桥梁转体施工介绍
转体桥施工工法
转体桥施工工法一、引言随着城市交通的日益繁忙,桥梁建设的需求也在不断增加。
为了满足城市空间和交通流量的需求,转体桥作为一种新型的桥梁施工方法逐渐受到关注。
本文将详细介绍转体桥施工工法及其在桥梁建设中的应用。
二、转体桥施工工法概述转体桥施工工法是一种利用桥梁自身结构进行旋转的施工方法。
在桥梁建设中,通过将桥梁结构分为两个独立的半桥,并在合适的位置进行旋转,实现桥梁的合拢。
这种施工方法具有施工速度快、对周边环境影响小、节约成本等优点,因此在桥梁建设中得到了广泛应用。
三、转体桥施工工法流程1. 基础准备在转体桥施工前,需要对桥梁基础进行详细勘察和设计,确保基础稳定可靠。
同时,根据桥梁结构特点,选择合适的旋转装置和控制系统。
2. 半桥施工在基础准备完成后,开始进行半桥施工。
半桥一般采用分段浇筑的方式进行施工,每段浇筑完成后进行预应力张拉,确保半桥结构稳定。
3. 旋转装置安装在半桥施工完成后,进行旋转装置的安装。
旋转装置一般采用滚珠轴承或滑动轴承,通过控制系统实现桥梁的旋转。
4. 桥梁旋转合拢在旋转装置安装完成后,进行桥梁的旋转合拢。
在合拢过程中,通过控制系统精确控制旋转角度和速度,确保桥梁合拢精度。
5. 附属设施施工在桥梁合拢完成后,进行附属设施的施工,如防撞设施、伸缩缝等。
附属设施的施工质量直接影响桥梁的使用寿命和安全性。
四、转体桥施工工法优点1. 施工速度快:转体桥施工工法采用分段浇筑的方式进行施工,每段浇筑完成后即可进行预应力张拉,大大缩短了施工周期。
2. 对周边环境影响小:由于转体桥施工工法采用旋转的方式进行合拢,对周边环境的影响较小,降低了对周边居民和交通的影响。
3. 节约成本:转体桥施工工法采用分段浇筑的方式进行施工,可以充分利用施工现场资源,降低施工成本。
4. 适用范围广:转体桥施工工法适用于各种类型的桥梁建设,如公路桥、铁路桥、跨河桥等,具有广泛的适用范围。
五、转体桥施工工法应用案例近年来,随着转体桥施工工法的不断发展和完善,越来越多的桥梁建设项目采用了这种施工方法。
桥梁转体施工工法
桥梁转体施工工法一、引言桥梁转体施工工法是一种具有独特优势的桥梁施工方法,尤其适用于跨越繁忙道路、河流、山谷等复杂地形的情况。
该工法通过将桥梁结构在合适的位置进行预制,然后利用机械设备将其整体旋转到预定位置,从而实现桥梁的合龙。
本文将详细介绍桥梁转体施工工法的原理、特点、应用范围及实施过程。
二、桥梁转体施工工法原理桥梁转体施工工法的基本原理是将桥梁结构在合适的位置进行预制,然后利用机械设备将其整体旋转到预定位置。
在施工过程中,首先需要在桥墩底部设置旋转支座,将预制好的桥梁结构通过旋转支座进行连接。
然后,通过机械设备(如千斤顶、卷扬机等)提供动力,使桥梁结构在桥墩底部进行旋转。
当桥梁结构旋转到预定位置后,进行合龙施工,完成桥梁的主体结构。
三、桥梁转体施工工法特点1. 适用范围广:桥梁转体施工工法适用于跨越繁忙道路、河流、山谷等复杂地形的情况,可以避免对周围环境的影响。
2. 施工效率高:通过预制桥梁结构,可以大大缩短施工周期,提高施工效率。
3. 施工质量好:由于桥梁结构在合适的位置进行预制,可以保证施工质量,减少施工误差。
4. 安全性高:通过机械设备进行旋转,可以避免传统吊装施工方法中存在的安全隐患。
四、桥梁转体施工工法应用范围桥梁转体施工工法广泛应用于各种类型的桥梁建设中,包括公路桥、铁路桥、市政桥等。
特别是在跨越繁忙道路、河流、山谷等复杂地形的情况下,该工法具有显著的优势。
五、桥梁转体施工工法实施过程1. 施工准备:在施工前,需要进行详细的勘察和设计,确定合适的旋转支座位置和旋转角度。
同时,需要准备好所需的机械设备和材料。
2. 预制桥梁结构:在合适的位置进行桥梁结构的预制,确保其尺寸和重量符合设计要求。
3. 设置旋转支座:在桥墩底部设置旋转支座,将预制好的桥梁结构通过旋转支座进行连接。
4. 旋转桥梁结构:利用机械设备提供动力,使桥梁结构在桥墩底部进行旋转。
在旋转过程中,需要密切关注各项参数,确保旋转的稳定性和准确性。
桥梁上部结构转体施工方法
桥梁上部结构转体施工方法(1)概述①转体施工一般适用于各类单孔拱桥的施工,其基本原理是:将拱圈或整个上部结构分为两个半跨,分别在河流两岸利用地形或简单支架现浇或者预制装配半拱,然后利用动力装置将其两半拱体转动至桥轴线位置合拢成拱。
分为平面转体、竖向转体和平竖结合转体三种。
②平面转体:按照拱桥设计标高先在两边预制半拱,当结构混凝土达到设计强度后,借助设置于桥台底部的转动设备和动力装置在水平面内将其转动至桥位中线处合拢成拱。
③竖向转体:在桥台处先竖向或者在桥台前俯卧预制半拱,然后在桥位垂直平面内绕拱脚将其合拢成拱。
根据河道情况可以:竖直向上预制半拱,然后向下转动成拱,其特点是施工占地少,预制可采用滑模施工,工期短,造价低;在桥面以下俯卧预制半拱,然后向上转动成拱,适于河内无水条件下使用。
④平竖结合转体:由于受河岸地形条件限制,采用转体施工时,前述两种方法均难以实施,只能在适当位置预制后,平转与竖转相结合,实现两个半拱桥位合拢。
(2)有平衡重平面转体施工1)转动体系构造①转动体系主要由底盘、上转盘、锚扣系统、背墙、拱体构造、拉杆等组成。
②底盘与上转盘:是桥台基础的一部分,地盘固定,上转盘与转体形成整体并可在底盘上旋转,从而实现拱体转动。
