.如图所示,地球可以视为一个球体,O 点为地球球心,位于昆明的物体A 和位于赤道上的物体B ,都随地球自转做匀速圆周运动,则:( )A .物体的周期AB T T =B .物体的周期A B T T >C .物体的线速度大A B v v >D .物体的角速度大小A B ωω>三:考点过关精练一、单选题1.关于匀速圆周运动,以下说法正确的是( )A .匀速圆周运动是匀速运动B .匀速圆周运动是变加速曲线运动C .匀速圆周运动线速度v 、周期T 都是恒量D .匀速圆周运动向心加速度a 是恒量,线速度v 方向时刻改变2.如图所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则下列叙述错误的是( )A.a点与d点的线速度大小之比为1:2B.a点与b点的角速度大小相等C.a点与c点的线速度大小相等D.a点与d点的向心加速度大小之比为1:13.A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4:3,运动方向改变的角度之比是3:2,则它们A.线速度大小之比为4:3B.角速度大小之比为3:4C.圆周运动的半径之比为2:1D.向心加速度大小之比为1:24.未来的星际航行中,宇航员长期处于完全失重状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小5.如图是自行车传动结构的示意图,其中Ⅰ是半径为1r 的大齿轮,Ⅱ是半径为2r 的小齿轮,Ⅲ是半径为3r 的后轮,假设脚踏板的转速为n (r/s ),则自行车前进的速度为( )A .132πnr r rB .231πnr r rC .1322πnr r rD .2312πnr r r 6.如图所示,当用扳手拧螺母时,扳手上的P 、Q 两点的角速度分别为ωP 和ωQ ,线速度大小分别为v P 和v Q ,则( )A .ωP <ωQ ,v P <v QB .ωP <ωQ ,v P =v QC .ωP =ωQ ,v P <v QD .ωP =ωQ ,v P >v Q7.如图所示的皮带传动装置中,左边是主动轮,右边是一个轮轴,a 、b 、c 分别为轮边缘上的二点,已知a b c R R R <<。

第六章圆周运动重难点题型讲解-高一下学期物理人教版(2019)必修第二册

第六章圆周运动重难点题型讲解-高一下学期物理人教版(2019)必修第二册
系中正确的是( D )
A.
v0=
ωd 2
dv0 =L2g
B. 2
C.dω2=gπ2(1+2n)2 (n=0,1,2,…)
D.ωL=π(1+2n)v0 (n=0,1,2,…)
A
解析:飞镖在空中做平抛运动飞镖最终落在圆盘的下
A点随圆盘做匀速圆周运动 :t
沿击中A点,在t时间段内,A点转过(2n+1)π的角度。
物理必修二 第六章重难点题型讲解
授课教师:
一. 圆周运动公式及各物理量的计算式:
角速度
2 2n
t r T t
线速度 向心加速度 运行周期
s r 2r s
t
Tt
an
2 r
2r
4 2 T2
r
T 2r 2 1 n
向心力
Fn
ma n
2
m r
m 2r
m
m 4 2
T2
r
gr gr
时,FN = 0,
时,mg FN =
mg
2 m
r
2
=m r
,FN指向圆心并随v的增大而增大
十. 竖直平面内的球—杆模型:对轨道最高点的运动和受力分析
v
r杆
受重力、弹力 受力特点: 弹力指向圆心,等于零或 沿半径背离圆心
小球固定在带转轴的轻杆上
最高点的向心力公式:
2
Fn mg FN m r
需要注意的是,标量计算式可适用于匀速圆周运动, 矢量计算式可适用于所有圆周运动。
二. 常见传动装置:
同轴传动
皮带传动
齿轮传动
示意图
装置
A、B两点在同轴的 一个圆盘上
两接个,轮A子、用B—两皮点带分连 别是两个轮子边缘

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,在水平桌面上离桌面右边缘3.2m处放着一质量为0.1kg的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A点飞出,恰好落到竖直圆弧轨道BCD的B端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D.已知∠BOC=37°,A、B、C、D四点在同一竖直平面内,水平桌面离B端的竖直高度H=0.45m,圆弧轨道半径R=0.5m,C点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D点时的速度大小v D;(2)若铁球以v C=5.15m/s的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小F C;(计算结果保留两位有效数字)(3)铁球运动到B点时的速度大小v B;(4)水平推力F作用的时间t。

圆周运动归纳、总结、训练(含答案)

圆周运动归纳、总结、训练(含答案)

匀速圆周运动归纳、总结、训练(含答案)【知识回顾、方法点拨】考点一、基本概念匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动—理想化模型。

