基于flash型单片机二进制模数转换器的温度计解码器外文文献翻译、中英文翻译

合集下载

外文文献翻译- 基于单片机的频率计设计本科学位论文

外文文献翻译- 基于单片机的频率计设计本科学位论文

原文:This design take at MCS-51 monolithic integrated circuit as the core full use hardware source design's one kind of frequency meter, this frequency meter will be measured first that signal enlargement reshaping processing, turns satisfies TTL/which the monolithic integrated circuit I/O mouth accepts the CMOS compatible signal from monolithic integrated circuit's T1 input port input direct summation pulse number, the monolithic integrated circuit interior timer fixed time is 1S, by now accumulated the pulse number namely for is measured the signal the frequency. Finally passes through monolithic integrated circuit processing to deliver to the lcd liquid crystal display monitor demonstration.Central Processing Unit DesignsThe CPU is the key component of a digital computer. Its purpose is to decode instruction received from memory and perform transfers, arithmetic, logic, and control operations with data stored in internal registers, memory, or I/O interface units. Externally, the CPU provides one or more buses for transferring instructions, data, and control information to and from components connected to it. In the generic computer at the beginning of chapter 1, the CPU is a part of the processor and is heavily shaded. CPUs, however, may also appear in computers. Small, relatively simple computers called microcontrollers are used in computers and in other digital systems to perform limited or specialized tasks. For example, a microcontroller is present in the keyboard and in the monitor in the generic computer; thus, these components are also shaded. In such microcontrollers, the CPU may be quite different from those discussed in this chapter. The word lengths may be short (say, four or eight bits),the number of registers small, and the instruction sets limited. Performance, relatively speaking, is poor, but adequate for the task. Most important, the cost of these microcontrollers is very low, making their use cost effective.In the following pages, we consider two computer CPUs, one for a complex instruction set computer (CISC) and the other for a reduced instruction set computer (RISC). After a detailed examination of the designs, we compare the performance of the two CPUs and present a brief overview of some methods used to enhance that performance. Finally, we relate the design ideas discussed to general digital system design.1、T he complex instruction set computerThe first design we present is for a complex instruction set computer with a non-pipelined datapath and microprogrammed control unit. We begin by describing the instruction set architecture, including the CPU register set, instruction formats, and addressing modes. TheCISC nature of the instruction set architecture is demonstrated by its memory-to-memory access for data manipulation instructions, eight addressing modes, two instruction format lengths, and instructions that require significant sequences of operations for their execution.We design a datapath for implementing the CISC architecture. The datapath is based on the one initially described in Section 7-9 and incorporated into a CPU in section 8-10. modifications are made to the register file, the function unit, and the buses to support the present instruction set architecture.Once the datapath has been specified, a control unit is designed to complete the implementation of the instruction set architecture. The design of the control unit must involve a coordinated definition of both the hardware organization and the microprogram organization. In particular , dividing the microprogram into microroutines, while at the same time designing the sequencer with which they interact, is a key part of the design. Even the instruction fields and opposed are tied to this coordinated effort. Following the definition of the hardware and microcode organizations, we detail essential parts of the microcode and the microroutines for representative operations.Instruction set architectureFigure 10-1 shows the CISC register set accessible to the programmer. All registers have 16 bits. The register file has eight registers, R0 though R7.R0 is a special register that always supplies the value zero when it is used as a source and discards the result when it is used as a destination.In additional to the register file, there is a program counter PC and stack pointer SP. The presence of a stack pointer indicates that a memory stack is a part of the architecture . the final register is the processor status register PSR, which contains information only in its rightmost the five bits; the remainder of the register is assumed to contain zero. The PSR contains thefour stored status bit values Z,N,C,and V in positions 3 through 0, respectively. In additional, a stored interrupt enable bit EI appears in position 4.Table 10-1 contains the 42 operations performed by the instructions. Each operation has a mnemonic and a carefully selected oppose. The operations are divided into four groups based on the number of explicit operands and whether the operation is branch. In addition, the status bits affected by the operation are listed.Figure 10-2 gives the instruction formats for the CPU. The generic instruction format has five fields. The first, OPCODE, specifies of the operation. The next two, MODE and S , are used to determine the addresses of the operands. The last two fields, SRC and DST, are the 3-bit source register and destination register address fields, respectively. In addition, there is an optional second word W that appears with some instructions as an operand or an address, but not with others.The first two bits of OPCODE, IR(15:14), determine the number of explicit operands and how the fields of the format are used. When these bits are 00,either no operand is required or the location of the operand is implied by OPCODE. Only the OPCODE field is needed, as shown in figure 2(b).the four rightmost OPCODE bits can specify up to 16 operands or with implied operand addresses.If IR(15:14) is 01, the instruction has one operand and is a data transfer or data manipulation instruction. Since there is an operand, the MODE field specifies the addressing mode for obtaining it. The single address may involve the DST register address in its formation, so the DST field is also present. The S field and SRC field relate to the presence of two operands and so are not used for the typical single operand instructions. but, the shift instructions require a shift amount to indicate how many bits to shift. For maximum flexibility,this shift amount is treated just like a source operand. As a consequence, the SHA and S fields is a full 16-bit operand, but only values 0 through 15 are meaningful. There are sufficient OPCODE bits for 16 instructions with a single operand.Table 10-2 gives the addressing modes specified by the MODE field. The first two bits of MODE specify four different types of addressing: register, immediate, indexed, and relative to the PC. The third bit of MODE specifies whether the address generated by these modes is used as an indirect address. The one exception to this is direct addressing, which is obtained by applying indirection to the immediate type. Otherwise, if the third bit equals 0, indirect addressing does not apply whereas, if it equals 1, indirect addressing does apply. For the register type of instruction, MONE(2:1)=00 and the W word is not needed. Since the operand or address comes from a register. The third column of the table provides register transfer statements for each of the addressing modes for the one-operand instructions.If IR(15:14) is equal to 10, then the instruction has two addresses used for true operands. All fields of the generic instruction, including S and SRC, are used for this case for all instructions. one of addresses, either the source or the destination, uses the addressing modes. If S=0, then the source uses the addressing mode specified by MODE, and the source is a register. If S=1, then the destination uses the addressing mode, and the source is a register. Register transfer descriptions of the resulting addresses are given in the fourth and fifth columns of Table 2. Again, depending on the contents of the MODE field, the second instruction word W, which is an address or an immediate operand, may or may not be present.Instructions with IR(15:14)=11 are branches. Aside form the S field and the SHA field for shifts, the format is the same as for IR(15:14)=01. For all instructions of this type, the destination address (not the operand) becomes the new address placed in the program counter PC. As a consequence, the register mode is invalid for branch instructions.Before proceeding to the next step, which defines the datapath to support the instruction set architecture, we will briefly note the characteristics of the architecture that define it as CISC or RISC. Most of the operations given in Chapter 9 are included in the instruction set. A number of operations that do not appear are redundant. The same actions can be achieved by using proper addressing modes with instructions that do appear. For example, LD, ST, IN, and OUT can all be achieved by using MOVE instructions in a memory-mapped structure. By looking at the formats for the instructions, we find that most of the instructions can operate directly on operate directly on operands from memory. There are eight addressing modes and two different lengths of instruction formats. In addition, some of the instructions perform complex operations which can be viewed as operations that are likely to take more than one clo ck cycle for the execution step. These characteristics clearly identify this as a CISC architecture.Datapath organizationRather than beginning from scratch, we will reuse the non-pipelined datapath employed with the microprogrammed control in section 8-10, with modifications. That datapath was shown in section 8-10, and the new, modified datapath based on it is given in Figure 10-6. we treat each modification in turn, beginning with the register file.In section 8-10, register R8 was used as a temporary storage location. In the new microprogrammed architecture, there are complex instructions spanning many clock cycles and performing complicated operations. Thus, more temporary storage is needed for use by the microprograms. To meet this need, we expand the register file from 9 registers to 16. the first 8 registers, R0 through R7, are visible to the computer programmer. The second 8 registers, R8 though R15 , are used as temporary storage for the microprogram operands and are hidden from the programmer. Figure 10-3 provides a map of the expanded register file with the temporary registers shaded. As indicated previously, register R0 supplies the constant 0. registers R1 through R7 are available to the programmer for use, and registers R8 through R15 provide general temporary storage for use by microprograms, the last four registers, R12 though R15, have special uses: to keep the microcode simple, standard locations are essential for storing the operands and addresses used by execution microcode for most instructions. thus ,R12 is the location for the source address(SA), R13 for the source data (SD), R14 for the destination address(DA), and R15 for the destination data(DD).We cannot access the eight temporary registers based on the 3-bit register address available in the instruction. To deal with this problem, we provide, first, 4-bit register address from the microinstruction, and second, a microinstruction bit to choose between these addresses and those from the instruction. In addition, the flexibility to allow the register addressed by DST to be a source and by SRC to be a destination is needed to permit results ofoperations to be placed directly in memory. To accomplish these goals, we modify the register file by adding the logic shown in Figure 10-4(a). the instruction set architecture uses two addresses, one for a source a operand and the other for the other source as well as the destination. The register file uses the B address for a source, and the A and D addresses on the file are connected together, giving the same address for the other source and the destination. Although this reduction from three to two addresses is not essential at the mincroinstruction level, it decrease the number of bits needed for register addresses in the microinstruction and matches the use of the register fields in the instruction formats.A quad 2-to-1 multiplexer is attached to each of the two address inputs to the register file, to select between an address from the microinstruction and an address from the instruction. There is a 5-bit field in the microinstruction for the combined destination and source address DSA, in addition to a 5-bit field for theB address SB. The first bit of each of the these fields selects between the register file address in the microinstruction(0) and the register file address in the instruction(1). If an instruction address is selected, whether it is DST or SRC is determined by an additional quad 2-to-1 multiplexer. This multiplexer is controlled by the second bit of the DSA or SB fields, depending on which of them has 1 in the first bit in any microinstruction, thereby ensuring that the proper second bit is used to determine the register address. A 0 is appended to the left of the 3-bit fields DST and SRC to cause them to address R0 through R7. the addition to the first bit, which selects the address source, the addresses from the microinstruction contain four bits so that all 16 registers can be reached. The final change to the register file is to replace the storage elements for R0 in the file with open circuits on the lines that were their inputs and with constant zero valves on the lines that were their outputs. A symbol for the resulting register file is show in Figure 10-4(b).We find that, based on the eight shift instructions provided, the shifter from section 8-10, needs to be modified. The modifications involve the end bits of the shift logic. For logical shifts, a 0 is inserted, as before. For the right arithmetic shift, she sign bit is the incoming bit, and for the left arithmetic shift, 0 is the incoming bit. Rotates require that the bit from the opposite end of the shifter be fed around. Finally, rotates with carry require that the carry flip-flop output be provide as an input on both ends of the shifter.2.SummaryIn this paper.we examined two CPU designs: the CISC and RISC.The CISC control unit includes a stack pointer in addition to the program counter.Control microprograms reside in ROM.and a combination of a multi.plexer and a ROM provides fast instruction decoding.The control unit also has extensive{ump andconditional branching capabilities,including one level of microsubroutines.The microprogram for the control is modularized to permit many microsubroutines to be shared in implementing the microprogram for the instructions.The RISC control unit is pipelined and has special hardware added to deal with branches. Pipelined CPUs have both data and control hazard problems.We examined one of each type of hazard,as well as software and hardware solutions for each.After discussing CISC and RISC performance,we touched on some advanced concepts, including parallel execution units, a combination of microprogrammed control with a pipeline,superpipelined CPUs, superscalar CPUs,and predictive and speculative techniques for high-performance.Finally, we related the design techniques in this paper to more general digital system design.原文翻译:本设计以MCS-51单片机为核心充分利用硬件资源设计的一种频率计,该频率计首先将被测信号放大整形处理,变成满足单片机I/O口接受的TTL/ CMOS 兼容信号从单片机的T1输入口输入直接累加脉冲数,将单片机内部定时器定时为1S,这时累加的脉冲数即为被测信号的频率。