③锚扣系统:目的是把支承在支架、环道或滚轮上的拱体与上转盘、背墙全部连接成一个转动体系并脱离周边支承,形成一个支承在转动轴心或铰上的悬空平衡体。
④背墙:桥台的一部分,作为转体阶段的拱体扣索或拉杆的锚碇反力墙。
⑤拱体:预制完成的半拱。
⑥拉杆(拉索):连接半拱与台背的螺杆或者缆索。
2)有平衡重转体施3232序制作底盘一制作上转盘一布置牵引系统的锚碇及滑轮,试转上盘一浇筑背墙一施工支架,浇筑主拱圈上部结构(用预制构件组拼)+张拉脱架+转体合拢+封上下盘、封拱顶一松拉杆。
(3)无平衡重转体施工1)无平衡重转体一般构造①无平衡重转体施工具有锚固、转动、位控三大体系。
②锚固体系:由锚碇、尾索、平撑、锚梁(或锚块)及立柱组成。
转体施工整套资料
图2-2-46 球面铰、轨道板和钢滚轮构造图 a)球面铰;b)轨道板和滚轮
三种铰的构造示意图
牵引式动力系统
自动连续顶推式动力系统
平衡重的转体施工程序
①制作底盘。 ②制作上转盘。 ③试转上转盘到预定轴线位置。 ④浇筑背墙。 ⑤浇筑主拱圈上部结构。 ⑥张拉拉杆,使上部结构脱离支架,并且和上转盘、背墙
转体施工主要参数
⒈转动体结构几何尺寸: 长258.71m 宽39.4m 高86.285m ⒉平转角度: (9#墩)117.1117°(10#墩)92.2333° ⒊转盘环道直径:33m 宽1.1m ⒋主拱竖转结构总重:2058t ⒌平转结构总量:13685t ⒍索塔高:63.428m
工程实例:鸳江大桥钢管混凝土拱施工
下盘不锈钢板划道(高差±0.5毫米),环道 直径33米
上盘支承滑板(脚),白色小点是聚四氟乙烯 滑动支点(蘑菇头)
上盘绞线束锚碇块及起动助推千斤顶(左侧);
索引绞线束,转向滑轮组
4 x 200吨引索千斤顶(一墩两组)
东平大桥平转
2)球面铰辅以轨道板和钢滚轮
这是一种以铰为轴心承重的转动装置。它 的特点是整个转动体系的重心必须落在轴 心铰上,球面铰既起定位作用,又承受全 部转体重力,钢滚轮只起稳定保险作用。
鸳江大桥主孔
左半孔整体浮运
左半孔浮运至桥位
临时铰就位
左半孔竖向转体就位
右半拱临时铰就位
两半拱空斤顶
半拱铰轴端提升架(正面)
图2-2-48 转动体系构造 a)上转轴构造;b)下转轴构造
3)位控体系。控体系由系在拱箱顶端扣点 的缆风索与无级调速自控卷杨机、光电测 角装置、控制台组成,用以控制在转动过 程中转动体的转动速度和位置。
桥梁转体施工-超详细的介绍
一、桥梁转体施工的工作原理桥梁转体施工的工作原理,就像挖掘机铲臂随意旋转一样,在桥台(单孔桥)或桥墩(多孔桥)上分别预制一个转动轴心,以转动轴心为界把桥梁分为上、下两部分,上部整体旋转,下部为固定墩台、基础,这样可根据现场实际情况,上部构造可在路堤上或河岸上预制,旋转角度也可根据地形随意旋转。
二、桥梁转体施工工艺的特点桥梁转体施工工艺适用于跨径较大的单孔或多孔钢筋混凝土桥梁施工。
尤其适用于跨越深谷、水深流急和公铁立交、风景胜地、自然保护区等施工受限制的现场。
由于桥梁转体施工是靠结构自身旋转就位,不用吊装设备,并可节省大量支架木材或钢材。
采用混凝土轴心转体施工,转体工艺简便易行,转体重量全部由桥墩(或桥台)球面混凝土轴心承受,承载力大,转动安全、平衡、可靠。
可将半孔上部结构整体预制,结构整体性强,稳定性好,更能体现结构的力学性能的合理性。
施工工艺和所用施工机械简单,转体时仅需两盘绞磨、几组滑轮即可使上部结构在短时间内转体就位,简便易行,易于掌握,便于推广。
三、转体施工法的关键技术转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。
1、竖转法竖转法主要用于肋拱桥,拱肋通常在低位浇筑或拼装,然后向上拉升达到设计位置,再合拢。
竖转体系一般由牵引系统、索塔、拉索组成。
竖转的拉索索力在脱架时最大,因为此时拉索的水平角最小,产生的竖向分力也最小,而且拱肋要实现从多跨支承到铰支承和扣点处索支承的过渡,脱架时要完成结构自身的变形与受力的转化。
为使竖转脱架顺利,有时需在提升索点安置助升千斤顶。
竖转施工方案设计时,要合理安排竖转体系。
索塔高、支架高(拼装位置高),则水平交角也大,脱架提升力也相对小,但索塔、拼装支架受力(特别是受压稳定问题)也大,材料用量也多;反之亦然。
在竖转过程中,主要要考虑索塔的受力和拱肋的受力,尤其是风力的作用。
在施工工艺上,竖转铰的构造与安装精度,索鞍与牵转动力装置,索塔和锚固系统是保证竖转质量、转动顺利和安全的关键所在。
桥梁转体施工包括(一)
桥梁转体施工包括(一)引言概述:桥梁转体施工是指在桥梁基础施工完成后,将桥梁主体结构整体转动到设计位置的过程。
这一施工过程需要精确的计划和操作,涉及到多个环节和技术要点。
本文将从以下五个大点进行详细阐述桥梁转体施工的相关内容。
正文:一、施工前准备1.确定转体方向:根据设计要求和桥梁位置,确定转体方向,包括正向和逆向转体。
2.查验基础:检查桥梁基础施工是否符合要求,确保基础的稳定性。
3.制定施工方案:根据桥梁的结构和实际条件,制定详细的施工方案,包括转体角度、施工工序等。
二、转体设备准备1.选用合适的起重机械:根据桥梁的大小和重量,选择适合的起重机械,如大型吊车、塔吊等。
2.检查设备状态:对起重机械进行全面检查,确保设备状态良好,能够满足转体施工的要求。
3.准备支撑设备:根据桥梁结构特点,准备合适的支撑设备,如支撑杆、支撑板等。
