大学物理 下 计算题参考答案
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
大学物理学(第3版)下册课后练习答案
大学物理学课后习题答案(下册)习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为。
[答案:相同](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。
[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ2,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示 由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵lq 4=λ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=',∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
《大学物理 》下期末考试 有答案
《大学物理》(下)期末统考试题(A 卷)说明 1考试答案必须写在答题纸上,否则无效。
请把答题纸撕下。
一、 选择题(30分,每题3分)1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为:(A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ参考解:v =dx/dt = -Aωsin (ωt+φ),cos )sin(424/ϕωϕωπA A v T T T t -=+⋅-== ∴选(C)2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(2212421221221221=-=kA k kA kA mv A ∴选(E )3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.参考解:这里的条件是“平面简谐波在弹性媒质中传播”。
由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。
质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。
∴选(D )4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。
大一物理习题及答案 (下)
(A) (B) .
(C) (D)
解:
二. 填空题:
1.一段导线被弯成圆心在O点、半径为R的三段圆弧 、 、 ,它们构成了一个闭合回路, 位于XOY平面内, 和 分别位于另两个坐标面中(如图)。均匀磁场 沿X轴正方向穿过圆弧 与坐标轴所围成的平面。设磁感应强度随时间的变化率为K(K>0),则闭合回路a b c a中
5.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝。当导线中的电流I为2.0A时,测得铁环内的磁感应强度的大小B为1.0T,则可求得铁环的相对磁导率 为(真空磁导率 ):[B]
(A) (B)
(C) (D)63.3
解:n=10匝/cm=1000匝/m
二.填空题:
1.铜的相对磁导率 ,其磁化率 ,它是抗磁性磁介质。 ∴
方向:
或:
(2)取顺时针方向为回路L的正方向.
, 的方向与L的正方向一致;
, 的方向与L的正方向相反.
4.如图所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:
(1) 在任意时刻t通过矩形线圈的磁通量.
4.关于稳恒磁场的磁场强度 的下列几种说法哪个是正确的?[C]
(A) 仅与传导电流有关。(还与磁化电流有关)
(B)若闭合曲线内没有包围传导电流,则曲线上各点的 必为零。(闭合曲线外有传导电流)
(C)若闭合曲线上各点 均为零,则该曲线所包围传导电流的代数和为零。
大学物理习题集(下)答案
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理下册课后答案 超全超详细
第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。
然后使该球壳与地接触一下,再将点电荷+q 取走。
此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。
充电后,两极板间相互作用力为F 。
则两极板间的电势差为 ;极板上的电荷为 。
C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。
大学物理(第三版)下册课后习题答案
(2)电荷在顶点时,将立方体延伸为边长 2a 的立方体,使 q 处于边长 2a 的立方体中心,则 边长 2a 的正方形上电通量 e
对于边长 a 的正方形,如果它不包含 q 所在的顶点,则 e
如果它包含 q 所在顶点则 e 0 .
如题 8-9(a)图所示.题 8-9(3)图
s
方向沿 OP 2 l2 2 l 4π 0 (r ) r 4 2 (1)点电荷 q 位于一边长为a的立方体中心, 试求在该点电荷电场中穿过立方体的一个
2
R ) x
q
0
立方体六个面,当 q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量 e
q . 6 0 q 6 0 q , 24 0
1 q2 1 2 cos 30 2 4π 0 a 4π 0
解得 (2)与三角形边长无关.
qq ( 3 2 a) 3
q
3 q 3
题 8-1 图
题 8-2 图
8-2 两小球的质量都是 m ,都用长为 l 的细绳挂在同一点,它们带有相同电量,静止时两线 夹角为2 ,如题8-2图所示. 设小球的半径和线的质量都可以忽略不计, 求每个小球所带的 解: 如题 8-2 图示
大学物理(第三版)下册课后习题答案
习题八
8-1 电量都是 q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中 心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题 8-1 图示 (1) 以 A 处点电荷为研究对象,由力平衡知: q 为负电荷
d=0.2cm,把这电
r , E PO 3 0 r , E PO 3 0
大学物理(下册)课后部分习题答案
2
j
11畅13( a)
11畅13( b)
(2) 设该异线应放在 y = - d 处 ,显然 ,该异线在轴线处产生的磁成应强度应
与原来的半圆柱面产生的磁感应强度相同 ,即
μ0 I 2π d
=
μ0 I π2 R
所以
d=
πR 2
因面 ,另一导线应放在 y = - π2R处 .
12唱7 均匀磁场 B 被限制在半径 R = 0 .10 m 的无限长圆柱空间内 ,方向垂
同理 ,空腔轴线上的磁感应强度
因 R2 = 0 ,B0′2 = 0 ,故
B0′ = B0′1 + B0′2
B0′1
=
μ0 Ia 2π( R21 - R22 )
=
2 × 10 -4 T
11畅13 如图11畅13( a)所示 ,一半径为 R 的无限长半圆柱面导体 ,其上电流与其
轴线上一无限长直导线的电流等值反向 ,电流 I 在半圆柱面上均匀分布 .试求 :
当 r < R1 时 ,有
促 E · d S = E · 4π r2 = 0
S
E =0
当 R1 < r < R2 时 ,有
促S
E · d S = E · 4π r2 =
1 ε0
q
E
=
1 4π ε0
q r2
当 r > R2 时 ,有
促S
E · d S = E · 4π r2 =
1 ε0
ab · h
= 1600π - 4 3 × 10 -2 V 式中 h 为由 O 到ab的垂直距离 ,感应电流沿顺时针方向 .
∮ 此题也可用 Ei = Ev · d l 公式直接积分求解 .