基于单片机的计算器设计毕业设计+外文文献翻译

基于单片机的计算器设计毕业设计+外文文献翻译

摘要计算器一般是指“电子计算器”,能进行数学运算的手持机器,拥有集成电路芯片,结构简单,功能较弱,但由于它使用方便、操作简单、价格低廉,因而广泛运用于商业交易中,也是必备的办公用品。

近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。

在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,但仅单片机方面的知识是不够的,还应根据具体硬件结构、软硬件结合,来加以完善。

因此,单片机的应用已经越来越贴近生活,用单片机来实现一些电子设计也变得容易起来。

计算器在人们的日常中是比较的常见的电子产品之一。

可是它还在发展之中,以后必将出现功能更加强大的计算器,基于这样的理念,本次设计是用单片机来设计的计算器。

该设计系统是以AT89S52 为单片机,P1 口作为输入端,外接4X4 的键盘。

通过键盘扫描来对输入数的控制,在P0 口、P2 口接了驱动电路,用来保证LCD 的工作正常。

计算器将完成的功能有加,减,乘,除等功能。

关键词:计算器;单片机;LCD;矩阵键盘ABSTRACTCalculator generally refers to the electronic calculator, and the term is introduced to China by the Japanese. The calculator with the IC chip, simple structure, and weak function is able to perform mathematical operations on handheld machine. But it is easy using, simple operation and low price. So it is widely used in commercial transactions, and is also an essential office supplies.With the rapid development of science and technology in recent years, the application of SCM is the deepening and promote the traditional controlling detection technologies that are increasingly updated. In real-time detection and automatic control of microcomputer application system, the microcontroller is often used as a core component to use, but only the knowledge of the microcontroller is not enough, and should be based on the specific hardware architecture, hardware and software combination to make it perfect. So the application of SCM is more and more close to life, so using of single chip to achieve some electronic designs also become easy. In the people daily life the calculator is one of the common electronic products. But it is still in development, it will become more powerful calculator in the future. According to such idea, the design is that SCM design calculator. The design system is based on AT89S52 microcontroller, P0 port as input, external 4X4 keyboard. In P1, P2mouth is connected with the drive circuit to ensure the normal work of LED. The calculator will complete add, subtract, multiply, divide and other function.Keywords: calculator, MCU, LCD, Matrix keyboard前言计算器(calculator;counter)一般是指“电子计算器”,能进行数学运算的手持机器,拥有集成电路芯片,结构简单,功能较弱,但由于它使用方便、操作简单、价格低廉,因而广泛运用于商业交易中,也是必备的办公用品之一。

基于单片机的温湿度控制系统英文文献

基于单片机的温湿度控制系统英文文献

英文文献翻译学生姓名刘学毅专业自动化学号*******分院电子工程分院2012年 6 月1. 外文原文A: Fundamentals of Single-chip MicrocomputerTh e s i n gl e-chi p m i cr o co m p ut er i s t h e cul m i n a t i o n of bot h t h e d e v el opm e nt o f t he di gi t a l c om p ut e r a n d t h e i n t e gr a t ed ci r cu i t a rgu a b l y t h e t ow m o st si gn i fi c ant i nv en t i on s of t h e 20t h ce n t u r yT h es e t ow t yp e s o f a r chi t ec t u r e a re f ou nd i n s i n gl e-c hi p m i c r o com pu t e r.S om e e m p l o y t h e s pl i t p r o gr am/d at a m e m or y o f t h e H ar v a rd a r ch i t e c t ur e, ot h e rs fol l o w t h e ph i l os o ph y,wi d el y a d a pt ed f or ge n e r al-pu rp os e co m p ut er s an d m i c r op ro c es s o r s,o f m a ki n g no l o gi c a l d i st i n ct i o n b et w een pr o gr am an d d at a m em o r y a s i n t h e P r i n c et on a r c hi t ec t u r e, s ho w n i n Fi g.3-5A-2.In ge n e r a l t e rm s a s i n gl e-chi p m i c ro co m p ut e r i s ch a r ac t e r i z ed b y t h e i n c o rp or a t i on o f al l t h e u ni t s o f a c om p ut e r i nt o a s i n gl e d e vi c e.Read only memory (ROM)R OM i s us ua l l y f o r t h e p er m an e nt,no n-vo l at i l e s t o ra ge o f a n a p pl i c a t i o ns p r o gr am .M an y m i c ro co m p ut e rs an d m i c ro c on t rol l er s a r e i n t en de d fo r h i gh-v ol u m e a pp l i c at i on s an d he n c e t h e e c o no m i c al m a nu f ac t ur e o f t h e d evi c es r e qui r es t h at t h e c o nt e nt s o f t h e p ro gr a m m e m or y b e c o m m i t t e d p er m a n en t l y d u r i n g t he m a nu f a ct ur e o f chi p s . C l e a rl y, t hi s i m pl i e s a r i go ro us ap p ro a c h t o R OM co d e d ev el op m ent s i n c e c h ange s c a nn ot b e m a d e af t er m a nu f a ct ur e.T hi s d e v el o pm e nt p r o ce s s m a y i n v ol v e em ul at i o n u si n g a so ph i s t i ca t e d d ev el op m ent s ys t em wi t h a h a rd w a r e e m ul at i on ca p ab i l i t y a s w el l a s t h e u s e of p ow e r fu l s o ft w ar e t ool s.S om e m a nu f a ct ur er s p ro vi de ad di t i o n al R O M opt i o ns b y i n cl u di n g i n t h ei r r a n ge d evi c e s wi t h (o r i nt e nd e d fo r u s e wi t h) u s e r p r o gr am m a bl e m e m o r y.T he si m pl es t o f t h es e i s u s u al l y d e vi c e wh i ch c an op e r at e i n a m i c ro pro c e s s or m o d e b y u s i n g so m e o f t h e i np ut/o ut p ut l i n es a s an a dd r ess a nd d at a bu s f o r a c c e ss i n g ex t er n al m em o r y.T hi s t yp e o f d ev i ce c a n b e ha v e f un c t i on al l y a s t h e si n gl e chi p m i cr o c om p ut e r f r om wh i ch i t i s d er i v e d al b e i t w i t h r e st ri c t ed I/O an d a m od i f i ed ex t er n al c i r c ui t. T h e u s e o f t h es e R OM l ess d ev i c es i s c om m on e v en i n pr o du ct i o n ci r cu i t s w h e r e t h e v ol um e d o es n ot j us t i f y t h e d ev e l o pm e n t c os t s o f cu s t om on-ch i p R OM[2];t he r e c a n s t i l l be a si gni fi c an t s avi n g i n I/O an d ot h er c h i p s c om p ar e d t o a c on v en t i o n al m i c ro p ro c es so r ba s ed c i r c ui t. M o r e ex a c t r ep l ac em e nt f o r R O M de vi c es c an b e o bt ai ne d i n t h e f o rm o f v a ri a nt s wi t h 'pi gg y-b a c k' E P R OM(E ra s ab l e p ro gr a m m a bl e R OM)so ck e t s or de v i ce s wi t h EP R OM i n s t e ad of R O M。

基于单片机的数字温度计设计【毕业论文 文献综述 开题报告】.DOC

基于单片机的数字温度计设计【毕业论文 文献综述 开题报告】.DOC

(2011届)毕业设计姓名:专业:电子信息工程班级:学号:指导教师:导师职称:年月日基于单片机的数字温度计设计摘要随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人们带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,用单片机和温度传感器来实现温度测温是数字温度设计的一大亮点。

随着单片机的飞速发展,功能变得越来越强大,可以实现很多电路系统的设计。

基于单片机的数字温度计系统就是一个很好的例子,将温度传感器与单片机最小系统相连,通过LED数码管或液晶显示屏显示出来,可以直观、方便、快速的测量温度。

单片机通过编写程序亦可实现时钟显示、定时闹铃等其他功能,满足人们的需求。

关键字:数字温度计、温度传感器、单片机Based on SCM digital thermometer designAbstractAs people living standard rise ceaselessly, SCM control is undoubtedly one of the goals of the people to pursue, it has given people bring to convenience is not negative, including digital thermometer is one example, using SCM and temperature sensor to achieve the temperature measuring temperature is digital temperature design of . With the rapid development of MCU, function is becoming stronger and can realize many circuit system design. Based on SCM digital thermometer system is a very good example, will the temperature sensor and connected by single chip minimize system, LED digital display tube or LCD screen, intuitive, convenient and quick measuring temperature. SCM by writing a program can also be achieved the clock display, regular alarm and other functions, satisfy people's needs.Keywords: digital thermometer, temperature sensors, microcontroller目录摘要.......................................................................................................................... I II Abstract ........................................................................................................................ I V 1 绪论. (1)1.1课题的来源 (1)1.2课题的意义 (1)1.3数字温度计国内外发展现状 (2)1.3.1温度传感器的研究现状 (2)1.3.2单片机的发展的研究现状 (3)1.4课题研究的主要内容 (5)2 数字温度计的总体设案 (6)3 系统硬件电路设计 (7)3.1电路原理 (7)3.2各单元总体说明 (8)3.3主控制器AT89S51 (8)3.4 4位共阳数码管动态扫描 (9)3.5温度传感器DS18B20 (10)3.6电路原材料清单 (17)3.7使用工具及仪表清单 (18)4 系统软件设计 (19)4.1流程图 (19)4.2读出温度子程序 (19)4.3温度转换命令子程序 (20)4.4数字温度计程序清单 (20)结论 (22)参考文献 (23)致谢 (24)附录 (25)1 绪论1.1课题的来源温度测量在物理实验、食品生产、医疗卫生等领域,尤其在热学试验(如:物体的热功当量、压强温度系数、汽化热等教学实验)中有特别重要的意义。