三、施工操作流程1.吊装前准备:安装和调试起重机械,进行起重机械的试运行和负载测试。
2.桥梁固定:利用支撑设备将桥梁固定在转体中心点,确保桥梁在转体过程中的稳定性。
3.起吊桥梁:将起重机械吊车的吊钩与桥梁连接,进行起吊操作。
4.转体过程:按照施工方案中确定的转体角度和工序,逐步将桥梁转动到设计位置。
5.固定桥梁:在转体到位后,利用支撑设备将桥梁再次固定,确保桥梁的安全和稳定。
四、安全注意事项1.人员安全:施工现场应设置必要的安全警示标志,严禁无关人员进入施工区域。
2.设备安全:对起重机械进行定期检查和维护,确保设备的安全运行。
3.桥梁稳定:转体过程中要注意桥梁的稳定性,防止倾斜或侧翻等意外事故的发生。
五、总结桥梁转体施工是桥梁建设中重要的一环,涉及到多个环节和技术要点。
施工前的准备工作、设备的选择和操作流程的规范都至关重要。
同时,安全注意事项的遵守也是确保施工顺利进行和人员安全的关键。
通过合理的施工计划和严格的操作流程,能够保证桥梁转体施工的顺利进行,为桥梁建设提供坚实的保障。
转体工程桥梁施工法(3篇)
第1篇一、转体工程桥梁施工法原理转体工程桥梁施工法是利用桥梁本身的转动特性,通过转动轴心将桥梁分为上、下两部分,上部整体旋转,下部为固定墩台、基础。
在施工过程中,上部结构可在路堤上或河岸上预制,旋转角度可根据地形随意调整。
当上部结构旋转到预定位置后,再与下部结构进行对接,从而完成桥梁的建造。
二、转体工程桥梁施工法工艺流程1. 设计阶段:根据工程需求,对桥梁结构进行设计,确定转体轴心位置、旋转角度、预制部分等关键参数。
2. 预制阶段:在路堤或河岸上预制桥梁上部结构,包括梁体、桥面板、桥墩等部分。
3. 安装转动轴心:在桥梁墩台上安装转动轴心,为桥梁旋转提供支撑。
4. 施工准备:对施工现场进行清理,确保施工环境安全。
5. 桥梁转动:利用绞磨、滑轮等设备,将预制好的桥梁上部结构旋转到预定位置。
6. 对接:将旋转到位的上部结构与下部结构进行对接,完成桥梁的整体建造。
7. 桥梁验收:对完成后的桥梁进行检查、验收,确保桥梁质量符合设计要求。
三、转体工程桥梁施工法优势1. 施工便捷:转体工程桥梁施工法无需大型吊装设备,施工过程简单,节省了大量的人力、物力资源。
2. 安全可靠:转体施工过程中,上部结构整体旋转,减少了施工过程中的风险,提高了施工安全性。
3. 整体性好:转体工程桥梁施工法预制部分与现场施工部分连接紧密,整体性好,桥梁结构稳定。
4. 节省资源:转体工程桥梁施工法可减少支架木材或钢材的使用,降低施工成本。
5. 适应性强:转体工程桥梁施工法适用于各种地形、地质条件,能够满足不同工程需求。
总之,转体工程桥梁施工法作为一种先进的桥梁施工技术,在我国桥梁建设中具有广泛的应用前景。
随着我国基础设施建设的不断推进,转体工程桥梁施工法将在未来发挥更加重要的作用。
第2篇一、转体工程桥梁施工法的原理转体工程桥梁施工法的基本原理是将桥梁分为上下两部分,以桥梁本身为转动体,利用转动轴心将桥梁分为可旋转的上部和固定不动的下部。
桥梁转体施工
桥梁转体施工桥梁转体施工一、项目概述本文档详细介绍了桥梁转体施工的全过程。
桥梁转体施工是指将桥梁整体或者部份进行旋转的工程,是桥梁建设中的重要环节。
施工过程中需要考虑的因素包括转体机械的选取、施工方案的制定、安全措施的落实等。
二、转体机械选取1. 转体机械类型根据桥梁的规模和特点,选择合适的转体机械。
常见的转体机械类型包括大吨位起重机、水平起重机、自行式起重机等。
根据具体情况选择最适合的转体机械。
2. 转体机械参数根据桥梁的尺寸和分量,确定转体机械的参数,包括起重能力、回转半径、工作范围等。
这些参数的确定将影响到施工的安全性和效率。
三、施工方案制定1. 桥梁现状调查在制定施工方案之前,需要对桥梁的现状进行调查,包括结构状况、材料状况、存在的问题等。
了解桥梁的现状有利于制定合理的施工方案。
2. 施工工艺选择根据桥梁的特点和具体情况,选择合适的施工工艺。
常见的施工工艺有平转工艺、侧转工艺、上平下转工艺等。
根据实际情况选择最合适的施工工艺。
3. 施工过程控制在制定施工方案的同时,需要对施工过程进行详细规划和控制。
包括施工过程中的交通管理、设备调配、人员安排、施工周期等。
四、安全措施落实1. 安全防护措施在桥梁转体施工过程中,需要采取严格的安全防护措施,确保施工人员和设备的安全。
包括防护栏杆的设置、警示标志的标示、安全带的使用等。
2. 施工人员培训施工人员需要具备相关的技术知识和安全意识,对施工过程中的危(wei)险因素有清晰的认识。
根据实际情况进行培训,提高施工人员的安全意识。
五、施工过程管理1. 进度管理制定详细的施工计划和进度表,对施工过程进行管理和监控。
及时调整施工进度,确保项目按时完成。
2. 质量管理严格按照规范要求进行施工,确保施工质量。
加强施工过程中的质量检查和监督,及时纠正存在的问题。
六、附件本文档所涉及的附件如下:附件1:桥梁转体机械选型表附件2:施工方案制定流程图附件3:施工过程控制表附件4:安全防护措施确认表附件5:施工进度表附件6:质量检查记录表七、法律名词及注释本文档所涉及的法律名词及注释如下:1. 建造法:指中华人民共和国建设工程法2. 安全生产法:指中华人民共和国安全生产法3. 劳动法:指中华人民共和国劳动法。
桥梁转体施工方案
桥梁转体施工方案桥梁转体施工是指在桥梁建设过程中,将桥梁整体或部分转动,调整桥梁位置或方向的一种施工方法。