图 12 唱7
大学物理下期末试题及答案
一、选择题(共30分,每题3分)1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为:(A) 0. (B) 0.(C)0. (D) 0 [ ]3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ] 4. 球壳,则在球壳中一点P 处的场强大小与电势(点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0.(C) E = 0,U = 0. (D) E > 0,U < 0. 5. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则 (A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加. (C) C 1极板上电荷增加,C 2极板上电荷不变. (D) C 1极板上电荷减少,C 2极板上电荷不变. 6. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 7. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关.(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的.x(D) 三种说法都是正确的. [ ]8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍.(C) 0.5倍. (D) 0.25倍. [ ] 9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 ax n a x n π=sin 2)(ψ , n = 1, 2, 3, … 则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为(A) 0.091. (B) 0.182. (C) 1. . (D) 0.818. [ ]10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,21-). (B) (1,1,1,21-). (C) (2,1,2,21). (D) (3,2,0,21). [ ]二、填空题(共30分)11.(本题3分)一个带电荷q 、半径为R 的金属球壳,壳内是真空,壳外是介电常量为ε 的无限大各向同性均匀电介质,则此球壳的电势U =________________. 12. (本题3分)有一实心同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则在r < R 1处磁感强度大小为________________.13.(本题3分)磁场中某点处的磁感强度为)SI (20.040.0j i B-=,一电子以速度j i66100.11050.0⨯+⨯=v (SI)通过该点,则作用于该电子上的磁场力F 为__________________.(基本电荷e =1.6×10-19C) 14.(本题6分,每空3分)四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处. 15. (本题3分) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.16.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W 1 / W 2=___________.17. (本题3分)静止时边长为 50 cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m ·s -1运动时,在地面上测得它的体积是____________.18. (本题3分)以波长为λ= 0.207 μm 的紫外光照射金属钯表面产生光电效应,已知钯的红限频率 ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V .(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) 19. (本题3分)如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量的不确定量近似地为________________kg ·m /s . (取∆x ·∆p ≥h ,普朗克常量h =6.63×10-34 J ·s) 三、计算题(共40分) 20. (本题10分)电荷以相同的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V . (1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上电荷面密度应为多少,与原来的电荷相差多少?[电容率ε0=8.85×10-12 C 2 /(N ·m 2)] 21. (本题10分)已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径. 22.(本题10分) 如图所示,一磁感应强度为B 的均匀磁场充满在半径为R 的圆柱形体内,有一长为l 的金属棒放在磁场中,如果B 正在以速率dB/dt 增加,试求棒两端的电动势的大小,并确定其方向。
《新编大学物理》(上、下册)教材习题答案
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
大学物理下复习题(附答案)
大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。
()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。
()错电荷电量是量子化的。
()对物体所带电量可以连续地取任意值。
()错物体所带电量只能是电子电量的整数倍。
()对库仑定律只适用于真空中的点电荷。
()对电场线稀疏处的电场强度小。
()对电场线稀疏处的电场强度大。
()错静电场是有源场。
()对静电场是无源场。
()错静电场力是保守力。
()对静电场力是非保守力。
()错静电场是保守力场。
()对静电场是非保守力场。
()错电势是矢量。
()错电势是标量。
()对等势面上的电势一定相等。
()对沿着电场线的方向电势降落。
()对沿着电场线的方向电势升高。
()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。
()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。
()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。
()错电荷在电场中某点受到电场力很大,该点场强E一定很大。
()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。
()对在以点电荷为中心,r为半径的球面上,场强E处处相等。
()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。
()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。
()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。
()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。
()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。
对导体达到静电平衡时,导体内部的场强处处为零。
()对第一章填空题已一个电子所带的电量的绝对值e= C。
1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。
8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。
杭州电子科技大学 大学物理习题集(下)详细解答
单元一 简谐振动一、 计算题17. 作简谐运动的小球,速度最大值为3m v =cm/s ,振幅2A =cm ,若从速度为正的最大值的某时刻开始计算时间。
(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。