plc单片机 毕业论文文献翻译 中英文对照

plc单片机 毕业论文文献翻译 中英文对照

外文翻译:The monolithic In order to prevent without authorization the visit or the copy monolithic integrated circuit machine in the procedure, the majority of monolithic integrated circuits all has the encryption to lock the localization or the encryption byte, by protects the internal procedure. If in programming time encrypts locks the localization to enable (locking), is unable with the ordinary programming directly reading in the monolithic integrated circuit the procedure, this is the so-called copy protection or says the fixed function. In fact, such protective measures are very frail, is very easily explained. The monolithic integrated circuit aggressor with the aid of the special purpose equipment or the self-made equipment, using the monolithic integrated circuit chip design in loophole or the software flaw, through the many kinds of technical method, may withdraw the essential information from the chip, gains in the monolithic integrated circuit the procedure. Therefore, has the newest technology extremely as electronic products project engineer which the essential understanding current monolithic integrated circuit attacks, achieves knows oneself and the other side, knows fairly well, can effectively prevent oneself spends the product which the massive moneys and the time laboriously designs the matter occurrence which is counterfeited by a others night between.monolithic integrated circuits attacks technology:At present, attacks the monolithic integrated circuit mainly to have four kind of technologies, respectively is:This technical usual use processor correspondence connection and in the use agreement, the encryption algorithm or these algorithm security loophole carries on the attack. The software attack obtains the success a case in point is to early A T M E L A the T 89 C series monolithic integrated circuit attack. The aggressor has used in this series monolithic integrated circuit cleaning operation succession design loophole, uses from arranges the procedure to lock the localization after the cleaning encryption, stops the next step of cleaning internal program memory data the operation, thus makes to add the dense monolithic integrated circuit not to turn the encryption monolithic integrated circuit, then use programming read-out internal procedure.This technology usually monitors the processor by the high time resolution when the normal operation all power sources and the connection connection simulation characteristic, and through monitors its electromagnetic radiation characteristic to implement the attack. Because the monolithic integrated circuit is an active electronic device, when it carries out the different instruction, the corresponding mains input consumption also correspondingly changes. Like this analyzes and examines these changes through the use special electronic surveying instrument and mathematics statistical method, then gains in the monolithic integrated circuit the specific essential information.the mistake has the technology This technical use exceptionally working condition causes the processor to make a mistake, then provides the extra visit to carry on the attack. Uses the most widespread mistake to have the attack method including the voltage impact and the clock impact. The low voltage and the high voltage attack may usefor to forbid the protection circuit work or to fortected the information. The power source and the clock transient state jump may affect the single scroll instruction in certain processors the decoding and the ece the processor to carry out the misoperation. Perhaps the clock transient state jump can reposition the protection circuit but not to be able to destroy is proxecution.This technology is the direct exposed chip interior segment, then the observation, holds controls, disturbs the monolithic integrated circuit by to achieve the attack goal.In order to facilitate in order to, the people divide into above four kind of attacks technology two kinds, a kind is the invasion attack (physical attack), this kind of attack needs to destroy the seal, then with the aid of the semiconductor test facility, the microscope and the micro locator, several hours even several week time can complete on the special laboratory flower. All micro probes technology all belongs to the invasion attack. Moreover three methods belong to the non- invasion attack, the monolithic integrated circuit which attacks cannot by the physical damage. In certain situation non- invasion attacks is specially dangerous, this is because the non- invasion attack needs the equipment usually to be possible the self-restraint and the promotion, therefore is extremely inexpensive.The majority of non- invasions attack needs the aggressor to have the good processor knowledge and the software knowledge. Is opposite with it, the invasion probe attack then does not need too many initial knowledge,moreover usually may use the one whole set similar technology to cope with the width scope the product. Therefore, the attack often starts to the monolithic integrated circuit from the invasion reverse engineering, the accumulation experience is helpful to the development more inexpensive and the fast non- invasion attack technology.Last step will be seeks the protection melt silk the position and protects the melt silk to expose under the ultraviolet ray. With enlargement factor at least 100 time of microscopes, inputs the foot from the programming voltage the segment to track generally, seeks the protection melt silk.This technical use exceptionally working condition causes the processor to make a mistake, then provides the extra visit to carry on the attack. Uses the most widespread mistake to have the attack method including the voltage impact and the clock impact. The low voltage and the high voltage attack may use for to forbid the protection circuit work or to force the processor to carry out the misoperation. Perhaps the clock transient state jump can reposition the protection circuit but not to be able to destroy is protected the information. The power source and the clock transient state jump may affect the single scroll instruction in certain processors the decoding and the execution.(4) probe technologyThis technology is the direct exposed chip interior segment, then the observation, holds controls, disturbs the monolithic integrated circuit by to achieve the attack goal.In order to facilitate in order to, the people divide into above four kindof attacks technology two kinds, a kind is the invasion attack (physical attack), this kind of attack needs to destroy the seal, then with the aid of the semiconductor test facility, the microscope and the micro locator, several hours even several week time can complete on the special laboratory flower. All micro probes technology all belongs to the invasion attack. Moreover three methods belong to the non- invasion attack, the monolithic integrated circuit which attacks cannot by the physical damage. In certain situation non- invasion attacks is specially dangerous, this is because the non- invasion attack needs the equipment usually to be possible the self-restraint and the promotion, therefore is extremely inexpensive.The majority of non- invasions attack needs the aggressor to have the good processor knowledge and the software knowledge. Is opposite with it, the invasion probe attack then does not need too many initial knowledge,moreover usually may use the one whole set similar technology to cope with the width scope the product. Therefore, the attack often starts to the monolithic integrated circuit from the invasion reverse engineering, the accumulation experience is helpful to the development more inexpensive and the fast non- invasion attack technology.3 invasions attacks general process:The invasion attack first step uncovers the chip seal. Some two methods may achieve this goal: The first kind is dissolves the chip seal completely, the exposed metal segment. The second kind is only moves above the silicon nucleus plastic seal. The first method needs the chip to tests on the jig, with the aid of Taiwan to operate. The second method except needs to have the aggressor certain knowledge and Wants outside skill, but also needs individual wisdom and the patience, but operates relatively quite is convenient.Above the chip plastic may use the knife to open, around the chip epoxy resin may use the aqua fortis perish. The hot aqua fortis can dissolve the chip seal but not to be able to affect the chip and the segment. This process carries on generally under the extremely dry condition, because the water existence possibly can corrode already the aluminum wire connection which exposes.Then first uses the acetone in the supersonic pond to clean this chip by except the remaining nitric acid, then cleans with the clear water by and is dry except the salinity. Not the supersonic pond, jumps over generally this step. In this kind of situation, the chip surface can a little dirty, but not too affects the ultraviolet ray to the chip operation effect.Last step will be seeks the protection melt silk the position and protects the melt silk to expose under the ultraviolet ray. With enlargement factor at least 100 time of microscopes, inputs the foot from the programming voltage the segment to track generally, seeks the protection melt silk.If does not have the microscope, then uses the chip different partially exposes to the ultraviolet ray under and the observed result way carries on the simple search. When operation applies not the opaque slip of paper cover chipby to protect the program memory not by the ultraviolet ray cleaning. Will protect the melt silk to expose in the ultraviolet ray next 5 ~ 10 minutes can broken the protection position protective function, afterwards, will use the simple programming to be possible the direct readout program memory content.Regarding used the protective layer to protect E E P R O the M unit the monolithic integrated circuit to say that, the use ultraviolet ray repositioned the protection circuit is not feasible. Regarding this kind of type monolithic integrated circuit, uses the micro probe technology reading the memory content generally. Opens after the chip seal, puts in the chip under the microscope to be able very easy finding中文翻译单片机为了防止未经授权访问或拷贝单片机的机内程序,大部分单片机都带有加密锁定位或者加密字节,以保护片内程序。

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译

SCM is an integrated circuit chip,is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM,read-only memory ROM,a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry,pulse width modulation circuit,analog multiplexer,A / D converter circuit)integrated into a silicon constitute a small and complete computer systems.SCM is also known as micro—controller (Microcontroller), because it is the first to be used in industrial control。

Only a single chip by the CPU chip developed from a dedicated processor。

The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which。

单片机数字电压表论文中英文资料对照外文翻译

单片机数字电压表论文中英文资料对照外文翻译

中英文资料对照外文翻译文献综述外文资料digital voltage meter Based on single-chip technology Single chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip microprocessor, first because it was used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.At present, single-chip to infiltrate all areas of our lives, which is very difficult to find the area of almost no traces of single-chip microcomputer. Missile navigation equipment, aircraft control on a variety of instruments, computer network communications and data transmission, industrial automation, real-time process control and data processing, are widely used in a variety of smart IC card, limousine civilian security systems, video recorders, cameras, the control of automatic washing machines, as well as program-controlled toys, electronic pet, etc., which are inseparable from the single-chip microcomputer. Not to mention the field of robot automation, intelligent instrumentation, medical equipment has been.Throughout the development process of single-chip, you can indicate the development trend of single-chip, generally are:1. Of low-power CMOSMCS-51 series of 8031 introduced the power consumption of 630mW, and now widespread in the single-chip 100mW or so, with the growing demand for low-powersingle-chip, and now all the basic single-chip manufacturers are use of CMOS (complementary metal oxide semiconductor process). As the 80C51 on the use of HMOS (high density metal oxide semiconductor process) and CHMOS (high-density complementary metal oxide semiconductor process). Although the CMOS low power consumption, but because of its physical characteristics to determine its speed is not high enough, and then CHMOS with high-speed and low power consumption characteristics of these features, it is more suitable in low power consumption, as battery-powered applications . Therefore, the process for some time to come will be the main way to develop single-chip microcomputer.2.Singal-chip of micro-chipNow generally in conventional single-chip will be the central processing unit (CPU), random access data storage (RAM), read-only program memory (ROM), parallel and serial communication interface, system interruption, timing circuits, integrated circuit clock in a single chip, enhanced single-chip integration, such as A / D converter, PMW (pulse width modulation circuit), WDT (watchdog), and some will be single-chip LCD (LCD) driver integrated circuits are in a single chip, this unit includes single-chip circuits on more and more powerful features. Even single-chip manufacturers can also be tailored in accordance with the requirements of users, to create a single chip with its own chip characteristics.3. Mainstream and multi-species coexistenceAlthough a wide variety of single-chip, unique, but still single-chip microcomputer 80C51 prevailing at the core, compatible with its structure and command system of PHILIPS products, ATMEL company's products and China Taiwan's Winbond Series single-chip machine. Therefore, single-chip microcomputer as the core C8051 occupied the half. Microchip's PIC and reduced instruction set (RISC) has a strong development momentum of China Taiwan HOLTEK single-chip companies in recent years, increasing production, with its high quality low-cost advantages, to occupy a certain market share. MOTOROLA addition to the company's products, several large companies in Japan's exclusive single-chip microcomputer. A certain period of time, this situation will continue to be upheld, there will not be a single-chip monopoly domination, taking the complementary interdependence, complementarity and common development.AT89C51 is a flicker with 4K bytes EEPROM-programmable low-voltage, high-performance digital microprocessors CMOS8, commonly known as single-chip microcomputer. AT89C2051 is a flicker with 2K bytes EEPROM programmablemicrocontroller. MCU EEPROM erasure can be repeated 100 times. The device ATMEL manufacture high-density nonvolatile memory technology with industry-standard MCS-51 instruction set and pin compatible output. Owing to the multi-purpose 8-bit CPU and flash memory chips in a single portfolio, ATMEL's AT89C51 microcontroller is a highly efficient, AT89C2051 is a streamlined version of it. AT89C single-chip embedded control system for many provides a flexible and inexpensive program.AT89C51 performance :1. And MCS-51 compatible2.4K bytes of programmable Flash Memory3. Life expectancy: 1000 write / wipe cycle4. Data retention time: 10 years5. Static work of the whole: 0Hz-24MHz6. Three-level Program Memory Lock7.128 × 8-bit internal RAM8.32 Programmable I / O lines9. Two 16-bit timer / counter10.5 Interrupt Sources11. Programmable Serial Channel12. Low-power idle and power-down mode13. Chip oscillator and clock circuitryReferred to as digital voltage meter DVM, it is a digital measurement technology, the continuous analog (DC input voltage) into a non-continuous, discrete digital form and the instrument display.The characteristics of digital voltage meter:1.Show a clear intuitive, accurate readingsTraditional analogue instruments through the use of indicators must be carried out and dial readings in the reading process will be introduced to the inevitable human error. Digital voltage meter is the use of advanced digital display technology, so that the measurement results at a glance, as long as the meter jump phenomenon does not occur, the measurement results is unique.2.Show that the medianShow that the median is usually 31 / 2, 32 / 3, 33 / 4 / spaces, 41 / 2, 43 / 4, 51 / 2, 61 / 2, 71 / 2, 81 / 2 A total of 9. Determine the median number of instruments there are two principles:1. can display all the numbers 0 to 9 are the integer-bit; Score-bitnumerical value is based on the largest show the highest number of elements, with the highest number of full-scale as the denominator .3.High accuracyAccuracy of results is a measure of systematic error and random error of the integrated.4. High resolutionDigital voltage meter at the lowest voltage range on the bottom of a character represented by the voltage value, known as the instrument of the resolution, which reflects the level of instrument sensitivity. With the display resolution increases the median. Resolution refers to the smallest can be shown in the figures (except zero) and the largest percentage of the number. For example, 31 / 2 DVM of a resolution of1 / 1999 ≈ 0.05%. Be noted that the re solution and accuracy are two differentconcepts. From the measurement point of view, the resolution is "true" indicators (with measurement error has nothing to do), the accuracy is the "real" target (on behalf of the size of measurement error).5. Wide measuring rangeDVM generally more measurable range 0 ~ 1000V DC voltage, high voltage probe can be measured with the million-volt high-pressure.A / D converter [4] is a digital voltage meter, digital multimeter and measuringsystem the "heart." At present, domestic production of A / D converter has reached hundreds of species can be broadly divided into five main categories: 1. monolithic A / D converter; 2. DMM dedicated single-chip IC; 3. dedicated multi-display meter IC;4. for digital the use of special instrumentation IC (ASIC);5. other general-purpose A/ D converter, the chip can only complete A / D converter, not directly with the number of instruments.Digital voltage meter digital meter is a great core and foundation of the digital voltage meter as a continuous analog DC voltage to a discrete form of non-sequential numbers, which is different from traditional dial indicator readings to increase the ways to avoid errors in reading and visual fatigue. At present, the digital multimeter isa core component of the internal A / D converter, converter, to a large extent affectthe accuracy of the accuracy of the design of digital multimeter - Digital Voltage Meter A / D converter for converting analog signals ADC0804 input, AT89C51 controls the heart of the transformation and processing the results of operations, the final output device driver number of voltage signal. Digital voltage meter digital meter is a great core and foundation of the digital voltage meter as a continuousanalog DC voltage to a discrete form of non-sequential numbers, which is different from traditional dial indicator readings to increase the ways to avoid errors in reading and visual fatigue. At present, the digital multimeter is a core component of the internal A / D converter, converter, to a large extent affect the accuracy of the accuracy of the design of digital multimeter - Digital Voltage Meter A / D converter for converting analog signals ADC0804 input, AT89C51 controls the heart of the transformation and processing the results of operations, the final output device driver number of voltage signal. LED display can be carried out will be displayed after the decimal point voltage value of one.Adoption of new technologies, new processes, from LSI and VLSI constitute a new type of digital instrumentation and a large number of high-end smart devices available, the field of electronic devices marked a revolution in creating a modern pioneer of electronic measurement technology.中文译文基于单片机技术的数字电压表单片机是指一个集成在一块芯片上的完整计算机系统。