下面将介绍桥梁转体施工方案。
1.施工前准备1)确定桥梁转体的时间和地点,并通知相关部门和施工人员。
施工地点应保证周边区域安全,并采取防护措施。
2)对桥梁结构进行检查,了解桥梁结构、材料和受力情况,为施工方案的设计提供支撑。
3)编制详细的施工图纸和方案,并与相关部门进行审批。
2.施工方案1)选择合适的机械设备和工具。
根据桥梁的结构和大小,选择合适的吊机、千斤顶等设备,保证转体施工的安全和顺利进行。
2)制定施工流程。
根据桥梁的具体情况,制定转体的具体步骤和工序,确定施工顺序和时间节点。
3)开展施工前的准备工作。
清理施工现场,确保施工区域干净整洁,为后续的施工做好准备。
4)加固桥墩和桥面。
根据桥梁的情况,对桥梁进行加固处理,以保证施工过程的安全性。
5)进行桥梁转体。
将合适的机械设备放置在桥梁两端,通过吊机或千斤顶等设备,将桥梁整体或部分转动至所需位置或方向。
6)定位和固定桥梁。
完成桥梁转体后,对桥梁进行定位和固定,确保桥梁稳定可靠。
3.施工安全措施1)做好施工现场的安全防护,设置合理的警示标志和警戒线,防止他人侵入施工现场。
2)施工人员必须佩戴安全防护装备,如安全帽、安全绳等;3)对施工设备进行检查和维护,确保其安全可靠;4)加强施工现场的环境监测,以掌握施工现场的温度、湿度、风力等变化,及时采取相应的措施;5)严格遵守施工规范和程序,预防施工事故的发生。
4.施工后处理1)对施工现场进行清理和整理,恢复正常交通和环境;2)对施工设备进行检查和维护,确保其正常使用;3)对桥梁进行评估和检测,确保桥梁转体施工的质量和安全性;4)编制施工报告和总结,总结经验教训,为其他桥梁转体施工提供参考。
总之,桥梁转体施工是一项复杂的工作,需要科学合理的方案和细致周到的准备工作。
只有做好施工前的准备、严格遵守施工步骤和安全规范,才能确保桥梁转体施工的安全和顺利进行。
桥梁转体施工方案、工艺及技术
桥梁转体施工方案、工艺及技术在桥梁建设过程中,桥梁转体施工是非常重要的一环,它涉及到桥梁的承载能力、安全性以及整体结构的稳定性。
为了确保桥梁转体施工的顺利进行,需要制定科学合理的施工方案,并且采用先进的施工工艺和技术。
本文将针对桥梁转体施工进行详细介绍。
1. 施工方案1.1 施工前准备工作在进行桥梁转体施工前,首先需要做好充分的准备工作。
包括但不限于: - 完善的施工计划,明确施工流程及时间节点; - 确定施工人员及设备配备; - 确保施工现场的安全防护措施; - 对桥梁结构进行全面检查,确保转体过程中的安全性。
1.2 施工过程控制桥梁转体施工的过程中需要严格控制施工质量和进度,注重以下几个方面: - 组织安全有效的施工作业流程; - 控制施工过程中的各项参数及数据; - 对桥梁结构进行实时监测和调整。
1.3 施工后工作桥梁转体施工完成后,需要做好相关的收尾工作,包括: - 对施工过程进行总结及评估,查找问题并改进; - 对转体部位进行检测,确保桥梁结构安全可靠; - 对施工现场进行清理及整理。
2. 施工工艺2.1 钻孔凿孔在桥梁转体施工中,常常需要进行钻孔和凿孔的工作。
这是为了确保各个部件之间能够顺利连接,并且提供必要的承载能力。
2.2 预制构件调整桥梁转体施工中,预制构件的调整是非常关键的一环。
只有通过精确的调整工艺,才能确保桥梁结构的稳定性和安全性。
2.3 安装合拢安装合拢是桥梁转体施工中的最后一个步骤,需要精密操作。
只有通过正确的工艺和技术,才能确保桥梁结构的正常运行和使用。
3. 施工技术3.1 3D建模在桥梁转体施工中,3D建模技术可以提供可视化的施工方案,帮助施工人员更好地理解整个施工过程,提高工作效率。
3.2 激光测量激光测量技术可以提供精准的施工数据,帮助施工人员进行准确的施工操作,确保桥梁结构的准确性和稳定性。
3.3 监测系统监测系统可以实时监测桥梁结构的变化情况,及时发现问题并进行调整,确保施工过程的安全性和质量可控。
转体施工
平竖结合转体
第一步
第二步
第三步
第四步
第五步
第六步
第七步
第八步
转动体系
转动体系 由中墩(台) 转动系统和边 跨端部辅助滑 道等组成。中 墩转动系统设 于墩底、基底 (或承台中 间),由球铰、 平衡支腿(撑 脚)、滑道等 组成。
球铰
球铰由上、下 球球铰间的四氟乙 烯板、固定上下球 铰的钢销、上、下 球铰钢骨架组成。 球铰为转动过程中 的沉重受力构建, 有钢质或不低于 C50的钢筋混凝吐、 土浇筑于盘中央 (内设钢骨架)。 上下球铰可互为上、 下凸凹。
转体施工步骤
2、转体牵引可用两根钢绞线、高强度钢 丝束,一段预埋在球铰柱内,另一端引 出,形成一转动力偶臂。 3、刚性索斜拉桥转体施工时,纵、横向 稳定系数应大于1.5. 4、转体合龙是应严格控制桥体搞成和轴 线,贺龙温度应符合设计要求。 5、封铰
参考资料
/p564225120.html?qq-pf-to=pcqq.c2c /p-564225120.html
转体施工适用条件
主要适用于连续梁(刚够)式桥 斜拉桥 钢筋混凝土拱桥 钢管混凝土拱桥
还适用于转体质量不大的拱桥或桥梁预 制部件(塔、斜腿、劲性骨架)
竖转施工的原理
将桥体从跨中分成两个半跨,在桥轴 方向的河床上设支架、驳船等预制梁部, 在待转桥体的岸段设铰,在桥台后或台后 临时架设支撑提升系统,通过卷扬机回收 提升牵引绳,将桥体竖转至贺龙位置连接 合龙,封固转角,完成转体施工
谢谢!