1. 线速度(矢量):(1)t s v /=(比值法定义)单位—m/s(2) 方向:圆周轨迹的切线方向 2. 角速度:(1)t /ϕω=(比值法定义)单位—弧度/秒,(rad/s ) 3. 周期T(s)频率f(Hz) T=1/f转速n(r/s 或r/min):当单位时间取秒时,转速n 与频率f 在数值上相等 关系:T=1/n 4.关系: 22n t T φπωπ=== ωππR Rn T Rt sv ====22ωR v =,同一转动物体上,角速度相等;同一皮带轮连接的轮边缘上线速度相等。

匀速圆周运动速率大小不变,并不是匀速运动而是变速运动。

匀速圆周运动中,角速度是恒定不变的. 匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。

条件:(1)初速度0v ;(2)2222224,4vF v F F mR mm R m n R m v RTπωπω⊥====⋅⋅=⋅=⋅合合向5、向心加速度、向心力 r f r Tr rva 22222)2(4ππω====r f m r Tmr m rvmma F 22222)2(4ππω=====向心加速度是描述线速度方向变化快慢的物理量,产生向心加速度的力叫向心力。

向心力和向心加速度方向都时刻在改变(圆周运动一定是非匀变速运动)。

2a r ω=,ω相同时,a 与r 成正比;2va r=,v 相同时,a 与r 成反比;r 相同时,a 与ω2成正比,与v 2成反比。

(1)因为v 、ω的大小均不变,所以向心加速度的大小也就不变,但由于a 的方向始终垂直于速度在旋转变化,所以向心加速度不是恒量而是变量.匀速圆周运动不是匀加速运动而是变加速运动. (2)向心力只改变速度的方向,不改变速度的大小。

最新2019年高考物理双基突破: 专题19 圆周运动精讲(含答案).doc

最新2019年高考物理双基突破: 专题19 圆周运动精讲(含答案).doc

专题十九圆周运动(精讲)一、匀速圆周运动1.定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

2.性质:一种变加速的变速运动。

在匀速圆周运动中,线速度的大小(速率)不变、方向时刻改变,不是恒矢量,所以匀速圆周运动是一种变速运动。

向心加速度大小不变、方向始终指向圆心,时刻改变,是变加速(非匀变速)曲线运动(加速度是变化的)。

角速度、周期、转速都恒定不变。

向心力大小恒不变,但方向时刻改变,是变力。

匀速圆周运动中的“匀速”是“匀速率”的意思。

3.周期性由于圆具有中心对称的特点,故物体每转一周,该物体又回到原处,所以物体在某处出现所需的时间应为周期的整数倍,解题时,应注意圆周运动的多解问题。

4.匀速圆周运动的条件:当物体所受的合外力大小恒定、方向始终与速度方向垂直且指向圆心(是变力)时,物体做匀速圆周运动,此时向心力由物体所受合外力提供。

当物体做匀速圆周运动时,合外力就是向心力。

二、描述圆周运动的物理量1.线速度v —瞬时速度(1)意义:描述质点沿圆弧运动的快慢,线速度越大,质点沿圆弧运动越快。

(2)定义:线速度的大小等于质点通过的弧长s 与所用时间t 的比值。

(3)计算式:ωππr rf T r t s v ====22 单位:m/s 。

(4)矢量:方向在圆周各点的切线方向上。

线速度v =ts 中的s 是弧长、不是位移.线速度只不过为区分角速度而在速度前冠以“线”字罢了,因其方向总是沿弧的切线方向而称之为线速度。

2.角速度ω(1)定义:连接质点和圆心的半径(动半径)转过的角度跟所用时间的比值,叫做匀速圆周运动的角速度。

(2)单位:rad/s (弧度每秒)。

(3)计算式:rv f T t ====ππϕω22。

(4)意义:描述质点转过圆心角的快慢。

3.周期T(1)定义:做匀速圆周运动的物体运动一周所用的时间叫做周期。

(2)单位:s (秒)。

(3)标量:只有大小。

(4)计算式:f v r T 122===ωππ(5)意义:定量描述匀速圆周运动快慢。

圆周运动知识要点、受力分析和题目精讲(张晓整理)

圆周运动知识要点、受力分析和题目精讲(张晓整理)

高中圆周运动知识要点、受力分析和题目精讲(复习大全)一、基础知识匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。

匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。

为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度( )等物理量,涉及的物理量及公式较多。

因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。

1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。

所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。

【例1】关于匀速圆周运动,下列说法正确的是()A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。

【例2】在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。

ωO60°30°AB解析:A 、B 两点做圆周运动的半径分别为RR r A 2130sin =︒= R R r B 2360sin =︒=它们的角速度相同,所以线速度之比3331====BA B A B A r r r r v v ωω 加速度之比3322==BB A A B A r r a a ωω 2. 质点做匀速圆周运动的条件 (1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。

圆周运动知识要点、受力分析和题目精讲(张晓整理)讲解

圆周运动知识要点、受力分析和题目精讲(张晓整理)讲解

高中圆周运动知识要点、受力分析和题目精讲(复习大全)一、基础知识匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。

匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。

为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度( )等物理量,涉及的物理量及公式较多。

因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。

1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。

所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。

【例1】关于匀速圆周运动,下列说法正确的是()A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。

它们的角速度相同,所以线速度之比3331====BA B A B A r r r r v v ωω 加速度之比3322==BB A A B A r r a a ωω 2. 质点做匀速圆周运动的条件 (1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。

合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明向心力是一种效果力。

任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动高一物理课后习题精准解析(新教材人教版必修第二册)第6章圆周运动第一节引言圆周运动是物理学中一个重要的概念,它广泛应用于生活中的各个领域。

在高中物理教学中,掌握圆周运动的基本原理和相关习题解析是十分重要的。

本文将对高一物理课后习题中第6章圆周运动的题目进行精准解析和讲解。

第二节基本概念和公式在解析习题之前,我们首先回顾一下圆周运动的基本概念和公式。

圆周运动是指物体在作匀速运动的同时,沿着一个圆形轨道运动。

圆周运动涉及到的关键概念有圆的半径、圆周和角度。

圆的半径表示圆的大小,圆周是指沿着圆形轨道运动的总路径长度,而角度则表示物体在圆周上行进的程度。

对于圆周运动的速度和加速度,有着重要的公式。

其中,线速度(v)表示物体沿圆周的线速度大小,它是圆周的长度除以所需时间。

角速度(ω)则表示物体在圆周运动中单位时间内所转过的角度大小。

加速度(a)则表示物体在圆周运动中的加速度大小,它与线速度和半径的乘积成正比。

第三节习题解析1. 如图所示,一个半径为R的圆盘以角速度ω沿垂直于其平面的轴作圆周运动。

求圆盘边缘点A的线速度和加速度大小。

解答:根据题意,我们知道圆盘的半径为R,并且给出了角速度ω。

线速度(v)可以通过半径和角速度的乘积得到,即v = Rω。

所以点A的线速度大小为Rω。

加速度(a)可以通过线速度和半径的乘积得到,即a = vω,带入已知条件可得a = Rω²。

所以点A的加速度大小为Rω²。

2. 一个半径为4m的车轮以每秒5转的角速度转动。

求车轮上一个点的线速度和加速度大小。

解答:根据题意,我们知道车轮的半径为4m,并且给出了角速度ω=5转/秒。

线速度可以通过半径和角速度的乘积得到,即v = Rω。

所以点的线速度大小为4m × 5转/秒 = 20m/秒。

加速度可以通过角速度和半径的乘积得到,即a = Rω²,带入已知条件可得a = 4m × (5转/秒)² = 100m/秒²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30.(合肥)质量为m=1kg 的小物块轻轻放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆孤轨道下滑。

B 、C 为圆弧的两端点,其连线水平。

已知圆弧半径R=1.0m 圆弧对应圆心角︒=106θ,轨道最低点为O ,A 点距水平面的高度h=0.8m 。

小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,0.8s 后经过D 点,物块与斜面间的滑动摩擦因数为1μ=0.33(g=10m/s 2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A 点的水平初速度v 1 (2)小物块经过O 点时对轨道的压力 (3)斜面上CD 间的距离 (4)假设小物块与传送带间的动摩擦因数为=2μ0.3,传送带的速度为5m/s ,则PA 间的距离是多少?39.(巢湖)质量为M 的圆环用细线(质量不计)悬挂着,将两个质量均为m 的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T 随cos θ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T 的极小值及相应的cos θ值;(2)小球与圆环的质量比Mm至少为多大时圆环才有可能上升?23.福建摸底如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。

槽内放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“”形槽的宽度略小。

现有半径r(r<<R)的金属小球以水平初速度V 0冲向滑块,从滑块的一侧半圆形槽口边缘进入。

已知金属小球的质量为m ,木质滑块的质量为3m ,整个运动过程中无机械能损失。

求:(1)当金属小球滑离木质滑块时,金属小球和木质滑块的速度各是多大;(2)当金属小球经过木质滑块上的半圆柱形槽的最右端A 点时,金属小球的对地速度。

25.河南如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上。

现有一滑块A 从光滑曲面上离桌面h 高处由静止开始下滑下,与滑块B 发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。

已知,3,,m m m m m m C B A===求:(1)滑块A 与滑块B 碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能; (3)滑块C 落地点与桌面边缘的水平距离。

26.河北调研如图,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R=0.8m 的圆环剪去了左上角135°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离也是R 。