解:(1)振动表达式为 cos()x A t ωϕ=+振幅0.02A m =,0.03/m v A m s ω==,得 0.031.5/0.02m v rad s A ω=== 周期 22 4.191.5T s ππω=== (2)加速度的最大值 2221.50.020.045/m a A m s ω==⨯= (3)速度表达式 sin()cos()2v A t A t πωωϕωωϕ=-+=++由旋转矢量图知,02πϕ+=, 得初相 2πϕ=-振动表达式 0.02cos(1.5)2x t π=-(SI )18. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。
求此简谐振动的振动方程。
解:设振动方程为 )cos(φω+=t A x 由曲线可知: A = 10 cm当t = 0,φcos 1050=-=x ,0sin 100<-=φωv解上面两式,可得 初相 32π=φ由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )322cos(100π+=ω 则有 2/33/22π=π+ω, ∴ 125π=ω 故所求振动方程为 )32125cos(1.0ππ+=t x (SI) 19. 定滑轮半径为R ,转动惯量为J ,轻绳绕过滑轮,一端与固定的轻弹簧连接,弹簧的倔强系数为K ;另一端挂一质量为m 的物体,如图。
现将m 从平衡位置向下拉一微小距离后放手,试证物体作简谐振动,并求其振动周期。
(设绳与滑轮间无滑动,轴的摩擦及空气阻力忽略不计)。
x (cm) t -5 10 O -102 (18)题解:以物体的平衡位置为原点建立如图所示的坐标。
大学物理下考试题及答案
大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。
答案:保持不变2. 电场强度的定义式为______。
答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。
答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。
答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。
答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。
在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。
2. 什么是电磁感应定律?请给出其数学表达式。
答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。
其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
3. 简述热力学第一定律的内容。
答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
大学物理(下册)课后题答案_完整版
大学物理下册课后习题答案习题八8-1电量都是q 的三个点电荷,分别放在正三角形的三个顶点 .试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡 (即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ?解:如题8-1图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2-1 q1 qq2cos30 ----------------------a4 n0/.3 2(T a)T q(2)与三角形边长无关.8-2两小球的质量都是m ,都用长为I 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所 带的电量.解:如题8-2图示T cos mg解得 q 21 sin 4mgtan8-3根据点电荷场强公式 E J ,当被考察的场点距源点电荷很近(r T 0)时,贝U 场强4°r*,这是没有物理意义的,对此应如何理解解:Ey^r °仅对点电荷成立,当r 0时,带电体不能再视为点电荷,再用上式求4 n 0r场强是错误的,实际带电体有一定形状大小 ,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4在真空中有 A , B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+ q 和解得 题8-1图题8-2图T sinF e4 n 0 (2l sin )2H |2-q •则这两板之间有相互作用力f ,有人说f = q2,又有人说,因为4 o d 22f = qE ,E —,所以f =卫•试问这两种说法对吗?为什么? f 到底应等于多少? o S o S解:题中的两种说法均不对 .第一种说法中把两带电板视为点电荷是不对的 ,第二种说法 把合场强E 2看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一oS2个板的电场为E —,另一板受它的作用力 f q q q ,这是两板间相互作2 o S 2 o S 2 o S用的电场力.p ql ,场点到偶极子中心 0点的距离为r ,矢量r 与丨的夹角为l .试证P 点的场强E 在r 方向上的分量 E r 和垂直于r 的分量E分别为•••场点P 在r 方向场强分量垂直于r 方向,即方向场强分量psi n 34n o r8-6长l =15.0cm 的直导线AB 上均匀地分布着线密度=5.0x10求:(1)在导线的延长线上与导线 B 端相距a i =5.ocm 处P 点的场强;⑵在导线的垂直平分 线上与导线中点相距 d 2=5.ocm 处Q 点的场强. 解:如题8-6图所示(1)在带电直线上取线元 dx ,其上电量dq 在P 点产生场强为dE p1dx4no (a x)2E P dE P1 2dx 4 n o 2(ax)28-5 一电偶极子的电矩为 ,(见题8-5图),且r E r =2pcos3 , orE =严 4 o r证:如题8-5所示,将p 分解为与 r 平行的分量psin 和垂直于lr 的分量psinE rp cos 2 n o r 3 E o题8-5图 -9Cm -1的正电荷.试题8-6图用I 15 cm , 5.0E P(2)同理dE Q 6.741由于对称性dElQx 0,dE Qy5.0 10 C cm14.9612 2~n 0(4a l )9 110 9 C m 1, a 12.5 cm 代入得2 110 N C 方向水平向右dx—2方向如题8-6图所示x d2即E Q只有y分量,1 dx d24nxd2―dfE Qy l dE Qyl4n 22 dx1 32 z 2 2\2(x d2) l2 n 0 J l24d;1, l 15 cm,d2 5 cm代入得102 N C 1,方向沿y轴正向R的均匀带电半圆环,电荷线密度为,求环心处0点的场强•一个半径为8-7RdE Q E Qydq dl Rd ,它在O点产生场强大小为RddE4 n0R2方向沿半径向外则dE x dE sin sin4 n 0 R积分E x dE y dE cos( cos d4 n 0 Rsin dE y cos d 04 n 0RE E x,方向沿x轴正向.2 n 0R8-8均匀带电的细线弯成正方形,边长为I,总电量为q . (1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在r I处,它相当于点电荷q产生的场强E .q解:如8-8图示,正方形一条边上电荷在P点产生物强dE p方向如图,大小为4COS 12COS 2 COS 1dE P在垂直于平面上的分量dE dE P COSdE I r| 2 f 1 2 丨I 2/ 1 2I 1 2I I 2 I4 n °」—<r—i1r —4 \ 2 V 4题8-8图由于对称性,P点场强沿OP方向,大小为8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该dE pCOS 1 COS 2E PE P4 dE4n o(r2g4lqr4 lr方向沿OPdE p平面轴线上的A点处,求:通过圆平面的电通量.(R arcta n — )x解:⑴由高斯定理E dS -S立方体六个面,•••各面电通量(2)电荷在顶点时当q在立方体中心时,每个面上电通量相等q6 0 .,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心qe6 0边长2a的正方形上电通量对于边长a的正方形,如果它不包含q所在的顶点,则e 如果它包含q所在顶点则 e 0 .如题8-9(a)图所示.题8-9(3)图题8-9(b)图题8-9(a)图(3) ••通过半径为面积* 题8-9(c)图R的圆平面的电通量等于通过半径为..R2x2的球冠面的电通量,球冠S 2 M R2x2)[1q。