数字温度传感器毕业论文中英文资料外文翻译文献[管理资料]

数字温度传感器毕业论文中英文资料外文翻译文献[管理资料]

毕业论文中英文资料外文翻译文献外文资料DS1722 Digital ThermometerWith scientific and technological progress and development of the types of temperature sensors increasingly wide range of application of the increasingly widespread, and the beginning analog toward digital, single-bus, dual-bus and bus-3 direction. And the number of temperature sensors because they apply to all microprocessor interface consisting of automatic temperature control system simulation can be overcome sensor and microprocessor interface need signal conditioning circuit and A / D converters advant ages of the drawbacks, has been widely used in industrial control, electronic transducers, medical equipment and other temperature control system. Among them, which are more representative of a digital temperature sensor DS18B20, MAX6575, the DS1722, MAX6636 other. This paper introduces the DS1722 digital temperature sensor characteristics, the use of the method and its timing. Internal structure and other relevant content.FEATURES:Temperature measurements require no external components;Measures temperatures from -55°C to +120°C. Fahrenheit equivalent is -67°F to +248°F;Thermometer accuracy is ±°C;Thermometer resolution is configurable from 8 to 12 bits (°C to °C resolution);Data is read from/written to via a Motorola Serial Peripheral Interface (SPI) or standard 3-wire serial interface;Wide analog power supply range ( - );Separate digital supply allows for logic;Available in an 8-pin SOIC (150 mil), 8-pin USOP, and flip chip package;PIN ASSIGNMENTFIGURE 1 PIN ASSIGNMENTPIN DESCRIPTION:SERMODE - Serial Interface Mode.CE - Chip Enable.SCLK - Serial Clock.GND – Ground.VDDA - Analog Supply Voltage.SDO - Serial Data Out.SDI - Serial Data In.VDDD - Digital Supply Voltage.DESCRIPTION:The DS1722 Digital Thermometer and Thermostat with SPI/3-Wire Interface provides temperature readings which indicate the temperature of the device. No additional components are required; the device is truly a temperature-to-digital converter. Temperature readings are communicated from the DS1722 over a Motorola SPI interface or a standard 3-wire serial interface. The choice of interface standard is selectable by the user. For applications that require greater temperature resolution, the user can adjust the readout resolution from 8 to 12 bits. This is particularly useful in applications where thermal runaway conditions must be detected quickly.For application flexibility, the DS1722 features a wide analog supply rail of - . A separate digital supply allows a range of to . The DS1722 is available in an 8-pin SOIC (150-mil), 8-pin USOP, and flip chip package.Applications for the DS1722 include personal computers/servers/workstations, cellular telephones, office equipment, or any thermally-sensitive system.OVERVIEW:A block diagram of the DS1722 is shown in Figure 2. The DS1722 consists offour major components:1. Precision temperature sensor.2. Analog-to-digital converter.3. SPI/3-wire interface electronics.4. Data registers.The factory-calibrated temperature sensor requires no external components. The DS1722 is in a power conserving shutdown state upon power-up. After power-up, the user may alter the configuration register to place the device in a continuous temperature conversion mode or in a one-shot conversion mode. In the continuous conversion mode, the DS1722 continuously converts the temperature and stores the result in the temperature register. As conversions are performed in the background, reading the temperature register does not affect the conversion in progress. In the one-shot temperature conversion mode, the DS1722 will perform one temperature conversion, store the result in the temperature register, and then eturn to the shutdown state. This conversion mode is ideal for power sensitive applications. More information on the configuration register is contained in the “OPERATION-Programming”section. The temperature conversion results will have a default resolution of 9 bits. In applications where small incremental temperature changes are critical, the user can change the conversion resolution from 9 bits to 8, 10, 11, or 12. This is accomplished by programming the configuration register. Each additional bit of resolution approximately doubles the conversion time. The DS1722 can communicate using either a Motorola Serial Peripheral Interface (SPI) or standard 3-wire interface. The user can select either communication standard through the SERMODE pin, tying it to VDDD for SPI and to ground for 3-wire. The device contains both an analog supply voltage and a digital supply voltage (VDDA and VDDD, respectively). The analog supply powers the device for operation while the digital supply provides the top rails for the digital inputs and outputs. The DS1722 was designed to be Logic-Ready.DS1722 FUNCTIONAL BLOCK DIAGRAM Figure 2OPERATION-Measuring Temperature:The core of DS1722 functionality is its direct-to-digital temperature sensor. The DS1722 measures temperature through the use of an on-chip temperature measurement technique with an operating range from -55°to +120°C. The device powers up in a power-conserving shutdown mode. After power-up, the DS1722 may be placed in a continuous conversion mode or in a one-shot conversion mode. In the continuous conversion mode, the device continuously computes the temperature and stores the most recent result in the temperature register at addresses 01h (LSB) and 02h (MSB). In the one-shot conversion mode, the DS1722 performs one temperature conversion and then returns to the shutdown mode, storing temperature in the temperature register. Details on how to change the setting after power up are contained in the “OPERATION-Programming”section. The resolution of the temperature conversion is configurable (8, 9, 10, 11, or 12 bits), with 9-bit readings the default state. This equates to a temperature resolution of °C, °C, °C, °C, or °C. Following each conversion, thermal data is stored in the thermometer register in two’s complement format; the information can be retrieved over the SPI or 3-wire interface with the address set to the temperature register, 01h (LSB) and then 02h (MSB). Table 2 describesthe exact relationship of output data to measured temperature. The table assumes the DS1722 is configured for 12-bit resolution; if the evince is configured in a lower resolution mode, those bits will contain 0s. The data is transmitted serially over the digital interface, MSB first for SPI communication and LSB first for 3-wire communication. The MSB of the temperature register contains the “sign” (S) bit, denoting whether the temperature is positive or negative. For Fahrenheit usage, a lookup table or conversion routine must be used.AddressLocation S 2625242322212002h MSB (unit = ℃) LSB2-12-22-32-40 0 0 0 01hTEMPERATURE DIGITAL OUTPUT(BINARY) DIGITAL OUTPUT(HEX)+120℃0111 1000 0000 0000 7800h+ 0001 1001 0001 0000 1910h+ 0000 1010 0010 0000 0a20h+ 0000 0000 1000 0000 0080h0 0000 0000 0000 0000 0000h1111 1111 1000 0000 Ff80h1111 0101 1110 0000 F5e0h1110 0110 1111 0000 E6f0h-55 1100 1001 0000 0000 C900h OPERATION-Programming:The area of interest in programming the DS1722 is the Configuration register. All programming is done via the SPI or 3-wire communication interface by selecting the appropriate address of the desired register location. Table 3 illustrates the addresses for the two registers (configuration and temperature) of the DS1722.Register Address Structure Table 3CONFIGURATION REGISTER PROGRAMMING:The configuration register is accessed in the DS1722 with the 00h address for reads and the 80h address for writes. Data is read from or written to the configuration register MSB first for SPI communication and LSB first for 3-wire communication. The format of the register is illustrated in Figure 2. The effect each bit has on DS1722 functionality is described below along with the power-up state of the bit. The entire register is volatile, and thus it will power-up in the default state.CONFIGURATION/STATUS REGISTER Figure 21SHOT = One-shot temperature conversion bit. If the SD bit is "1", (continuous temperature conversions are not taking place), a "1" written to the 1SHOT bit will cause the DS1722 to perform one temperature conversion and store the results in the temperature register at addresses 01h (LSB) and 02h (MSB). The bit will clear itself to "0" upon completion of the temperature conversion. The user has read/write access to the 1SHOT bit, although writes to this bit will be ignored if the SD bit is a "0", (continuous conversion mode). The power-up default of the one-shot bit is "0".R0, R1, R2 = Thermometer resolution bits. Table 4 below defines the resolution of the digital thermometer, based on the settings of these 3 bits. There is a direct tradeoff between resolution and conversion time, as depicted in the AC Electrical Characteristics. The user has read/write access to the R2, R1 and R0 bits and the power-up default state is R2="0", R1="0", and R0="1" (9-bit conversions).THERMOMETER RESOLUTION CONFIGURATION Table 4SD = Shutdown bit. If SD is "0", the DS1722 will continuously perform temperature conversions and store the last completed result in the temperature register. If SD is changed to a "1", the conversion in progress will be completed and stored and then the device will revert to a low-power shutdown mode. The communication port remains active. The user has read/write access to the SD bit and the power-up default is "1" (shutdown mode).SERIAL INTERFACE:The DS1722 offers the flexibility to choose between two serial interface modes. The DS1722 can communicate with the SPI interface or with a standard 3-wire interface. The interface method used is determined by the SERMODE pin. When this pin is connected to VDDD SPI communication is selected. When this pin is connected to ground, standard 3-wire communication is selected.SERIAL PERIPHERAL INTERFACE (SPI):The serial peripheral interface (SPI) is a synchronous bus for address and data transfer. The SPI mode of serial communication is selected by tying the SERMODE pin to VDDD. Four pins are used for the SPI. The four pins are the SDO (Serial Data Out), SDI (Serial Data In), CE (Chip Enable), and SCLK (Serial Clock). The DS1722 is the slave device in an SPI application, with the microcontroller being the master. The SDI and SDO pins are the serial data input and output pins for the DS1722, respectively. The CE input is used to initiate and terminate a data transfer. The SCLK pin is used to synchronize data movement between the master (microcontroller) and the slave (DS1722) devices. The shift clock (SCLK), which is generated by the microcontroller, is active only when CE is high and during address and data transfer to any device on the SPI bus. The inactive clock polarity is programmable in somemicrocontrollers. The DS1722 offers an important feature in that the level of the inactive clock is determined by sampling SCLK when CE becomes active. Therefore, either SCLK polarity can be accommodated. There is one clock for each bit transferred. Address and data bits are transferred in groups of eight, MSB first.3-WIRE SERIAL DATA BUS:The 3-wire communication mode operates similar to the SPI mode. However, in 3-wire mode, there is one bi-directional I/O instead of separate data in and data out signals. The 3-wire consists of the I/O (SDI and SDO pins tied together), CE, and SCLK pins. In 3-wire mode, each byte is shifted in LSB first unlike SPI mode where each byte is shifted in MSB first. As is the case with the SPI mode, an address byte is written to the device followed by a single data byte or multiple data bytes.外文资料译文DS1722数字温度传感器随着科学技术的不断进步和发展,温度传感器的种类日益繁多,应用逐渐广泛,并且开始由模拟式向着数字式、单总线式、双总线式和三总线式发展。