用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点。

用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为226t t x-=,物块飞离桌面后由P 点沿切线落入圆轨道。

g=10m/s 2,求:(1)BP 间的水平距离。

(2)判断m 2能否沿圆轨道到达M 点。

(3)释放后m 2运动过程中克服摩擦力做的功 27.(开城)如图所示,质量为m =0.5kg 的小球从距离地面高H=5m 处自由下落,到达地面时恰能沿凹陷于地面的半圆形槽壁运动,半圆形槽的半径R 为0.4m ,小球到达槽最低点时速率恰好为10m/s ,并继续沿槽壁运动直到从槽左端边缘飞出且沿竖直方向上升、下落,如此反复几次,设摩擦力大小恒定不变,求:(1)小球第一次飞出半圆槽上升距水平地面的高度h 为多少? (2)小球最多能飞出槽外几次?(g=10m/s 2)。

20.海南如图所示,光滑半圆轨道竖直放置,半径为R ,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg 的木块,一颗质量为m = 0.01kg 的子弹,以v o = 400m/s 的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R 多大时,平抛的水平距离最大? 最大值是多少? (g 取10m/s 2)6.(08天津)光滑水平面上放着质量m A =1 kg 的物块A 与质量m B =2 kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能E P =49 J .在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径R =0.5 m ,B 恰能到达最高点C .取g =10 m/s 2,求 (1)绳拉断后瞬间B 的速度v B 的大小;(2)绳拉断过程绳对B 的冲量I 的大小;(3)绳拉断过程绳对A 所做的功W.8.(08广东)如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N , 滑板两端为半径R =0.45 m 的1/4圆弧面,A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑,小滑块P 1和P 2的质量均为m ,滑板的质量M =4m .P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点.P 1以v 0=4.0 m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上,当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续滑动,到达D 点时速度为零,P 1与P 2可视为质点,取g =10 m/s 2.(1)P 2在BC 段向右滑动时,2)BC 长度为多少?N 、P 1和P 2最终静止后,P 1与P210.如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一初速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R 。

重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ;(2)小球A 冲进轨道时速度v 的大小。

HR 地面地面36.(12广东)图18(a )所示的装置中,小物块A 、B 质量均为m ,水平面上PQ 段长为l ,与物块间的动摩擦因数为μ,其余段光滑。

初始时,挡板上的轻质弹簧处于原长;长为r 的连杆位于图中虚线位置;A 紧靠滑杆(A 、B 间距大于2r )。

随后,连杆以角速度ω匀速转动,带动滑杆作水平运动,滑杆的速度-时间图像如图18(b )所示。

A 在滑杆推动下运动,并在脱离滑杆后与静止的B 发生完全非弹性碰撞。

(1)求A 脱离滑杆时的速度u o ,及A 与B 碰撞过程的机械能损失ΔE 。

(2)如果AB 不能与弹簧相碰,设AB 从P 点到运动停止所用的时间为t 1,求ω得取值范围,及t 1与ω的关系式。

(3)如果AB 能与弹簧相碰,但不能返回道P 点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为E p ,求ω的取值范围,及E p 与ω的关系式(弹簧始终在弹性限度内)。

36、(11广东)如图20所示,以A 、B 和C 、D 为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B 点,上表面所在平面与两半圆分别相切于B 、C 。

一物块被轻放在水平匀速运动的传送带上E 点,运动到A 时刚好与传送带速度相同,然后经A 沿半圆轨道滑下,再经B 滑上滑板。

滑板运动到C 时被牢固粘连。

物块可视为质点,质量为m ,滑板质量M=2m ,两半圆半径均为R ,板长l =6.5R ,板右端到C 的距离L 在R <L <5R 范围内取值。

E 距A 为S=5R ,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g. (1) 求物块滑到B 点的速度大小;(2) 试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f 与L 的关系,并判断物块能否滑到CD 轨道的中点。

15.(09·安徽)过山车是游乐场中常见的设施。

下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =。

一个质量为 1.0m =kg的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m 。

小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的。

假设水平轨道足够长,圆形轨道间不相互重叠。

重力加速度取210m/s g =,计算结果保留小数点后一位数字。

试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B 、C 间距L 应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径3R 应满足的条件;小球最终停留点与起点A 的距离。

17.(09·浙江)某校物理兴趣小组决定举行遥控赛车比赛。

比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。

已知赛车质量m=0.1kg ,通电后以额定功率P=1.5w 工作,进入竖直轨道前受到阻力恒为0.3N ,随后在运动中受到的阻力均可不记。

图中L=10.00m ,R=0.32m ,h=1.25m ,S=1.50m 。

问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 )22.(09·四川) 如图所示,轻弹簧一端连于固定点O ,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V 0=20 m/s 竖直向下射出小球P,小球P 到达O 点的正下方O 1点时速度恰好水平,其大小V=15 m/s.若O 、O 1相距R=1.5 m,小球P 在O 1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1kg 的静止绝缘小球N 相碰。

碰后瞬间,小球P 脱离弹簧,小球N 脱离细绳,同时在空间加上竖直向上的匀强电场E 和垂直于纸面的磁感应强度B=1T 的弱强磁场。

相关文档
最新文档