转体施工步骤
1、转体前准备工作 (1)检查转动体系各部位技术要求 (2)借出临时支腿,切断连接钢筋,检查撑脚 楔塞 (3)称重。采用千斤顶、位移计测出悬臂两端 不平衡重量,以砂带或水箱调整两端重量,以 保持两端平衡。 (4)试转。全面检查牵引动力、转动体系、位 控体防倾保险体系,监理主墩转动角速度与悬 臂端部转动线速度的关系,以便在转动过程中 把转动速度控制在预定范围内。 (5)转提前应进行转体结构稳定、偏心工?
桥梁转体施工方法及发展应用
桥梁转体施工方法及发展应用引言桥梁是连接两个岸边的重要交通设施,而在桥梁建设过程中,转体施工是桥梁建设中一个重要的环节。
通过桥梁转体施工方法,可以实现桥梁的转体安装,提高施工效率,保证桥梁建设的顺利进行。
本文将介绍桥梁转体施工的基本步骤和方法,并探讨其发展应用。
一、桥梁转体施工的基本步骤1. 设计规划:在进行桥梁转体施工之前,需要进行详细的设计规划,包括施工过程中需要使用的工具和设备的准备,施工方案的制定等。
2. 场地准备:在开始桥梁转体施工之前,需要对施工场地进行准备工作,包括清理施工区域,平整地面,打造支撑平台等。
3. 支撑结构的搭建:根据设计方案,搭建合适的支撑结构,以确保桥梁在转体过程中的稳定性和安全性。
4. 转体施工:在支撑结构的基础上,使用专业工具和设备,如转体机、吊车等,进行桥梁的转体施工。
施工人员需要根据设计要求和施工方案,进行细致的操作,确保桥梁转体过程平稳无误。
5. 收尾工作:桥梁转体施工完成后,需要进行一些收尾工作,如清理施工现场、检查施工质量等,以确保桥梁转体施工的顺利结束。
二、桥梁转体施工方法的分类桥梁转体施工方法可以根据施工环境和施工要求的不同进行分类。
下面将介绍几种常见的桥梁转体施工方法。
1. 平面转体法:平面转体法是将桥梁整体沿水平轴进行转体的施工方法。
这种方法适用于较小规模的桥梁,具有操作简便、施工周期短的优点。
2. 滑移施工法:滑移施工法是将桥梁整体通过滑动构筑装置,逐渐推移到预定位置的施工方法。
这种方法适用于长跨度、大型桥梁的施工,能有效降低施工难度和风险。
3. 切割拼接法:切割拼接法是将桥梁按照一定的节点进行切割,然后通过拼接的方式完成桥梁的转体施工。
这种方法适用于较长桥梁的转体施工,能够减小施工的影响范围和工程量。
三、桥梁转体施工方法的发展应用随着科技的进步和建筑技术的发展,桥梁转体施工方法也在不断创新和应用。
以下将介绍一些桥梁转体施工方法的发展应用。
1. 模块化转体法:模块化转体法是将桥梁按照一定的模块进行划分,并采用吊装和装配的方式进行转体施工。
桥梁转体施工方案(二)2024
桥梁转体施工方案(二)引言概述:桥梁转体施工是指将桥梁预制段按照设计要求进行旋转安装的工程施工过程。
在上一篇文档中,我们已经介绍了桥梁转体施工的前期准备工作,包括现场勘测、设备调试等内容。
在本文中,我们将进一步讨论桥梁转体施工的具体方案,包括转台搭设、预制段吊装、转体过程的控制等。
正文内容:1. 转台搭设1.1 确定转台类型:根据桥梁的具体情况和设计要求,选择合适的转台类型,如临时转台、永久转台等。
1.2 安装转台:根据设计方案和施工要求,在桥梁两端搭设转台,并确保转台的平整度和稳定性。
1.3 加固转台:在转台周围设置临时支撑,以增加转台的稳定性和承载能力。
1.4 搭设支架:在转台上搭设起支架,以便于后续的预制段吊装和转体施工。
1.5 检查调整:在转台搭设完成后,进行检查和调整,确保转台的位置和高度符合要求。
2. 预制段吊装2.1 制定吊装方案:根据预制段的特点和施工要求,制定合理的吊装方案,包括吊装设备的选择、吊装点的确定等。
2.2 安装吊装设备:根据吊装方案,在转台上安装吊装设备,如起重机、吊车等。
2.3 确定吊装点:根据预制段的结构特点和安装要求,确定吊装点的位置和数量。
2.4 进行试吊:在正式吊装前,进行试吊操作,检查吊装设备的性能和稳定性。
2.5 完成吊装:按照吊装方案进行预制段的吊装操作,并确保吊装过程平稳、安全。
3. 转体过程控制3.1 制定转体方案:根据桥梁的设计要求和实际情况,制定合理的转体方案,包括转体角度和速度等。
3.2 准备转体设备:安装转体设备,如转体板、支座等,并确保其正常运行。
3.3 安全措施:设置必要的安全警示标识,保护转体过程中的作业人员和设备安全。
3.4 监测转体过程:通过专业监测设备对转体过程进行实时监测,及时发现并处理问题。
3.5 完成转体:按照转体方案进行桥梁的转体,确保转体过程平稳、控制精度达到要求。
4. 预制段拼装4.1 确定拼装顺序:根据桥梁的结构和设计要求,确定预制段的拼装顺序,确保拼装的连续性和稳定性。
桥梁转体施工方案
桥梁转体施工方案摘要:桥梁转体是桥梁施工中的一个重要环节,直接关系到桥梁的整体结构和承载能力。
本文旨在介绍桥梁转体施工的基本步骤和注意事项,以确保桥梁转体施工的安全和顺利进行。
引言:桥梁是连接两地之间的重要交通枢纽,它承载着车辆和行人的通行,是城市发展和人民生活的重要保障。
在桥梁的施工过程中,桥梁的转体是一个至关重要的步骤,决定了桥梁的整体结构和安全性。