大学物理下册习题及答案
大学物理下册习题及答案热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示.(B)不是平衡过程,但它能用P—V图上的一条曲线表示.(C)不是平衡过程,它不能用P—V图上的一条曲线表示.(D)是平衡过程,但它不能用P—V图上的一条曲线表示. [ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程.(2)热平衡过程一定是可逆过程.(3)热平衡过程是无限多个连续变化的平衡态的连接.(4)热平衡过程在P—V图上可用一连续曲线表示.(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升.(3)冰溶解为水.(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程.(2)平衡过程一定是可逆的.(3)不可逆过程一定是非平衡过程.(4)非平衡过程一定是不可逆的.(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[ ](A)一定都是平衡态.(B)不一定都是平衡态.(C)前者一定是平衡态,后者一定不是平衡态.(D)后者一定是平衡态,前者一定不是平衡态.7、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 [ ](A)一定都是平衡过程.(B)不一定是平衡过程.(C)前者是平衡态,后者不是平衡态.(D)后者是平衡态,前者不是平衡态.8、一定量的理想气体,开始时处于压强,体积,温度分别为P1、V1、T1,的平衡态,后来变到压强、体积、温度分别为P2、V2、T2的终态.若已知V2 > V1, 且T2 = T1 , 则以下各种说法正确的是: [ ](A)不论经历的是什么过程,气体对外净做的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净做功和外界净吸热的正负皆无法判断.二、填空题:1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的.2、设在某一过程P中,系统由状态A变为状态B,如果______________________________________________________,则过程P为可逆过程;如果______________________________________________________则过程P为不可逆过程.3、同一种理想气体的定压摩尔热容C p大于定容摩尔热容C v,其原因是_____________________________________________________________________.4、将热量Q传给一定量的理想气体,(1)若气体的体积不变,则热量转化为________________________________.(2)若气体的温度不变,则热量转化为________________________________.(3)若气体的压强不变,则热量转化为________________________________.5、常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i),在等压过程中吸热为Q,对外作功为A,内能增加为ΔE,则A / Q = ____________. ΔE / Q = _____________.6、3 mol的理想气体开始时处在压强P1 = 6 at m、温度T1 = 500K的平衡态.经过一个等温过程,压强变为P2 = 3 atm.该气体在等温过程中吸收的热量为Q = _____________J.(摩尔气体常量R = 8.31 J•mol-1•K-1)7、2 mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,若该过程为准静态过程,气体吸收的热量为_________;若为不平衡过程,气体吸收的热量为___________.8、卡诺制冷机,其低温热源温度为T2 = 300 K,高温热源温度为T1 = 450 K,每一循环从低温热源吸收Q2 = 400 J.已知该制冷机的制冷系数为1212TTTAQw-==(式中A为外界对系统作的功),则每一循环中外界必须作功A = _________.三、计算题:1、有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27˚C,若经过一绝热过程,使其压强增加到16 atm .试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1 atm = 1.013×105 Pa,玻耳滋曼常数k = 1.38×10-23J•K-1摩尔气体常量R=8.31J•mol-1•K-1)2、如图所示,a b c d a为1 mol单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外做的净功;(3)证明Ta Tc = T b T d.3、一气缸内盛有一定量的单原子理想气体.若绝热压缩使其容积减半,问气体分子的平均速率为原来的几倍?热力学(二)1、理想气体向真空作绝热膨胀. [ ](A)膨胀后,温度不变,压强减小.(B)膨胀后,温度降低,压强减小.(C)膨胀后,温度升高,压强减小.(D)膨胀后,温度不变,压强不变.2、氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使他们在体积不变情况下吸收相等的热量,则 [ ](A)它们的温度升高相同,压强增加相同.(B)它们的温度升高相同,压强增加不相同.(C)它们的温度升高不相同,压强增加不相同.(D)它们的温度升高不相同,压强增加相同.3、一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2和O2.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A)H2比O2温度高.(B)O2比H2温度高.(C)两边温度相等且等于原来的温度.(D)两边温度相等但比原来的温度降低了.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Po,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是[ ](A)Po (B)Po/2 (C)2 r / Po (D)Po/2 r ( r = Cp / Cv )5、1 mol理想气体从P-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta < Tb,则这两过程中气体吸收的热量Q1和Q2的关系是 [ ](A)Q1 > Q2 > 0 (B)Q2 > Q1 > 0 (C)Q2 < Q1 < 0(D)Q1 < Q2 < 0 (E)Q1 = Q2 > 06、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子理想气体),它们的温度和压强都相等,现将5 J的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 [ ](A)6 J (B)5 J(C)3 J (D)2 J7、一定量的理想气体经历acb过程时吸热200 J.则经历acbda过程时,吸热为(A)–1200 J (B)–1000 J(C)–700 J (D)1000 J [ ]8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A / Q等于 [ ](A)1 / 3 (B)1 / 4(C)2 / 5 (D)2 / 79、如果卡诺热机的循环曲线所包围的面积从图中的a b c d a增大为a b’c’d a,那么循环ab cda与a b’c’da所作的净功和热机效率变化情况是: [ ](A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.