外文翻译--基于51单片机温度报警器的设计(适用于毕业论文外文翻译+中英文对照)

外文翻译--基于51单片机温度报警器的设计(适用于毕业论文外文翻译+中英文对照)

外文翻译--基于51单片机温度报警器的设计(适用于毕业论文外文翻译+中英文对照)XXX: Design of a Temperature Alarm Based on 51 MCUDepartment: n EngineeringMajor: Measurement and Control Technology and nClass:Student ID:Name:Supervisor:Date:A microcontroller。

also known as a single-chip computer system。

XXX its ns being integrated on a small chip。

it has most of the components needed for a complete computer system。

such as CPU。

memory。

internal and external bus systems。

and mostof them also have external storage。

At the same time。

it integrates XXX interfaces。

timers。

real-time clocks。

etc。

The most XXX integrate sound。

image。

ork。

and complex input-output systems on a single chip.XXX used in the industrial control field。

Microcontrollers XXX CPUs inside the chip。

The original design concept was to integrate a large number of peripheral devices and CPUs on a chip to make the computer system XXX's Z80 was the first processor designed according to this concept。

外文文献及翻译:基于单片机的电子称设计

外文文献及翻译:基于单片机的电子称设计

本科生毕业设计(论文)外文翻译癏毕业设计题目:基于单片机的电子称设计学院:专业班级:学生指导教师:2011年3月9日Electronic scalesElectronic scales are weighing technology in a new type of instrument is widely used in various occasions. Electronic scales and mechanical scales have more small size, light weight, simple structure, low price and practical value of strong, convenient maintenance and so on can be in a variety of environmental work, the weight of the signal can be Remote, the weight of display is easy to implement digital, easy-to-computer network, production automation, higher labor productivity. Scale labels in the supermarket is in the application of face value. A small label contains: name, price, weight, etc. 11 list in this small electronic label. Greatly accelerated the use of label machine sales pace, but also convenient for customers. Top barcode labels have many remarkable features of scale, Ethernet feature makes the management more convenient.Electronic Scale Classification (scales can be divided into mechanical and electronic type)1.How it works: electronic works in electronic components (weighing sensor, AD conversion circuit, microcontroller circuits, display circuit, keyboard circuitry, communications interface circuits, regulated power supply circuit circuit.2.using the function: electronic weighing the use of modern sensor technology, electronics and computer technology integration, electronic weighing devices, in order to meet and solve real life's "fast, accurate, continuous, automatic" weighing requirements, while effectively eliminating human error, to make it more in line with the management of legal metrology and industrial production process control applications.3. Three health scales are weighing the use of features in a category (divided into mechanical and electronic), inexpensive, it can help people to effectively monitor their own body weight changes, new products also can detect their fat content, but also Some human-oriented subsidiary functions. May not be part of measuring equipment.4.Electronic Scale is a measurement of the state compulsory test apparatus, and his qualified products are test indexing the value of D values of e and subdivision standards, is subject to the protection of the national metrology products. In the electronic weighing there is a category called "human scale" products, which can test in the measurement sector, weighing very precise.Block diagram interpretation of the principle of electronic balanceThe first part of the electronic scale principle block diagram:Program K / B (button) ↑ Fx → Sensors → OP Zoom → A / D converter →CPU → → display driver display memoryWorkflow Note: When an object on the pan when the pressure facilities to the sensor that occurred deformation, so that resistance to change, while the use of excitation voltage changes, the output of a change in analog signal. This signal amplification by the amplifier output to the ADC. Converted to facilitate the processing of the digital signal output to the CPU operator control. CPU under the keyboard commands and program output to display this result. Until the show such a result.The second part of the scale of the classification: 1. According to principles of points: E-scale mechanical scale mechanical and electrical integration scales 2. According to the functions sub: Counting Scales Weighing Scale Pricing Scale 3. Purpose: Industrial Commercial Scales Special Scales BalanceThe third part of the scale types: 1. The full name of the desktop Scale refers to the volume of less than 30Kg electronic scale 2. The full name of platform scale refers to the volume within the 30-300Kg Electronic Scale 3. Loadometer full name refers to the volume of more than 300Kg Electronic Scale 4. Precision Balance4th Part of the accuracy of classification: I Class: Special scales precision ≥ 1 / 10 Wan II level: high-precision scale 1 / 10000 ≤ precision of "1 / 100,000 III: the accuracy of scale 1 / 1000 ≤ precision of "1 / 10000 Class IV: Common Scale 1 / 100 ≤ precision of" 1 / 1000Part V of professional terminology: 1. Maximum weighing: an electron balance, excluding tare weight, the maximum load can weigh; 2. Minimum weigh: a electronic scales below the value that would have occurred when a relatively error; 3. safe load: 120% of the normal weighing range; 4. Rated load: normal weighing range; 5. permissible error: class test when the maximum deviation; 6. a sense of quantity: a single electronic scales can show the smallest scale; usually "d" to represent; 7. analytic capacity: a function with a count of the electronic scales, can distinguish the smallest scale; 8. Resolution: a counting function with an electronic scale, the internal capacity of a Resolution of a parameter; 9.Warm-up time: a scale used to achieve the targets of the time; 10. Accuracy: The full name of a sense of volume and volume ratios; 11. electronic scale use of environmental temperature: -10 degrees Celsius to 40 degrees Celsius 12. platform scale The table size: 25cm X 30cm 30cm X 40cm 40cm X 50cm 42cm X 52cm45cm X 60cmPart VI electronic scale features: 1. To achieve long-distance operations; 2. To achieve automatic control; 3. Figures show that an intuitive, reduce human error; 4. High accuracy and resolution strong; 5. Weighing range is wide; 6 . unique features: buckle weight, withholding weight, zero, accumulated, warning, etc.; 7. maintenance simple; 8. size is small; 9. installation, calibration simple; 10. special industry, can be accessed by the printer or computer-driven; 11. Intelligent electronic scale, quick reaction, high efficiency; Part VII of the electronic scaleinspection process: 1. First, the overall examination: whether the wear and tear; 2. Whether the boot: the boot sequence is from 0 to 9 in turn shows that figures are vague, can zero; 3. Whether the backlight ; 4. with the weight tests in weighing; 5. chargers is intact, can use; 6. parts are complete; Part VIII sensor type: 1. Resistive: affordable, high accuracy, widely used; 2. Capacitive: small size, low precision; 3. Maglev-style: special high-precision, high cost; 4. Hydraulic formula: the current the market has been eliminated; Display Type: 1.LCD (liquid crystal display): free electricity, energy-saving, with backlight; 2.LED: free electricity, power consumption, very bright; 3. Lamp: electricity, power consumption , high; K / B (button) type: 1. film button: contact type; 2. mechanical buttons: made up of many individual combinations of keys together; sensor characteristics: 1. rated load; 2. output sensitivity; 3. non-linear; 4. hysteresis; 5. repeatable; 6. creep; 7. 12:00 output effects; 8. rated output temperature; 9. 12:00 input; 10. input impedance; 11. output impedance; 12. Insulation Resistance ; 13. to allow excitation voltage; (5-18V)Part IX sensor damaged phenomenon: 1. Weighing not allowed; 2. Shows no return to zero; 3. Shows the number of bounce to judge the sensor + E,-E, + S,-S 1. The first to use resistance profile measurement 4-line 22 This resistance value, a total of 6 groups. The case of 400-450, compared with Europe + E,-E; if it is 350 in Europe, compared to + S,-S; for the 290 in Europe, compared to R-arm; 2. + E,-E terminated on the + 1.5V voltageSensor correctly to exert a pressure, such as the output + _S increase, then the red table pens as + S, the contrary-S; 10th part of the high-precision counting scale features: 1.Kg/Ib unit conversion functions; 2. 12:00 display range adjustment function (GLH series does not) 3. Sampling speed adjustment function;4. There are 10 groups memory function singlet;5. may be at the same time the weight, quantity, the cumulative function (GLH only the number of cumulative)6. can set the weight, the maximum amount of warning function;7. automatic zero tracking, temperature linear correction;8. deduction of withholding heavy weight and function;9. Standby function; 10. there is zero shows zero tracking range and scope; 11. there is the battery voltage control to limit the function; Electronic scales are weighing technology in a new type of instrument is widely used in various occasions. Electronic scales and mechanical scales have more small size, light weight, simple structure, low price and practical value of strong, convenient maintenance and so on can be in a variety of environmental work, the weight of the signal can be Remote, the weight of display is easy to implement digital,easy-to-computer networking, process automation of production and improve labor productivity. Electronic Scale also has an automatic zero tracking, overload display of self-extinguishing characteristics.Mechanical scales, floor scale / land in the value (car value), weigh-bridges and other fitted force-sensitive sensors and microcomputer-controlled intelligent weighing instruments become intelligent digital electrical and mechanical balance (or the mechanical and electrical dual-use scales), to improve the mechanical balance of the measurement accuracy, with low cost, high reliability, simple installation and so on, without prejudice to the original mechanical scales to anytransmission bearing structure. There are peeled, set to zero, the cumulative number of times, the cumulative weight (cumulative amount of valuation-based), auto-zeroing, auto-tracking and other functions. Weighing data can be directly printed or transmitted via computer networks, industrial processes can improve the level of scale and product quality, trade clearing with the scale can improve the credibility of incalculable social and economic benefits.Electronic Scale is basically a sensor, amplifier circuit, A / D conversion circuit, microcontroller control of display parts, switch matrix circuit, the keyboard circuit and power circuit. Weight sensor signals are converted to a corresponding electrical signal, after amplified into the A / D converted into pulses weight, through the SCM under the control of the analog voltage signals into digital. The digital conversion by the SCM program in line with the actual weight of the value of sending the number of display windows.MCU at the same time the keyboard and switch matrix for monitoring. According to the input parameter values, the program handled accordingly. Power circuit to provide the various parts of the operating voltage. Microprocessors such as 8050, HD404418F, 8031, etc. CPU. Highly versatile motherboard, different values of range and sub-degree scales, just adjust the jumpers on the motherboard and the DIP switch can be achieved, the only difference is that the sensor used with a rated carrying capacitySensor is a physical device or biological organ that can detect and feel the outside of the signal, physical condition (such as light, heat, humidity) or chemical composition (such as smoke), and Discovery of information to other devices or organs. Definition of sensorNational standard GB7665-87 sensor is defined as: "can feel the requirements are measured and converted in accordance with the laws of certain signal device or devices available, usually composed of sensitive components and conversion devices." Sensor is a detection device, can feel the information being measured, and can detect sense of information, according to certain laws of transformation into electrical signals, or other forms of information required for output to meet the information transmission, processing, storage, display, recording and control requirements. It is the automatic detection and control of the primary link.The role of sensorPeople in order to obtain information from the outside world must help of sense organs. And rely on people's own sense organs, the study of natural phenomena and laws, and production activities in their functions on far enough. To meet this situation, we need sensors. It can be said sensor is an extension of human senses, also known as electronic features.The arrival of the new technological revolution, the world entered the information age. In the course of the use of information, we must first resolve is to obtain accurate and reliable information, and sensors is to obtain information inthe field of natural and production of the main ways and means.In modern industrial production, especially automated production process, the use of various sensors to monitor and control the various parameters of the production process, so that devices work best in the normal state or condition, and to achieve the best quality products. Therefore we can say, without a large number of good sensors, modern production base will be lost.In the basic science research, a more prominent position sensor. The development of modern science and technology into many new areas: for example, thousands of light years to observe the macro level of the vast universe, to observe microscopically small particles cm the world, vertical, to observe the evolution over hundreds of years of celestial bodies , a short response to the s moment. In addition, there was even a matter of deepening understanding, developing new energy, new materials, play an important role in a variety of extreme technology such as ultra-high temperature, ultra-low temperature, high pressure, ultra-high vacuum, powerful magnetic field, ultra-weak magnetic bagging, etc. . Obviously, to obtain a large number of human senses can not directly access the information, Not compatible with sensors is impossible. Many basic scientific research obstacles, first of all to obtain information on the object is difficult, and a new highly sensitive detection mechanism and the emergence of sensors, often lead to breakthroughs in the field. The development of a number of sensors is often a pioneer in the development of marginal subjects.Sensor has already penetrated into, such as industrial production, space development, marine exploration, environmental protection, resource survey, medical diagnostics, biotechnology, and even conservation areas and so most of the pan. It is no exaggeration to say that, from the vast space, the vastness of the ocean, as well as a variety of complex engineering systems, almost every modern project, are inseparable from a variety of sensors.Thus, the sensor technology in economic development, promote the important role of social progress is very clear. Countries in the world attach great importance to the development of this area. I believe in the near future, there will be a leap in sensor technology, to achieve status commensurate with its important new level.Sensor classificationDifferent views can be classified on the sensors: they transform principle (Transducer on the basic physical or chemical effect); their purpose; their output signal types and the production of their materials and processes.Working principle of the sensor can be divided into physical sensors and chemical sensors two categories:Sensor working principle of the classification of physical sensors that physical effects, such as the piezoelectric effect, magnetostriction, ionization, polarization, thermal, optical, magnetic and electric effects. Small changes in the amount of the measured signal will be converted into electrical signals.Chemical sensors, including those with chemical adsorption, electrochemical reaction, a causal relationship between the phenomenon of the sensor, the measured signal will be small changes in volume converted to electrical signals.Some sensors can not divided into physics, can not be divided into chemical classes. Most of the physics-based sensor is functioning. Many problems of chemical sensor technology, such as reliability issues, the possibility of mass production, prices, etc., solve such problems, the application of chemical sensors will have tremendous growth.Dynamic characteristicThe so-called dynamic characteristics, is the change in the input sensor, its output characteristics. In practice, the sensor's dynamic characteristics common to certain standards of its response to said input signal. This is because the sensor response to the standard input signal easily obtained by experiment, and its standard input signal response and its response to any input signal exists between the relationship, often the latter that the former can be presumed. The most commonly used standard input signal and sine signal with step two, so the dynamic characteristics of sensors are commonly used in the step response and frequency response to that.电子秤电子秤是称重技术中的一种新型仪表,广泛应用于各种场合。