因此,合理制定桥梁转体施工方案,具有重要意义。
一、桥梁转体施工方案的步骤1. 确定转体轴线:在桥梁转体施工前,需要确立桥梁转体的轴线,即桥梁转体的旋转中心。
一般来说,轴线应选择桥梁的几何中心,这样可以确保桥梁的均衡旋转。
2. 准备转体设备:在桥梁转体施工中,需要使用专门的转体设备,如起重机、脚手架等。
在选择转体设备时,需要考虑设备的承载能力和使用范围,以确保施工的安全性。
3. 加固桥梁结构:为了确保桥梁转体施工的安全性,需要对桥梁结构进行加固处理。
加固措施可以包括增加支撑、加固梁体和设置临时支座等。
4. 分段转体:在进行桥梁转体施工时,可以将桥梁分成若干段进行转体。
分段转体可以减少施工难度和风险,并且有利于施工进度的掌控。
5. 控制转体速度:在桥梁转体施工过程中,需要严格控制转体速度,避免过快或过慢造成的问题。
通常情况下,转体速度应逐渐加快,并在临近转体完成时逐渐减缓。
6. 检查转体质量:完成桥梁转体后,需要对转体质量进行检查。
检查内容包括转体轴线是否准确、转体角度是否符合要求以及桥梁结构是否有变形等。
二、桥梁转体施工方案的注意事项。
桥梁转体施工(一)
桥梁转体施工(一)引言概述:桥梁转体施工是指在桥梁建设过程中,对桥梁进行转体操作的施工工序。
转体施工是桥梁建设过程中极为重要的一环,其目的是将桥梁从调直位置转至最终安装位置。
本文将从准备工作、转体设备选择、施工步骤、安全控制和质量控制等五个大点详细阐述桥梁转体施工的相关内容。
通过对这些要点的分析和总结,旨在为工程施工人员提供指导,确保桥梁转体施工顺利进行。
正文:一、准备工作1. 桥梁转体前的勘测和测量2. 桥梁转体施工方案的制定3. 施工人员的培训和安全意识的提高4. 资源准备,如施工设备、材料等5. 转体现场的清理、平整和安全防护二、转体设备选择1. 转体平台的选型和设计2. 转体设备的安装和调试3. 设备的稳定性和承载能力评估4. 吊装工具和辅助设备的选择与配置5. 设备操作员的培训和熟悉操作规程三、施工步骤1. 转体前的准备,如卸载临时支撑装置2. 转体过程的控制,包括定位和调整3. 转体速度和角度的控制4. 桥梁的回转和位置修正5. 转体后的固定与稳定,如重新支撑和锚固四、安全控制1. 转体现场的安全布置与标识2. 施工人员的安全防护措施3. 转体设备使用的安全操作规程4. 现场危险源的排除和处理5. 突发事件的应急处理措施五、质量控制1. 施工工艺的合理性评估与改进2. 施工材料的质量检测与控制3. 施工过程的监控和记录4. 桥梁转体后的检验和验收5. 质量问题的整改与追踪总结:桥梁转体施工作为桥梁建设的重要环节,对于确保桥梁的安全和质量具有重要意义。
通过本文的阐述,我们可以了解到准备工作的必要性、设备选择的重要性、施工步骤的技术要求、安全控制的关键点以及质量控制的重要措施。
在实际施工中,施工人员应严格按照规定的操作程序,确保转体施工的高效、安全和质量,从而顺利完成桥梁的转体工作。
桥梁的转体施工方案(一)2024
桥梁的转体施工方案(一)引言概述:桥梁的转体施工是指在桥梁建设过程中,通过特定的施工方案,将桥梁主体结构进行旋转并定位的工艺。
本文旨在探讨桥梁转体施工的方案,并通过对转体施工的五个重要方面进行分析和阐述。
正文内容:一、转体施工前的准备工作1. 确定转体施工方案:根据桥梁的结构类型、尺寸和施工条件,选择合适的转体方案。
2. 进行三维建模和力学分析:通过对桥梁进行三维建模和力学分析,确保施工方案的可行性。
3. 制定详细的工程计划:确定施工的具体步骤和时间安排,制定合理的资源调度计划。
二、转体施工的技术要点1. 桥梁转体机的选型和配置:选择适当的转体机械设备,并进行合理的布置和配置。
2. 施工过程中的安全措施:制定详细的安全政策和操作规程,确保施工过程的安全性。
3. 控制转体速度和力度:根据桥梁的结构特点和承载能力,合理控制转体过程的速度和力度。
4. 实施合理的监控和调整:通过监测仪器和技术手段,及时监控转体施工的各项参数,并进行必要的调整。
5. 确保转体施工的顺利进行:对桥梁转体工程进行全程跟踪和管理,确保施工过程的顺利进行。
三、转体施工中可能存在的问题及应对措施1. 转体机械设备故障:建立健全的设备检修和维护制度,及时解决设备故障问题。
2. 不可预见的自然因素:提前制定应急预案,灵活应对自然因素对转体施工带来的影响。
3. 施工过程中的误差调整:通过精确的测量和定位技术,及时调整施工误差,确保转体施工的准确性。
4. 施工现场的安全风险:加强施工现场的安全管理,做好防护措施,确保工人的安全。
四、转体施工的质量控制1. 施工过程的质量检查:建立完善的质量检验制度,对施工过程中的关键节点进行全面检查和评估。
2. 转体过程的精确测量:采用高精度的测量仪器和技术手段,对转体过程进行精确测量,确保转体角度的准确性。
3. 施工材料的质量控制:选择合格的施工材料,并进行严格的验收和使用。
五、转体施工后的总结和改进1. 进行施工总结和评估:对转体施工的各个环节进行总结,分析存在的问题和不足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.0 概述桥梁转体施工是指将桥梁结构在非设计轴线位置制作(浇注或拼接)成形后,通过转体就位的一种施工方法。