一、填空题:1、如图所示,已知图中画不同斜线的两部分分别为S1和S2,那么(1)如果气体的膨胀过程为a—1—b,则气体对外做功A= ;(2)如果气体进行a—2—b—1—a的循环过程,则它对外做功A =2、已知1 mol的某种理想气体(可视为刚性分子),在等压过程中温度上升1 K,内能增加了20.78 J,则气体对外做功为__________,气体吸收热量为__________.3、刚性双原子分子的理想气体在等压下膨胀所作的功为A,则传递给气体的热量为___ ____________.4、热力学第二定律的克劳修斯叙述是:_________________________________________;开尔文叙述是____________________________________________.5、从统计的意义来解释:不可逆过程实质上是一个________________________________________的转变过程.一切实际过程都向着____________________________________________的方向进行.6、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边是真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_________(升高、降低或不变),气体的熵___________(增加、减小或不变).二、计算题:1、一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.2、如果一定量的理想气体,其体积和压强依照V = a / 的规律变化,其中a为已知常数.试求:(1)气体从体积V1膨胀到V2所作的功;(2)体积为V1时的温度T1与体积为V2时的温度T2之比.3、一卡诺热机(可逆的),当高温热源的温度为127°C、低温热源温度为27°C时,其每次循环对外作净功8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功10000 J.若两个卡诺循环都工作在相同的两条绝缘线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4、一定量的刚性双原子分子的理想气体,处于压强P1= 10 atm、温度T1 = 500K的平衡态,后经历一绝热过程达到压强P2 = 5 atm、温度为T2的平衡态.求T2.热力学(三)一、选择题1、设高温热源的热力学温度是低温热源的热力学温度的n倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A) n倍 (B) n–1倍(C) 倍 (D) 倍 [ ]2、一定量理想气体经历的循环过程用V-T曲线表示如题2图,在此循环过程中,气体从外界吸热的过程是(A) A→B (B) B→C(C) C→A (D) B→C和C→A [ ]3、所列题3图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]V P (A)P (B)绝热绝热C B 等温等容等容O V O 等温 VP 等压(C)P (D)A 等温绝热绝热绝热绝热O T O V O V题图题3图4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分),分割为S1和S2,则二者的大小关系是(A) S1 > S2 (B) S1 = S2(C) S1 < S2 (D) 无法确定 [ ]PS2 S1V.对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]6、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ]7、一定量的理想气体向真空作绝热自由膨胀,体积由V1增至V2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加. [ ]8、给定理想气体,从标准状态 (P0,V0,T0)开始作绝热膨胀,体积增大到3倍,膨胀后温度T、压强P与标准状态时T0、P0之关系为 (γ为比热比) [ ](A) T = ( ) r T0 ; P = ( ) r-1 P0. (B) T = ( ) r-1 T0 ; P = ( ) r P0.(C) T = ( ) -r T0 ; P = ( ) r-1 P0. (D) T = ( ) r-1 T0 ; P = ( ) -r P0.一、填空题:1、在P-V图上(1) 系统的某一平衡态用来表示;(2) 系统的某一平衡过程用来表示;(3) 系统的某一平衡循环过程用来表示.2、P-V图上的一点,代表;P-V图上任意一条曲线,表示;3、一定量的理想气体,从P-V图上状态A出发,分别经历等压、等温、绝热三种过程,由体积V1膨胀到体积V2,试画出这三种过程的P—V图曲线,在上述三种过程中:(1)气体对外作功最大的是过程;(2) 气体吸热最多的是过程;V2( 均视为刚性分子的理想气体),它们的质量比为m1:m2E1:E2 = ,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为A1:A2 = .(各量下角标1表示氢气,2表示氦气)5、质量为2.5 g的氢气和氦气的混合气体,盛于某密闭的气缸里 ( 氢气和氦气均视为刚性分子的理想气体),若保持气缸的体积不变,测得此混合气体的温度每升高1K,需要吸收的热量等于2.25 R ( R为摩尔气体常量).由此可知,该混合气体中有氢气 g,氦气 g;若保持气缸内的压强不变,要使该混合气体的温度升高1K,则该气体吸收的热量为 . (氢气的M mol = 2×10 -3 kg,氦气的M mol = 4×10 -3 kg)6、一定量理想气体,从A状态 (2P1,V1) 经历如图所示的直线过程变到B状态 (P1,2V1),则AB过程中系统作功A = ;内能改变△E = .第6题图第7题图7、如图所示,理想气体从状态A出发经ABCDA循环过程,回到初态A点,则循环过程中气体净吸的热量Q = .8、有一卡诺热机,用29kg空气为工作物质,工作在27℃的高温热源与–73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3kg·mol-1)二、计算题:1、一定量的某种理想气体,开始时处于压强、体积、温度分别为P0 = 1.2×106 P0,V0 = 8.31×10-3m3,T0 = 300K的初态,后经过一等容过程,温度升高到T1 = 450 K,再经过一等温过程,压强降到P = P0的末态.已知该理想气体的等压摩尔热容与等容摩尔热容之比C P/C V=5/3,求:(1)该理想气体的等压摩尔热容C P和等容量摩尔热容C V.(2)气体从始态变到末态的全过程中从外界吸收的热量.2、某理想气体在P-V图上等温线与绝热线相交于A点,如图,已知A点的压强P1=2×105P0,体积V1 = 0.5×10-3 m3,而且A点处等温线斜率与绝热线斜率之比为0.714,现使气体从A点绝热膨胀至B点,其体积V2 = 1×10-3 m3,求(1) B 点处的压强;(2) 在此过程中气体对外作的功.3、1 mol单原子分子的理想气体,经历如图所示的可逆循环,联结AC两点的曲线III的方程为P = P0 V2 / V20,A点的温度为T0.(1)试以T0,R表示I、II、III过程中气体吸收的热量.(2)求此循环的效率.(提示:循环效率的定义式η= 1– Q2 / Q1, Q1循环中气体吸收的热量,Q2为循环中气体放出的热量).气体动理论 (一)一、选择题:1、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1和P2,则两者的大小关系是:(A) P1 > P2 (B) P1 < P2(C) P1 = P2 (D) 不确定的. [ ]2、若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A) PV / m . (B) PV/(KT).(C) PV / (RT). (D) PV/(mT). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气质量为:[ ](A) 1 / 16 kg (B) 0.8 kg(C) 1.6 kg (D) 3.2 kg4、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态,A种气体的分子数密度为n1,它产生的压强为P1,B种气体的分子数密度为2 n1,C种气体的分子数密度为3 n1,则混合气体的压强P为(A) 3 P1 (B) 4 P1(C) 5 P1 (D) 6 P1 [ ]5、一定量某理想气体按PV2 = 恒量的规律膨胀,则膨胀后理想气体温度(A) 将升高 (B) 将降低(C) 不变 (D)升高还是降低,不能确定 [ ]6、如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大?(A)氧气的密度大. (B)氢气的密度大.(C)密度一样大. (D)无法判断. [ ]一、填空题:1、对一定质量的理想气体进行等温压缩,若初始时每立方米体积内气体分子数为1.96×1024,当压强升高到初值的两倍时,每立方米体积内气体分子数应为 .2、在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) .3、某理想气体在温度为27℃和压强为1.0×10-2 atm情况下,密度为11.3 g / m3,则这气体的摩尔质量M= .(摩尔气体常量R = 8.31 J·mol-1·K-1)mol4、在定压下加热一定量的理想气体,若使其温度升高1K时,它的体积增加了0.005倍,则气体原来的温度是 .5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1) p d V = (M / M mol) R d T表示过程.(2) V d p = (M / M mol) R d T表示过程.(3) p d V + V d p = 0 表示过程.6、氢分子的质量3.3×10 –24 g,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm·s-1的速率撞击在2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为 .7、一气体分子的质量可以根据该气体的定容比热容来计算,氩气的定容比热容Cv = 0.314 kJ·kg-1·K-1,则氩原子的质量m = .(1 k c a l = 4.18×103 J)8、分子物理是研究的学科,它应用的基本方法是方法.9、解释下列分子运动论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:;二、计算题:1、黄绿光的波长是5000 Å (1 Å =10-10m),理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻耳兹曼常量k = 1.38×10 -23J·K-1)2、两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示,当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央,试问,当左边容器温度由0℃增到5℃,而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?3、假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T相等.试根据玻璃尔兹曼分布律计算大气层分子的平均重力势能εp.(已知积分公式 X n e -ax d x = n !/ a n+1)热力学(一) (答案)一、 1.C 2.B 3.D 4.D 5.A 6.B 7.B 8.D二、 1.物体作宏观位移,分子之间的相互作用.2.能使系统进行逆向变化,回复状态,而且周围一切都回复原状.系统不能回复到初;态;或者系统回复到初态时,周围并不能回复原状.3.在等压升温过程中,气体要膨胀而作功,所以要比气体等体升温过程多吸收一部分热量.4.(1)气体的内能,(2)气体对外所做的功,(3)气体的内能和对外所做的功5.2/i+2,i/i+2 6.8.64×103 7.7.48×103 J ,7.48×103 J8.200J热力学(二)答案一、1.A 2.C 3.B 4.B 5.A 6.C 7.B 8.D 9.D二、1.S1+S2,-S1 2. 8.31J, 29.09J 3.7A/24、不可能把热量从低温物体自动传到高温物体而不引起外界变化不可能制造出这样循环工作的热机,它只从单一热源吸热来作功,而不放出热量给其他物体,或者说不使外界发生任何变化.5. 从概率较小的状态到概率较大的状态,状态概率增大(或熵增大)6.不变; 增加热力学(三)答案一、1、C 2、A 3、B 4、B 5、C 6、A 7、A 8、D二、1、一个点,一条曲线,一条封闭线 2、(参看1题)3、等压,等压 4、1:2,5:3,5:7 5、1.5,1,3.25R 6、23P 1V 1,0 7、1.62×104J 8、33.3%,831×105J气体动理论(一)答案一、1.C 2. B 3.C 4.D 5.B 6.A二、1、3.92×1024 2、(1)沿空间各方向运动的分子数相等;(2)v x 2=v y 2=v z 23、27.9g/mol4、200K5、等压,等容,等温6、2.33×103 Pa7、6.59×10-26 kg8、物体热现象和热运动规律、统计9、(1)描述物体运动状态的物理量;(2)表征个别分子状况的物理量,如分子大小、质量、速度等;(3)表征大量分子集体特征的物理量,如P 、V 、T 、C 等.气体动理论(二) 答案。
华南理工大学大学物理习题试卷、习题册详细答案(下册)
3.答案:(1) ;(2) 。
4.答案:(1) , 线的方向为逆时针方向;(2) , 的方向指向轴心。
5.答案:(1) ;(2) 。
习题七
一、选择题
1.B;2.D;3.B;4.B;5.A。
二、填空题
1.答案: ; 。
2.答案: ; ; ; 。
3.答案: 。
4.答案: 。
5.答案:0.91c; 。
3.答案:(1)5个, ;(2)9个, ;(3)5;(4)18。
4.答案:10; ; 。
5.答案:
三、计算题
1.答案:(1) ;
(2) ;
(3)能级跃迁图如图所示。
2.答案:(1) , ;
(2) 。
3.答案:(1)0.19;(2)0.40。
4.答案:(1) ;
(2)在 (即 )处概率最小,其值均为零。
3.答案: 。
4.答案: ;方向沿轴向上。
习题四
一、选择题
1.D;2.B;3.A;4.A。
二、填空题
1.答案: ;M = 0。
2.答案:(1) ;(2) 。
3.答案:(1)霍尔;(2) 。
4.答案: ; 。
5.答案: 。
三、计算题
1.答案: ,方向:垂直于ab向上。
2.答案:(1) ;
(2)线圈法线与 成 或 角时。
3.答案:(1) ,方向水平向左;(2) ;
(3) ,方向水平向右。
4.答案: 。
5.答案: 。
习题六
一、选择题
1.C;2.B;3.B;4.D;5.A。
二、填空题
1.答案:方向;常;变。
2.答案:a;b;c;c;b;a。
3.答案: 。
大学物理下作业答案
习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。
空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ] (A)200,44Q L Qi R L Rπεπε-∆-; (B)2200,84Q L Qi R L Rπεπε-∆-; (C)200,44Q L Qi R L Rπεπε∆; (D)200,44Q L Q Li R L RLπεπε-∆-∆。
答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。
由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R L πε∆,所以圆弧产生的场强为204OQ LE i R Lπε-∆=;又根据电势叠加原理可得04O Q U Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。
答案:D解:由高斯定理知0Φ=S q 。
由于面积S 1和S 2相等且很小,场强可视为均匀。
根据场强叠加原理,120,0E E =<,所以12Φ0,Φ0=>。
3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B2∝2∝rRr R解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。