单片机温度控制系统中英文对照外文翻译文献

单片机温度控制系统中英文对照外文翻译文献

中英文资料对照外文翻译(文档含英文原文和中文翻译)原文:Single-chip microcomputer temperature control system DescriptionThe at89s52 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51™ instruction set and pinout. The chip combines a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel at89s52 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.Features:• Compatible with MCS-51™ Products• 4K Bytes of In-System Reprogrammable Flash Memory• Endurance: 1,000 Write/Erase Cycles• Fully Static Operation: 0 Hz to 24 MHz• Three-Level Program Memory Lock• 128 x 8-Bit Internal RAM• 32 Programmable I/O Lines• Two 16-Bit Timer/Counters• Six Interrupt Sources• Programmable Serial Channel• L ow Power Idle and Power Down ModesThe at89s52 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the at89s52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM,timer/counters, serial port and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin Description:VCC Supply voltage.GND Ground.Port 0Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink eight TTL inputs. When is are written to port 0 pins, the pins can be used as high impedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the at89s52 as listed below:Port pin alternate functionsP3.0 rxd (serial input port)P3.1 txd (serial output port)P3.2 ^int0 (external interrupt0)Port 3 also receivessome control signals forFlash programming andverification. RSTReset input. A high on this pin for two machine cycles while the oscillator is runningresets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address duringaccesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the at89s52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flashprogramming, for parts that require 12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit. XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifierwhich can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. P3.3 ^int1 (external interrupt1) P3.4 t0 (timer0 external input) P3.5 t1 (timer1 external input) P3.6 ^WR (external data memory write strobe) P3.7^rd (external data memory read strobe)Idle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Status of External Pins During Idle and Power Down Modesmode Program memory ALE ^psen Port0 Port1Port2Port3idle internal 1 1 data data data DataIdle External 1 1 float Data data Data Power down Internal 0 0 Data Data Data Data Power down External 0 0 float data Data data Power Down ModeIn the power down mode the oscillator is stopped, and the instruction that invokes power down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power down mode is terminated. The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below:Lock Bit Protection ModesWhen lock bit 1 is programmed, the logic level at the EA pin is sampled and latchedduring reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly. Programming the Flash:The at89s52 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed.The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal.The low voltage programming mode provides a convenient way to program the at89s52 inside the user’s system, while th e high-voltage programming mode is compatible with conventional third party Flash or EPROM programmers.The at89s52 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table.Vpp=12v Vpp=5vTop-side mark at89s52xxxxyywwat89s52xxxx-5yywwsignature (030H)=1EH(031H)=51H(032H)=FFH (030H)=1EH (031H)=51H (032H)=05HThe at89s52 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash Programmable and Erasable Read Only Memory, the entire memory must be erased using the Chip Erase Mode. Programming Algorithm:Before programming the at89s52, the address, data and control signals should be set up according to the Flash programming mode table and Figures 3 and 4. To program the at89s52, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines.3. Activate the correct combination of control signals.4. Raise EA/VPP to 12V for the high-voltage programming mode.5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. Thebyte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.Data Polling: The at89s52 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.Ready/Busy: The progress of byte programming can also be monitored by theRDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.Chip Erase: T he entire Flash Programmable and Erasable Read Only Memory array is erased electrically by using the proper combination of control signals and by holdingALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programmingProgramming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion.译文:单片机温度控制系统描述at89s52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4Kbytes 的快速可擦写的只读程序存储器(PEROM)和128 bytes 的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51产品指令系统,片内置通用8位中央处理器(CPU)和flish存储单元,功能强大at89s52单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。