它可以将在障碍上空的作业转化为岸上或近地面的作业。
根据桥梁结构的转动方向,它可分为竖向转体施工法、水平转体施工法(简称竖转法和平转法)以及平转与竖转相结合的方法,其中以平转法应用最多。
桥梁转体法施工与传统施工方法相比,具有如下优点:(1)施工所需的机具设备少、工艺简单、操作安全。
(2)具有结构合理,受力明确,力学性能好。
(3)转体法能较好地克服在高山峡谷、水深流急或经常通航的河道上架设大跨度构造物的困难,尤其是对修建处于交通运输繁忙的城市立交桥和铁路跨线桥,其优势更加明显。
(4)施工速度快、造价低、节约投资。
在相同条件下,拱桥采用转体法与传统的悬吊拼装法、桁架伸臂法、搭架法相比,经济效益和社会效益十分显着。
如用转体法修建的湖南资兴市游垄桥,与用悬吊拼装法和搭架法相比,造价降低了11.5~17.4%2.0 转体施工法的关键技术转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。
2.1 竖转法竖转法主要用于肋拱桥,拱肋通常在低位浇筑或拼装,然后向上拉升达到设计位置,再合拢。
竖转体系一般由牵引系统、索塔、拉索组成。
竖转的拉索索力在脱架时最大,因为此时拉索的水平角最小,产生的竖向分力也最小,而且拱肋要实现从多跨支承到铰支承和扣点处索支承的过渡,脱架时要完成结构自身的变形与受力的转化。
为使竖转脱架顺利,有时需在提升索点安置助升千斤顶。
竖转施工方案设计时,要合理安排竖转体系。
索塔高、支架高(拼装位置高),则水平交角也大,脱架提升力也相对小,但索塔、拼装支架受力(特别是受压稳定问题)也大,材料用量也多;反之亦然。
在竖转过程中,主要要考虑索塔的受力和拱肋的受力,尤其是风力的作用。
在施工工艺上,竖转铰的构造与安装精度,索鞍与牵转动力装置,索塔和锚固系统是保证竖转质量、转动顺利和安全的关键所在。
国内的拱桥基本上为无铰拱,竖转铰是施工临时构造,所以,竖转铰的结构与精度应综合考虑满足施工要求和降低造价。
跨径较小时,可采用插销式,跨径较大时可采用滚轴。
拉索的牵引系统当跨径较小时,可采用卷扬机牵引;跨径较大,要求牵引力较大,牵引索也较多时,则应采用千斤顶液压同步系统。
2.2 平转法平转法的转动体系主要有转动支承系统、转动牵引系统和平衡系统。
转动支承系统是平转法施工的关键设备,由上转盘和下转盘构成。
上转盘支承转动结构,下转盘与基础相联。
通过上转盘相对于下转盘转动,达到转体目的。
转动支承系统必须兼顾转体、承重及平衡等多种功能。
按转动支承时的平衡条件,转动支承可分为磨心支承、撑脚支承和磨心与撑脚共同支承三种类型。
磨心支承由中心撑压面承受全部转动重量,通常在磨心插有定位转轴。
为了保证安全,通常在支承转盘周围设有支重轮或支撑脚正常转动时,支重轮或承重脚不与滑道面接触,一旦有倾覆倾向则起支承作用。
在已转体施工的桥梁中,一般要求此间隙从2~20mm,间隙越小对滑道面的高差要求越高。
磨心支承有钢结构和钢筋混凝土结构。
在我国以采用钢筋混凝土结构为主。
上下转盘弧形接触面的混凝土均应打磨光滑,再涂以二硫化铜或黄油四氟粉等润滑剂,以减小摩擦系数(一般在0.03~0.06之间)。
撑脚支撑形式下转盘为一环道,上转盘的撑脚有4个或4个以上,以保持平转时的稳定。
转动过程支撑范围大,抗倾稳定性能好,但阻力力矩也随之增大,而且环道与撑脚的施工精度要求较高,撑脚形式有采用滚轮,也有采用柱脚的。
滚轮平转时为滚动摩擦,摩阻力小,但加工困难,而且常因加工精度不够或变形使滚轮不滚。
采用柱脚平转时为滑动摩擦,通常用不锈钢板加四氟板再涂黄油等润滑剂,其加工精度比滚轮容易保证,通过精心施工,已有较多成功的例子。
当转体结构悬臂较大,抗倾覆稳定要求突出时,往往采用此种结构,广州丫髻沙大桥平转就采用了此体系。
第三类支承为磨心与撑脚共同支承。
大里营立交桥采用一个撑脚与磨心共同作用的转动体系,在撑脚与磨心连线的垂直方向设有保护撑脚。
如果撑脚多于一个,则支承点多于2个,上转盘类似于超静定结构,在施工工艺上保证各支撑点受力基本符合设计要求比较困难。
广州丫髻沙大桥原采用多撑脚与磨心共同受力体系,后考虑到这种困难,减小了磨心受压的比例,使其蜕化为撑脚体系。
水平转体施工中,能否转动是一个很关键的技术问题。
一般情况下可把启动摩擦系数设在0.06~0.08之问,有时为保证有足够的启动力,按0.1配置启动力。
因此减小摩阻力,提高转动力矩是保证平转顺利实施的两个关键。
转动力通常安排在上转盘的外侧,以获得较大的力臂。
转动力可以是推力,也可以是拉力。
推力由千斤顶施加,但千斤顶行程短,转动过程中千斤顶安装的工作量又很大,为保证平转过程的连续性,所以单独采用千斤顶顶推平转的较少。
转动力通常为拉力,转动重量小时,采用卷扬机,转体重量大时采用牵引千斤顶,有时还辅以助推千斤顶,用于克服启动时静摩阻力与动摩阻力之间的增量。
平转过程中的平衡问题也是一个关键问题。