《新编大学物理》(下册)教材习题答案
第9章 静电场一、选择题 9.1 答案:B 9.2 答案:C解:根据高斯定理,通过整个立方体表面的电通量为d εqse =⋅=Φ⎰S E ,由于电荷位于立方体的中心,从立方体各个面穿出的电力线一样多,所以穿过一个表面的电场强度通量为06εq. 9.3 答案:B 9.4 答案:A解:根据电势的定义式)0(,d =⋅=⎰BBP V V l E 知,空间中某点的电势高低与电势零点的选择有关,所以B 、C 、D 均不正确;如果某一区域内电势为常数,则该区域内任意两点的电势差为0,即0d =⋅=-⎰BA B A V V l E ,要使其成立,该区域内电场强度必为零. 9.5 答案:A解:根据电势和电势差的定义式)0(,d =⋅=⎰BBP V V l E ,⎰⋅=-=BAB A AB V V U lE d 知,空间中某点电势的高低与电势零点的选择有关,选择不同的电势零点,同一点的电势数值是不一样的.而任意两点的电势差总是确定的,与电势零点的选择无关.9.6 答案:D解:根据电势叠加原理,两个点电荷中垂线上任意一点的电势为BB AA B A r q r q V V V 0044πεπε+=+=由于中垂线上的任意一点到两电荷的距离相等,即r r r B A ==,所以rq q V B A 04πε+=.要使其为零,则0=+B A q q ,所以B A q q -=.9.7 答案:A解:根据保守力做功和势能的关系PB PA BA AB E E q -=⋅=⎰l E d W 0知,负电荷沿电力线移动电场力做负功,所以电势能增加.根据等势面的定义,等势面上各点的电势相等,而电势相等的点场强不一定相等;根据电场力做功的公式AB B A AB qU V V q =-=)(W 知,初速度为零的点电荷, 仅在电场力的作用下,如何运动取决于点电荷本身和电势的高低.正电荷从高电势向低电势运动;负电荷从低电势向高电势运动. 9.8 答案:C解:达到静电平衡后,根据高斯定理设各板上的电荷密度如图所示.根据静电平衡条件,有BA BA P E σσεσσ=⇒=-=020习题9.8图 解习题9.8图由于A 、B 板由导线相连,所以其与中间板C 的电势差必然相等,所以12210220112222d dd d U U A B B A BC AC =⇒--⨯=--⨯⇒=σσεσσσεσσσ 9.9答案:D解:根据动能定理,有)11(41221)44()(W 21022010r r m e m r er e e V V e B A AB -=⇒⨯=-=-=πευυπεπε 二、填空题 9.10 答案:3028Rqd επ;方向水平向右解:根据场强叠加原理,本题可以利用割补法,等效于一个均匀带电圆环和一个带相同电荷密度的异号电荷缺口在圆心处的电场.由于均匀带电圆环电荷分布的对称性,在圆心处产生的电场强度为零.异号电荷缺口在圆心处产生的电场强度大小为30220208424Rqd R dR qR dq E εππεππε=⨯== 方向水平向右.习题9.10图习题9.11图习题9.12图9.11答案:2R E π⋅解:根据题意知穿过半球面的电力线条数和穿过底面的电力线的条数相同,所以根据电通量的定义,有2d E d d d R E S S E e π⋅==⋅=⋅=⋅=Φ⎰⎰⎰⎰底面底面底面半球面S E S E 9.12 答案:02εσ,水平向左;023εσ,水平向左;02εσ,水平向右 解:根据教材例9-7的结果和电场强度叠加原理,以水平向右为正有000212222εσεσεσ-=-=+=E E E A 0002123222εσεσεσ-=--=+=E E E B 000212222εσεσεσ+=+=+=E E E C “+”表示电场强度的方向水平向右,“-” 表示电场强度的方向水平向左. 三、计算题 9.13解:(1)如图所示,在θ处取一小段弧为电荷元,其电量为θλλRd dl dq ==根据点电荷的场强分布知,它在O 点处产生的电场强度大小为Rd R dq dE 02044πεθλπε==在x、y 轴上的分量为θcos dE dE x -=,θsin dE dE y -=根据场强叠加原理,有⎰=-=πθθπελ000cos 4d RE x Rd R E y 0002sin 4πελθθπελπ-=-=⎰所以 j j i E RλE E y x 08ε-=+=(2)根据点电荷的电势分布,有044πεθλπεd Rdq dV ==根据电势叠加原理,有⎰=-=πελθπελ044d V 9.14解:(1)由于均匀带电的球体可以看作是由许多半径不同均匀带电的球面构成,根据教材例9.5的分析知,均匀带电球面的电场分布具有球对称性分布,所以均匀带电球体的电场分布也具有球对称性分布,即到球心距离为r 的所有点的电场强度的大小都相等,方向为各自的径向.可以利用高斯定理求解.根据电场的这种球对称性分布,过P 点作半径为r 的同心球面为高斯面,如图所示.根据高斯定理,有∑⎰⎰⎰⎰=π==⋅=⋅=⋅=Φise qE r ds E ds E ds E 0214cos d εθS E解习题9.13图根据已知,有电荷的分布为:=∑i q )()(343433R r Q R r r R Q><⨯ππ 所以,电场强度的大小为=E )(4)(42030R r r QR r R Qr><πεπε根据分析知,电场强度E 的方向为径向.如果Q >0,则电场强度的方向沿径向指向外;若Q <0,则电场强度的方向沿径向指向球心. (2)根据电势的定义式⎰∞⋅=P V l E d ,为了便于积分,我们沿径向移到无穷远,所以⎰∞⋅=r V lE d 1⎰⎰∞⋅+⋅=RR rrE r E d d 30200302288348)(R Qr R Q R Q Rr R Q πεπεπεπε-=+-=)(R r <rQ r E V rr024d d πε=⋅=⋅=⎰⎰∞∞l E)(R r >9.15解:(1)如图所示,在空间任取一点P ,过P 点作无限长圆柱面轴的垂线交于O 点,O 、P 的距离为r .为了便于分析P 点的电场强度,作其俯视图,则俯视图圆上任意一段弧代表一根无限长均匀带电直线.根据教材例9-6的分析知,无限长均匀带电直线周围的电场强度呈轴对称分布,即任意点的场强方向垂直于直线.由于圆柱面电荷分布的对称性,所以P 点的场强方向沿垂线向外(假设λ解习题9.14图>0).同理,距离直线也为r 的另一点P '的电场强度方向也沿该点的垂线方向向外.可见,到柱面的轴距离相同的所有点的场强大小都相等,方向沿各点的垂线方向向外,即场强也呈轴对称分布,可以用高斯定理求解.根据电场强度的这种对称性分布,过P 点作同轴的圆柱面为高斯面,如图所示.该闭合的高斯面由上、下底面和侧面组成,其面积分别为S 1、S 2和S 3,半径为r ,长为l . 根据高斯定理有⎰⎰⎰⎰⋅+⋅+⋅=⋅=Φ321s s s d d d d S E S E S E S E se由于上、下底面的外法线方向都与场强E 垂直,0cos =θ,所以上式前两项积分为零;又由于圆柱侧面外法线方向与场强E 的方向一致,因此有⎰⎰⎰⎰==⋅=⋅=Φ333s d d s s se ds E Eds S E S E2επ∑=⋅=i qrl E根据已知,有电荷的分布为:=∑i q)()(0R r l R r ><λ 所以,电场强度的大小为解习题9.15图=E )(2)(00R r rR r ><πελ根据分析知,场强的方向是垂直于轴的垂线方向.如果λ>0,则电场强度的方向沿垂线向外辐射;若λ<0,则电场强度的方向沿垂线指向直线.(2)由于均匀带电无限长圆柱面的电荷分布到无限远,所以不能选择无穷远处为电势零点,必须另选零电势的参考点.原则上来说,除“无穷远”处外,其他地方都可选.本题我们选择距圆柱面轴为)(00R R R >处电势为零,即00=R V .根据电势的定义式⎰⋅=0d R PV l E ,有RR r E r E V R RRrR P01ln 2d d d 0πελ=⋅+⋅=⋅=⎰⎰⎰l E )(R r <rR r E V R rR P02ln 2d d 0πελ=⋅=⋅=⎰⎰l E )(R r >9.16解:(1)由于圆盘是由许多小圆环组成的,取一半径为r 宽度为dr 的细圆环,此圆环上带电量为rdr dq πσ2⋅=,由教材例9-9的结果知,圆环轴线上到环心的距离为x 的任意点P 的电势为2204x r dq dV +=πε根据电势叠加原理,有P 点电势为)(242220220x x R x r dr r dV V R-+=+==⎰⎰εσπεσπ (2)根据分析知,圆盘轴线上的电场强度方向沿轴线方向,所以解习题9.16图根据电场强度与电势梯度的关系gradV -=E ,有轴线上到环心的距离为x 的任意点P 的电场强度为i i k j i E ])(1[2)(21220x R xdx dV V z y x gradV +-=-=∂∂+∂∂+∂∂-=-=εσ 此结果与教材例9-4的结果一样,很明显这种方法比较简单,去掉了复杂的矢量积分. 