(完整版)单片机_温度控制系统_外文翻译_外文文献_英文文献_中英翻译

(完整版)单片机_温度控制系统_外文翻译_外文文献_英文文献_中英翻译

Design of the Temperature Control System Based on AT89C51ABSTRACTThe principle and functions of the temperature control system based on micro controller AT89C51 are studied, and the temperature measurement unit consists of the 1-Wire bus digital temperature sensor DS18B20. The system can be expected to detect the preset temperature, display time and save monitoring data. An alarm will be given by system if the temperature exceeds the upper and lower limit value of the temperature which can be set discretionarily and then automatic control is achieved, thus the temperature is achieved monitoring intelligently within a certain range. Basing on principle of the system, it is easy to make a variety of other non-linear control systems so long as the software design is reasonably changed. The system has been proved to be accurate, reliable and satisfied through field practice. KEYWORDS: AT89C51; micro controller; DS18B20; temperature1 INTRODUCTIONTemperature is a very important parameter in human life. In the modern society, temperature control (TC) is not only used in industrial production, but also widely used in other fields. With the improvement of the life quality, we can find the TC appliance in hotels, factories and home as well. And the trend that TC will better serve the whole society, so it is of great significance to measure and control the temperature. Based on the AT89C51 and temperature sensor DS18B20, this system controls the condition temperature intelligently. The temperature can be set discretionarily within a certain range. The system can show the time on LCD, and save monitoring data; and automatically control the temperature when the condition temperature exceeds the upper and lower limit value. By doing so it is to keep the temperature unchanged. The system is of high anti-jamming, high control precision and flexible design; it also fits the rugged environment. It is mainly used in people's life to improve the quality of the work and life. It is also versatile, so that it can be convenient to extend the use of the system. So the design is of profound importance. The general design, hardware design and software design of the system are covered.1.1 IntroductionThe 8-bit AT89C51 CHMOS microcontrollers are designed to handle high-speed calculations and fast input/output operations. MCS 51 microcontrollers are typicallyused for high-speed event control systems. Commercial applications include modems, motor-control systems, printers, photocopiers, air conditioner control systems, disk drives, and medical instruments. The automotive industry use MCS 51 microcontrollers in engine-control systems, airbags, suspension systems, and antilock braking systems (ABS). The AT89C51 is especially well suited to applications that benefit from its processing speed and enhanced on-chip peripheral functions set, such as automotive power-train control, vehicle dynamic suspension, antilock braking, and stability control applications. Because of these critical applications, the market requires a reliable cost-effective controller with a low interrupt latency response, ability to service the high number of time and event driven integrated peripherals needed in real time applications, and a CPU with above average processing power in a single package. The financial and legal risk of having devices that operate unpredictably is very high. Once in the market, particularly in mission critical applications such as an autopilot or anti-lock braking system, mistakes are financially prohibitive. Redesign costs can run as high as a $500K, much more if the fix means 2 back annotating it across a product family that share the same core and/or peripheral design flaw. In addition, field replacements of components is extremely expensive, as the devices are typically sealed in modules with a total value several times that of the component. To mitigate these problems, it is essential that comprehensive testing of the controllers be carried out at both the component level and system level under worst case environmental and voltage conditions. This complete and thorough validation necessitates not only a well-defined process but also a proper environment and tools to facilitate and execute the mission successfully. Intel Chandler Platform Engineering group provides post silicon system validation (SV) of various micro-controllers and processors. The system validation process can be broken into three major parts. The type of the device and its application requirements determine which types of testing are performed on the device.1.2 The AT89C51 provides the following standard features4Kbytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bittimer/counters, a five vector two-level interrupt architecture, a full duple ser-ial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt sys -tem to continue functioning. The Power-down Mode saves theRAM contents but freezes the oscil–lator disabling all other chip functions until the next hardware reset.1.3Pin DescriptionVCC Supply voltage.GND Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs. Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pull ups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull ups are required during program verification.Port 1:Port 1 is an 8-bit bi-directional I/O port with internal pull ups. The Port 1 output buffers can sink/so -urce four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2:Port 2 is an 8-bit bi-directional I/O port with internal pull ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX@DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals durin Flash programming and verification.Port 3:Port 3 is an 8-bit bi-directional I/O port with internal pull ups. The Port 3 output buffers can sink/sou -rce four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port3 pins that are externally being pulled low will source current (IIL) because of the pull ups.Port 3 also serves the functions of various special features of the AT89C51 as listed below:RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROG:Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped duri-ng each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN:Program Store Enable is the read strobe to external program memory. When theAT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPP:External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin alsreceives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2 :Output from the inverting oscillator amplifier. Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through adivide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. Idle Mode In idle mode, the CPU puts itself to sleep while all the on chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRS but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize. The AT89C51 code memory array is programmed byte-by byte in either programming mode. To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode.2 Programming AlgorithmBefore programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines. 3. Activate the correct combination of control signals. 4. Raise EA/VPP to 12V for the high-voltage programming mode. 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached. Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the writtendatum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.2.1Ready/Busy:The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify:If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.2.2 Chip Erase:The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.2.3 Reading the Signature Bytes:The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned areas follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programming2.4 Programming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is self timed and once initiated, will automatically time itself to completion. A microcomputer interface converts information between two forms. Outside the microcomputer the information handled by an electronic system exists as a physical signal, but within the program, it is represented numerically. The function of anyinterface can be broken down into a number of operations which modify the data in some way, so that the process of conversion between the external and internal forms is carried out in a number of steps. An analog-to-digital converter(ADC) is used to convert a continuously variable signal to a corresponding digital form which can take any one of a fixed number of possible binary values. If the output of the transducer does not vary continuously, no ADC is necessary. In this case the signal conditioning section must convert the incoming signal to a form which can be connected directly to the next part of the interface, the input/output section of the microcomputer itself. Output interfaces take a similar form, the obvious difference being that here the flow of information is in the opposite direction; it is passed from the program to the outside world. In this case the program may call an output subroutine which supervises the operation of the interface and performs the scaling numbers which may be needed for digital-to-analog converter(DAC). This subroutine passes information in turn to an output device which produces a corresponding electrical signal, which could be converted into analog form using a DAC. Finally the signal is conditioned(usually amplified) to a form suitable for operating an actuator. The signals used within microcomputer circuits are almost always too small to be connected directly to the outside world”and some kind of interface must be used to translate them to a more appropriate form. The design of section of interface circuits is one of the most important tasks facing the engineer wishing to apply microcomputers. We have seen that in microcomputers information is represented as discrete patterns of bits; this digital form is most useful when the microcomputer is to be connected to equipment which can only be switched on or off, where each bit might represent the state of a switch or actuator. To solve real-world problems, a microcontroller must have more than just a CPU, a program, and a data memory. In addition, it must contain hardware allowing the CPU to access information from the outside world. Once the CPU gathers information and processes the data, it must also be able to effect change on some portion of the outside world. These hardware devices, called peripherals, are the CPU’s window to the outside.The most basic form of peripheral available on microcontrollers is the general purpose I70 port. Each of the I/O pins can be used as either an input or an output. The function of each pin is determined by setting or clearing corresponding bits in a corresponding data direction register during the initialization stage of a program. Each output pin may be driven to either a logic one or a logic zero by using CPUinstructions to pin may be viewed (or read.) by the CPU using program instructions. Some type of serial unit is included on microcontrollers to allow the CPU to communicate bit-serially with external devices. Using a bit serial format instead of bit-parallel format requires fewer I/O pins to perform the communication function, which makes it less expensive, but slower. Serial transmissions are performed either synchronously or asynchronously.3 SYSTEM GENERAL DESIGNThe hardware block diagram of the TC is shown in Fig. 1. The system hardware includes the micro controller, temperature detection circuit, keyboard control circuit, clock circuit, Display, alarm, drive circuit and external RAM. Based on the AT89C51, the DS18B20 will transfer the temperature signal detected to digital signal. And the signal is sent to the micro controller for processing. At last the temperature value is showed on the LCD 12232F. These steps are used to achieve the temperature detection. Using the keyboard interface chip HD7279 to set the temperature value, using the micro controller to keep a certain temperature, and using the LCD to show the preset value for controlling the temperature. In addition, the clock chip DS1302 is used to show time and the external RAM 6264 is used to save the monitoring data. An alarm will be given by buzzer in time if the temperature exceeds the upper and lower limit value of the temperature.3.1 HARDWARE DESIGNA. Micro controllerThe AT89C51 is a low-power, high-performance CMOS 8-bit micro controller with 4K bytes of in-system programmable Flash memory. The device is manufactured using At mel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pin out. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with in-system programmable Flash on a monolithic chip, the At mel AT89C51 is a powerful micro controller which provides a highly-flexible and cost-effective solution to many embedded control applications. Minimum system of the micro controller is shown in Fig. 2. In order to save monitoring data, the 6264 is used as an external RAM. It is a static RAM chip, low-power with 8K bytes memory.B. Temperature Detection CircuitThe temperature sensor is the key part in the system. The Dallas DS18B20 is used, which supports the 1-Wire bus interface, and the ON-BOARD Patented is used internally. All the sensor parts and the converting circuit are integrated in integrated circuit like a transistor [1]. Its measure range is -55℃~125 ℃, and the precision between -10℃~85℃is ±0.5℃[2 ,3]. The temperature collected by the DS18B20 is transmitted in the 1-Wire bus way, and this highly raises the system anti-jamming and makes it fit in situ temperature measurement of the rugged environment [4]. There are two power supply ways for the DS18B20. The first is external power supply: the first pin of the DS18B20 is connected to the ground; the second pin serves as signal wire and the third is connected to the power. The second way is parasite power supply [5]. As the parasite power supply will lead to the complexity of the hardware circuit, the difficulty of the software control and the performance degradation of the chip, etc. But the DS18B20(s) can be connected to the I/O port of the micro controller in the external power supply way and it is more popular. Therefore the external power supply is used and the second pin is connected to the pin P1.3 of the AT89S51. Actually, if there are multipoint to be detected, the DS18B20(s) can be connected to the 1-Wire bus. But when the number is over 8, there is a concern to the driving and the more complex software design as well as the length of the 1-Wire bus. Normally it is no more than 50m. To achieve distant control, the system can be designed in to a wireless one to breakthe length limit of the 1-Wire bus [6].C. LCD CircuitThe LCD 12232F is used, which can be used to show characters, temperature value and time, and supply a friendly display interface. The 12232F is a LCD with 8192 128×32 pixels Chinese character database and 128 16×8 pixels ASCII character set graphics. It mainly consists of row drive/column drive and 128×32 full lattice LCD with the function of displaying graphics as well as 7.5×2 Chinese characters. It is in a parallel or serial mode to connect to external CPU [7]. In order to economize the hardware resource, the 12232F should be connected to the AT89S51 in serial mode with only 4 output ports used. The LCD grayscale can be changed by adjusting the variable resistor connected the pin Vlcd of the LCD. CLK is used to transmit serial communication clock. SID is used to transmit serial data. CS is used to enable control the LCD. L+ is used to control the LCD backlight power.D. Clock CircuitThe Dallas DS18B20 is used, which is a high performance, low-power and real-time clock chip with RAM. The DS18B20 serves in the system with calendar clock and is used to monitor the time. The time data is read and processed by the AT89C51 and then displayed by the LCD. Also the time can be adjusted by the keyboard. The DS18B20 crystal oscillator is set at 32768Hz, and the recommended compensation capacitance is 6pF. The oscillator frequency is lower, so it might be possible not to connect the capacitor, and this would not make a big difference to the time precision. The backup power supply can be connected to a 3.6V rechargeable battery.E. Keyboard Control CircuitThe keyboard interface in the system is driven by the HD7279A which has a +5V single power supply and which is connected to the keyboard and display without using any active-device. According to the basic requirements and functions of the system, only 6 buttons are needed. The system's functions are set by the AT89C51 receiving the entered data. In order to save the external resistor, the 1×6 keyboard is used, and the keyboard codes are defined as: 07H, 0FH, 17H, 1FH, 27H, 2FH. The order can be read out by reading the code instruction. HD7279A is connected to the AT89S51 in serial mode and only 4 ports are need. As shown in Fig. 6, DIG0~DIG5 and DP are respectively the column lines and row line ports of the six keys which achieve keyboard monitoring, decoding and key codes identification.F. Alarm CircuitIn order to simplify the circuit and convenient debugging, a 5V automatic buzzer is used in the alarm circuit [8]. And this make the software programming simplified. As shown in Fig. 7, it is controlled by the PNP transistor 9012 whose base is connected to the pin P2.5 of the AT89C51. When the temperature exceeds the upper and lower limit value, the P2.5 output low level which makes the transistor be on and then an alarm is given by the buzzer.G. Drive CircuitA step motor is used as the drive device to control the temperature. The four-phase and eight-beat pulse distribution mode is used to drive motor and the simple delay program is used to handle the time interval between the pulses to obtain different rotational speed. There are two output states for the step motor. One: when the temperature is over the upper value, the motor rotates reversely (to low the temperature), while when lower than the lower limit value, the motor rotates normally(to raise the temperature); besides not equals the preset value. Two: when the temperature is at somewhere between the two ends and equals the preset value, the motor stops. These steps are used to achieve the temperature control. In addition, the motor speed can also be adjusted by relative buttons. As shown in Fig. 8, the code data is input through ports A11~A8 (be P2.3~P2.0) of the AT89C51 and inverted output by the inverter 74LS04. Finally it is amplified by the power amplifier 2803A to power the motor.3.2 SOFTW ARE DESIGNAccording to the general design requirement and hardware circuit principle of the system, as well as the improvement of the program readability, transferability and the convenient debugging, the software design is modularized. The system flow mainly includes the following 8 steps: POST (Power-on self-test), system initiation, temperature detection, alarm handling, temperature control, clock chip DS18B20 operation, LCD and keyboard operation. The main program flow is shown in Fig. 9. Give a little analysis to the above 8 tasks, it is easy to find out that the last five tasks require the real time operation. But to the temperature detection it can be achieved with timer0 timing 1 second, that is to say temperature detection occurs per second. The system initiation includes global variable definition, RAM initiation, special function register initiation and peripheral equipment initiation. Global variable definition mainly finishes the interface definition of external interface chip connected to the AT89C51, and special definition of some memory units. RAM initiation mainly refers to RAM processing. For example when the system is electrified the time code will be stored in the internal unit address or the scintillation flag will be cleared. The special function register initiation includes loading the initial value of timer and opening the interrupt. For example, when the system is electrified the timer is initialized. The peripheral equipment initiation refers to set the initial value of peripheral equipment. For example, when the system is electrified, the LCD should be initialized, the start-up display should be called, the temperature conversion command should be issued firstly and the clock chip DS18B20 should also be initialized. The alarm handling is mainly the lowering and the raising of temperature to make the temperature remain with the preset range. When the temperature is between the upper and the lower limit value, it goes to temperature control handling, that is to say the temperature need to be raised or lowered according to the preset value. By doing so make the condition temperature equal to the preset value and hence to reach thetemperature target.4 CONCLUSIONThe temperature control system has the advantages of friendly human-computer interaction interface, simple hardware, low cost, high temperature control precision (error in the range of ±1 ℃), convenience and versatility, etc. It can be widely used in the occasions with -55℃to 125℃range, and there is a certain practical value.。