9.17解:由于自由电荷和电介质分布的球对称性,所以E 和D 的分布具有球对称性,可以用有介质时的高斯定理.根据电位移矢量D 的这种球对称性分布,过P 点作半径为r 的同心球面为高斯面,如图所示.根据D 的高斯定理,有∑⎰⎰⎰⎰=π==⋅=⋅=⋅i sq D r ds D ds D ds D 24cos d θS D 根据已知,有电荷的分布为:=∑i q)()(0R r Q R r ><所以,电位移矢量D 的大小为=D )(4)(02R r r QR r >⋅<π根据分析知,电位移矢量D 的方向为径向.如果Q >0,则D 的方向沿径向指向外;若Q <0,则D 的方向沿径向指向球心. 根据电场强度E 和电位移矢量D 关系E E D εεε==r 0,有电场强度E的大小为习题9.17图==rDE εε0)(4)(020R r r Q R r r ><επε方向也为径向.根据极化强度与电场强度的关系E P )1(0-=r εε,知极化强度的大小为=-=E P r )1(0εε )(4)1()(0200R r r QR r r r >-<επεεε根据极化电荷密度和极化强度的关系n n 'P =⋅=e P σ,有2004)1('r Q r r επεεεσ--= 所以,球外的电场分布以及贴近金属球表面的油面上的极化电荷'q 为Q R R Q q r r r )11(344)1('3200-=⨯--=επεπεεε第10章 稳恒电流的磁场一、选择题 10.1 答案:B 10.2 答案:C解:根据洛伦兹力公式B υF ⨯=q m 知,洛伦兹力始终与运动速度垂直,所以对运动电荷不做功,根据动能定理电荷的动能不变。
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
4、*如图示,一根长直导线载有电流30安培,长方形回路和它在同一平面内,载有电流20安培。
回路长30cm ,宽8.0cm ,靠近导线的一边离导线1.0cm ,则直导线电流的磁场对该回路的合力为多少? ()N 3102.3-⨯解: F=F 1-F 2=IB 1l-IB 2L0000000121238000112223210I I I Il I l I l()a a a a .(N )μμμμππππ-=-=-==⨯4.长直导线载有电流I ,导线框与其共面,导线ab 在线框上滑动,使ab 以匀速度v 向右运动,求线框中感应电动势的大小和感应电流的方向解:选取如图所示的坐标,顺时针为积分正方向,ab 上线元dx 产生的电动势为:l d )B v (d⋅⨯=i Edx x2Ivd 0πμ-=i E , dx x2Iv0LL L 00πμ-=⎰+i E 线框中感应电动势的大小: 000L LLln 2Iv +-=πμi E ,方向为逆时针。
5、长为L 的直导线MN ,与“无限长”直并载有电流I 的导线共面,且垂直于直导线,M 端距长直导线为a ,若MN 以速度v 平行于长直导线运动,求MN 中的动生电动势的大小和方向。
⎪⎭⎫⎝⎛+a L a Iv ln 20πμ 解:0022Na L M a I Iv a L (v B )dl v dr ln r aμμεππ++=⨯⋅==⎰⎰6、 如图所示,无限长直导线中电流为t I i ωcos 0=,矩形导线框abcd 与长直导线共面,且ad //AB ,(1)求线框abcd 中的感应电动势,(2) ab 两点哪点电势高?⎪⎪⎭⎫⎝⎛+=010200ln sin 2l l l t l I i ωπωμε010101000120012002001: (1) 22 2l l l l l l l l l i B ds Bl dr l dr ri l l l ln l l I l l d ln sin tdt l μφπμπμωφεωπ+++=⋅===++=-=⎰⎰⎰ 解(2)7. 如图所示 ,一平面简谐波沿OX 轴传播 ,波动方程为])xvt (2cos[A y ϕλπ+-= ,求 (1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式 。
解:P 处质点的振动方程:])Lvt (2cos[A y ϕλπ++=(L x -=, P 处质点的振动位相超前)IP 处质点的速度:])Lvt (2sin[v A 2yv ϕλππ++-== P 处质点的加速度:])Lvt (2cos[v A 4ya 22ϕλππ++-==8.一质点按如下规律沿X 轴作简谐振动:)3/2t 8(cos 1.0x ππ+=(SI )(1) 求此振动的周期、振幅、初相、速度最大值和加速度最大值; (2) 分别画出这振动的x-t 图。
周期:s 412T ==ωπ;振幅:m 1.0A =; 初相位:32πϕ=; 速度最大值:ωA xmax = ,s /m 8.0x max π= 加速度最大值:2max A x ω=,22max s /m 4.6x π=9 .有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? 解(1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.10.在双缝干涉的实验中,用波长nm 546=λ的单色光照射,双缝与屏的距离D=300mm ,测得中央明条纹两侧的两个第五级明条纹之间的间距为12.2mm ,求双缝间的距离。
解:由在杨氏双缝干涉实验中,亮条纹的位置由λk dDx =来确定。
用波长nm 546=λ的单色光照射,得到两个第五级明条纹之间的间距:λ∆10dDx 5= 双缝间的距离:λ∆10x Dd 5=m 10546102.12300d 9-⨯⨯=,m 1034.1d 4-⨯= 11. 在一双缝实验中,缝间距为5.0mm ,缝离屏1.0m ,在屏上可见到两个干涉花样。
一个由nm 480=λ的光产生,另一个由nm 600'=λ的光产生。
问在屏上两个不同花样第三级干涉条纹间的距离是多少?解:对于nm 480=λ的光,第三级条纹的位置:λ3dD x =对于nm 600'=λ的光,第三级条纹的位置:'3dD 'x λ= 那么:)'(3dDx 'x x λλ∆-=-=,m 102.7x 5-⨯=∆ 12. 用一束8.632=λnm 激光垂直照射一双缝, 在缝后2.0m 处的墙上观察到中央明纹和第一级明纹的间隔为14cm 。
求(1)两缝的间距;(2)在中央明纹以上还能看到几条明纹?解:(1)m x d d 69100.914.0108.6320.2--⨯=⨯⨯=∆'=λ (2)由于2πθ<, 按2πθ=计算,则 3.14/'/sin =∆==x d d k λθ应取14,即看到14条明纹。
13. 作简谐运动的小球,速度最大值为3m v =cm/s ,振幅2A =cm ,若从速度为正的最大值的某时刻开始计算时间。
(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。
17.解:(1)振动表达式为 c o s ()x A t ωϕ=+ 振幅0.02A m =,0.03/m v A m s ω==,得 0.031.5/0.02m v rad s A ω=== 周期22 4.191.5T s ππω===(2)加速度的最大值 2221.50.020.045/m a A m s ω==⨯=(3)速度表达式 sin()cos()2v A t A t πωωϕωωϕ=-+=++由旋转矢量图知,02πϕ+=, 得初相 2πϕ=-振动表达式 0.02cos(1.5)2x t π=-14.某质点作简谐振动,周期为2s ,振幅为0.06m ,开始计时( t=0 ),质点恰好处在负向最大位移处,求: (1)该质点的振动方程(2)此振动以速度u=2 m/s 沿x 轴正方向传播时,形成的一维筒谐波的波动方程(以该质点的平衡位置为坐标原点); (3)该波的波长。
19.解:(1)该质点的初相位 πφ=振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (2) 波动表达式 ])/(cos[06.0π+-π=u x t y])21(cos[06.0π+-π=x t(3) 波长 4==uT λ m。