单片机STM32外文文献翻译、中英文翻译

单片机STM32外文文献翻译、中英文翻译

外文翻译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced" series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market's lowest power, the equivalent of 0.5mA/MHz.STM32F103 Performance Characteristics1) Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2) Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAMmemory.3) Clock, reset, and power management. 2.0-3.6V power supply and I / O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4) Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5) Debug mode. Serial debugging and JTAG interface.6) Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7) Up to a maximum of 112 fast I / O ports. Depending on the model, there are 26,37,51,80, and 112 I / O ports, all ports can be mapped to 16 external interruptvectors. In addition to the analog input, all of them can accept the input of 5V or less.8) Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM or pulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick timer: 24 down counter. Two 16-bit basic timer for driving DAC.9) Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1) Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2) Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3) Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4) Nested Vectored Interrupt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored interrupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5) External interrupt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / eventcontroller is able to detect. Up to 112 GPIO connected to the 16 external interrupt lines.6) Clocks and startup. At boot time or to the system clock selection, but the reset when the internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock interrupt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文翻译:单片机STM321 STM32的介绍STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译一、外文文献Title: The Application and Development of SingleChip Microcontrollers in Modern ElectronicsSinglechip microcontrollers have become an indispensable part of modern electronic systems They are small, yet powerful integrated circuits that combine a microprocessor core, memory, and input/output peripherals on a single chip These devices offer significant advantages in terms of cost, size, and power consumption, making them ideal for a wide range of applicationsThe history of singlechip microcontrollers can be traced back to the 1970s when the first microcontrollers were developed Since then, they have undergone significant advancements in technology and performance Today, singlechip microcontrollers are available in a wide variety of architectures and capabilities, ranging from simple 8-bit devices to complex 32-bit and 64-bit systemsOne of the key features of singlechip microcontrollers is their programmability They can be programmed using various languages such as C, Assembly, and Python This flexibility allows developers to customize the functionality of the microcontroller to meet the specific requirements of their applications For example, in embedded systems for automotive, industrial control, and consumer electronics, singlechip microcontrollers can be programmed to control sensors, actuators, and communication interfacesAnother important aspect of singlechip microcontrollers is their low power consumption This is crucial in batterypowered devices and portable electronics where energy efficiency is of paramount importance Modern singlechip microcontrollers incorporate advanced power management techniques to minimize power consumption while maintaining optimal performanceIn addition to their use in traditional electronics, singlechip microcontrollers are also playing a significant role in the emerging fields of the Internet of Things (IoT) and wearable technology In IoT applications, they can be used to collect and process data from various sensors and communicate it wirelessly to a central server Wearable devices such as smartwatches and fitness trackers rely on singlechip microcontrollers to monitor vital signs and perform other functionsHowever, the design and development of systems using singlechip microcontrollers also present certain challenges Issues such as realtime performance, memory management, and software reliability need to be carefully addressed to ensure the successful implementation of the applications Moreover, the rapid evolution of technology requires developers to constantly update their knowledge and skills to keep up with the latest advancements in singlechip microcontroller technologyIn conclusion, singlechip microcontrollers have revolutionized the field of electronics and continue to play a vital role in driving technological innovation Their versatility, low cost, and small form factor make them an attractive choice for a wide range of applications, and their importance is expected to grow further in the years to come二、中文翻译标题:单片机在现代电子领域的应用与发展单片机已成为现代电子系统中不可或缺的一部分。

英文翻译基于flash型单片机二进制模数转换器的温度计解码器

英文翻译基于flash型单片机二进制模数转换器的温度计解码器

英文翻译基于flash型单片机二进制模数转换器的温度计解码器基于flash型单片机二进制模数转换器的温度计解码器摘要:研究低耗、高速的flash ADCs型解码器。

我们用ones-counter,深度为4的折叠式的Wallace-tree、以及基于MUX的译码器来仿真ROM译码器对于纠正泡沫错误的灵敏度。

ones-counter和基于MUX的译码解码器,可以在130纳米CMOS SOI技术下实现,适用于对误差要求不高和硬件高效的情况。

Ones-counter 和基于MUX型的解码器测得ENOB的量产率都为4.1比特,能源消耗分别为80PJ和60PJ。

因此,我们得出结论,基于MUX型的解码器是在面积,效率,速度方面来说都不错的选择。

关键词:温度计码到二进制 flash ADCs 转换器I.简介通常只有四到六个比特的高速模数转换才能应用硬盘驱动器里超宽带无线电和硬盘读通道。

flash模拟信号到数字信号转换器(ADC)的系统架构通常可以将模N拟信号输入转换为2进制输出(转换式为),其中N是输出的位数,由数字解2,1码器跟踪得到的。

比较器通过把输入与梯形电阻网络产生的量化参考电压进行比较后在输出端输出逻辑电平。

从这一阶段的输出的测试图与温度计代码相对应,并随后由数字解码器转化为二进制代码,也就是温度计到二进制解码器。

对于低速转换器来说,这种输入到解码器确实是完善的温度计代码,但若用于高速在温度计代码中可能有一些二进制位错误,即所谓的气泡。

该气泡的产生是有很多原因的,如亚稳态,偏移比较器的串扰,和带宽的限制,有效采样时刻的不确定性等。

因此,解码器必须是能在高速转换器存在气泡错误的情况下正常工作。

我们发现在设计高速转换器的时候必须再三考虑并且权衡解码器的功耗和吞吐量的要求。

这项研究中,我们专注于设计低功耗的解码器和6位高速ADCs。

最终的目标是开发设计能在CMOS硅绝缘体上实现的高性能的模拟电路技术,这项工作是这个目标中的一部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Thermometer-to-Binary Decoders for FlashAnalog-to-Digital ConvertersAbstract:Decoders for low power, high-speed flash ADCs are investigated. The sensitivity to bubble errors of the ROM decoder with error correction, ones-counter, 4-level folded Wallace-tree, and multiplexer-based decoder are simulated. The ones-counter and multiplexer-based decoder,corresponding to the error insensitive and hardware efficient cases, are implemented in a 130 nm CMOS SOI technology. Measurements yield an ENOB of about 4.1 bit for both, and energy consumption of 80 pJ and 60 pJ, for the respective decoders. Hence we conclude that the MUX-based decoder seems to be a good choice with respect to area, efficiency, and speed.Key words: Thermometer-to-Binary flash ADCs ConvertersI. INTRODUCTIONApplications like ultra-wideband radio and the read channel in hard disk drives generally require high-speed analog-to-digital conversion with resolution four to six bits. These requirements are commonly satisfied by the flash analog-to-digital converter (ADC) architecture [1] that converts the analog input to a binary outputN parallel comparators, where N is the number of bits in with a single stage of 12the output, followed by a digital decoder. The comparators compare the input with the quantization levels from a set of reference voltages generated by a resistive ladder and produce a logical output depending on the outcome of the comparison. The output pattern from this stage corresponds to thermometer code and is subsequently translated to binary code by the digital decoder, i.e. the thermometer-to-binary decoder. For a low speed converter the input to the decoder is indeed a perfect thermometer code, but for high speed there may be some erroneous bits in the thermometer code, so called bubbles [2]. The bubbles are due to a number of sources [3], e.g., metastability, offset, crosstalk, and bandwidth limitations of the comparators, uncertainty in the effective sampling instant, etc. Hence the decoder must be able to perform well even in the presence of the bubble errors in a high-speed converter.Including requirements on power consumption and throughput, we see that the decoder must be paid significant consideration and trade-off in the design of a high-speed converter. In this work we focus on the design of decoders for low-power, high-speed six-bit ADCs. The work is a part of a larger project where the overall aim is to develop design techniques for implementation of high-performance analog circuits in CMOS silicon-on-insulator technology. We have investigated four types of thermometer-to-binarydecoders presented in Sec. II, through behavioral level simulations of the sensitivity to bubble errors presented in Sec. III, from which we have chosen two decoders that have been implemented in a 130 nm CMOS SOI technology. The measurement results are presented in Sec. IV and the conclusions are given in Sec. V.II. DECODERSFour different types of thermometer-to-binary decoders are presented. Two of them, the ROM and folded Wallace tree decoder,are only studied on behavioral level. The ones-counter decoder and the MUX-based decoder have also been implemented in two flash ADCs in a CMOS silicon-on-insulator technology. The corresponding results are thereby based on transistor level simulation results and measurements.A. ROMA common and straightforward approach to encode the thermometer code is to use a gray or binary-encoded ROM. The appropriate row m in the gray encoded ROM is selected by using a row decoder that has the output of comparator m and the inverse of comparator m + 1 as inputs. The output m of the row decoder, connected to memory row m, is high if the output of comparator m is high and the output of comparator m + 1 is low. The row decoder can be realized by, e.g., a number of 2-input NAND gates, where one input to each NAND gate is inverted. This type of row decoder selects multiple rows if a bubble error occurs, which introduces large errors in the output of the decoder [3], [4]. Considering single bubble errors only, these errors can be corrected by using 3-input NAND gates, as shown in Fig. 1. The 3-input NAND gates remove all bubble errors if they are separated by at least three bits in the thermometer scale. The main advantage of the ROM decoder approach isits regular structure that is straightforward to design. A disadvantage is that more bubble errors are introduced as the conversion speed increases and a more advanced bubble error correction scheme is required. As the complexity of the bubble error correction circuit increases, its propagation delay does in general also increase. The longer propagation delay reduces the maximum sampling rate of the overall decoder if not pipelining is applied. The increased complexity of the circuit consumes more chip area and will likely consume more power [5], [6].Figure 1Another bubble error suppression technique is the butterfly sorting technique presented in [7]. Applying this technique the bubbles are propagated upwards in the thermometer scale until the thermometer code is free from bubbles. Then the ROM decoder is used to encode the bubble-free thermometer code to binary code. In [7] the butterfly sorter only has eight levels. Bubbles further away from the transition level than eight positions cannot be removed. To guarantee that no bubbles will be present in the thermometer output code the depth of the butterfly sorter must be equal to the number of comparators, i.e.,12 N .B. Ones-CounterThe output of a thermometer-to-binary decoder is the number of ones on the input represented in, e.g., gray or binary code. Hence a circuit counting the number of ones in the thermometer code, i.e., a ones-counter, can be used as the decoder [8].The use of a ones-counter gives global bubble error suppression [3], [6], [8]. Another benefit of the approach is that a suitable ones-counter topology may be selected by trading speed for power. From this tradeoff the Wallace tree topology [9], illustrated in Fig. 2, is a good candidate as a decoder for high-speed converters [3], [6], [10].Figure 2In this work we use a tree of full adders (FAs) that reduce the 63 inputs to 10 outputs, as illustrated by Fig. 3. The different signal paths through the decoder are matched, i.e., each signal passes through the same number of full adders, where each input has approximately the same propagation delay to the output. The propagation delay of the signals through the decoder should thereby be approximately the same for all signals. The decoding of the 10 outputs to the binary value is done using MATLAB. The depth of the tree is thereby limited to six levels in the hardware implementation presented in the next section, which enables the ADC to operate at higher speed. In an improved design the complete decoding to a binary output can be accomplishedonchip by introducing pipelining in the decoder. Further optimization of the sizing of each FA can also improve the performance to some degree.C. Folded Wallace TreeFigure 3In a folded flash ADC, the idea is to reduce the amount of hardware by using the same comparator for different reference voltages [11]. This is the idea of the folded Wallace tree decoder shown in Fig. 4 [6]. The size of the Wallace tree and the delay depend on the number of bits that are added, i.e. the width of the base of the tree. The idea is to split the output of the comparators into different intervals. They are multiplexed to a reduced Wallace tree decoder, which is smaller compared with the full one [3]. A full adder may be realized from three 2:1 multiplexers with two multiplexers in the critical path.D. MUX-BasedThe multiplexer-based decoder consists entirely of multiplexers, as illustrated in Fig. 5, where N = 4 bit. It requires less hardware and has a shorter critical path than a ones-counter decoder [3], [5]. In addition it gives bubble error suppression, although the suppression is slightly lower than for a ones-counter decoder [5]. Another advantage of the multiplexer-based decoder is the more regular structure than, e.g., the ones-counter decoder. This is a major benefit in the layout of the circuit. Themultiplexers used in this work are based on transmission gates. An inverter is used as a buffer in each transmission gate multiplexer.Figure 4III. B EHA VIORAL LEVEL SIMULATIONThe effect of the chosen decoder topology on the ADC performance was evaluated by behavioral level simulations for the four different architectures. The timing difference ∆t between the clock signal and the input signal to each compar ator was modeled by a Gaussian distribution, according to ),0(~t N t σ∆。

相关文档
最新文档