对于斜拉桥、T构桥以及带悬臂的中承式拱桥等上部恒载在墩轴线方向基本对称的结构,一般以桥墩轴心为转动中心,为使重心降低,通常将转盘设于墩底。
对于单跨拱桥、斜腿刚构等,平转施工分为有平衡重与无平衡重转体两种。
有平衡重时,上部结构与桥台一起作为转体结构,上部结构悬臂长,重量轻,桥台则相反,在设置转轴中心时,尽可能远离上部结构方向,以求得平衡,如果还不平衡,则需在台后加平衡重;无平衡重转体,只转动上部结构部分,利用背索平衡,使结构转体过程中被转体部分始终为索和转铰处两点支承的简支结构。
2.3 转体施工受力转体施工的受力分析目的是保证结构的平衡,以防倾覆;保证受力在容许值内,以防结构破坏;保证锚固体系的可靠性。
转体过程历时较短,少则几十分钟,最多不超过一天,所以主要考虑施工荷载。
在大风地区按常见的风力考虑,通常不考虑地震荷载和台风影响,这主要从工期选择来保证。
此外,转体结构的变形控制、合拢构造与体系转换也是转体施工应考虑的重要问题。
3.0 桥梁转体施工的应用3.1 国外应用情况转体施工法最先出现的是竖转法。
50年代意大利曾用此法修建了多姆斯河桥,跨径达70m;德国的Argentobel桥,跨径达150m,是采用此法修建的跨径最大的桥梁。
它在竖向位置利用地形或搭支架浇筑混凝土拱肋,然后再从两边将拱肋逐渐放倒,搭接成拱。
2001年底日本神原溪谷大桥采用竖转法施工建成,该桥为混凝土拱桥,跨度135米。
这种竖转法主要应用于钢筋混凝土肋拱桥中,当跨径增大以后,拱肋过长,竖向搭架过高,转动也不易控制,因此一般只在中小跨径中应用。
平转法于1976年首次在奥地利维也纳的多瑙河运河桥上应用。
该桥为斜拉桥,跨径布置为55.7m+119m+55.7m,转体重量达4000t。
此后平转法在法国、德国、日本、比利时、中国等国家得到应用。
采用平转法施工的桥梁除斜拉桥外,还有T构桥、钢桁梁桥、预应力连续梁桥和拱桥。
迄今为止,转体重量最大的是比利时的本•艾因桥。
该桥为斜拉桥,跨径布置为3×42m+168m,转体重量达1.95万t,于1991年建成。
3.2 国内应用情况1975年我国桥梁工作者开始进行拱桥转体施工工艺的研究,并于1977年首次在四川省遂宁县采用平转法建成跨径为70m的钢筋混凝土箱肋拱。
此后,平转法在山区的钢筋混凝土拱桥中得到推广应用。
70年代末80年代初我国平转法施工的拱桥,跨径均在100m以下,且均为有平衡重转体施工。
为解决大跨径拱桥转体重量大的问题,我国桥梁专家提出无平衡重转体施工法,并于.1987年成功地进行了跨径为122m的四川巫山龙门桥试验桥的施1。
1988年四川涪陵乌江大桥采用该法转体成功,使我国拱桥的跨径首次跃上200m大关。
随着转体施工工艺的进步,主要是转动构造中磨擦系数的降低和牵引能力的提高,这一方法在我国的斜拉桥和刚构桥中也得到应用,并且使其从山区推广至平原,尤其是跨线桥的施工。
例如,1980年四川金川县的曾达桥(独塔斜拉桥,转体重量l344t);1985 年江西贵溪跨线桥(斜脚刚构桥,转体重量1100t);1990年四川绵阳桥(T构桥,转体重量2350t);1997年山东大里营立交桥(刚性索斜拉桥,转体重量3040t);1998年贵州都拉营桥(T构桥,转体重量7100t)。
2003年8月6日北京石景山混凝土斜拉桥建成,该桥是北京市五环路的标志性工程,位于北京石景山南站咽喉区,现有电气化铁路7股道,远期规划为1l股道,行车密度大,平均每3分钟就有一趟列车通过,为避免对铁路产生频繁的干扰,采用了转体法施工的预应力混凝土曲线斜拉桥方案。
该桥主桥为45m+65m+95m+40m四跨连续独塔单索面的预应力混凝土部分斜拉桥,转体结构总重140000kN,直接依靠主牵引系统实现转体并精确定位,最终合拢误差2mm。
钢管混凝土拱桥近10年来在我国的应用与发展迅猛。
为拱桥的轻型化和向大跨度发展提供了可能,转体施工方法也被广泛应用于这种桥型之中。
在竖转方面,虽然我国在80年代初期就应用该法进行了钢筋混凝土桁架拱的施工,但其应用一直没有得到推广。
1996年施工的三峡莲沱钢管混凝土拱桥(主跨114m)和1999年施工的广西鸳江钢管混凝土拱桥(主跨175m)采用竖转法,后者的竖转体系采用了液压同步提升技术,使竖转技术跃上了新的台阶,徐州京杭运河钢管混凝土提篮拱桥(主跨235m)也将采用这一技术进行竖转施工。
2001年贵州北盘江大桥是铁路桥梁上第一次采用钢管拱结构,跨度236m,转体重量达到102300kNo 在平转方面,1996年施工的三峡黄柏河和下牢溪两座钢管混凝土上承式拱桥采用该法施工,两桥主跨均为160m,转体重量达3500t。
更为重要的是,竖向转体与平面转体结合应用的方法在钢管混凝土拱桥中的应用,使桥梁转体施工法进入了一个新的发展时期。
1995年安阳文峰路135m钢管混凝土拱桥首次采用这一方法转体成功。
1999年10月广州丫髻沙大桥也采用此法顺利合拢,并于2000年6月建成通车,丫髻沙大桥主跨达360m(净跨344m),平转重量达13685t。
4.0 小结转体施工是一套比较成熟的桥梁施工方法,随着新技术、新工艺的不断出现以及在工程中的应用,该方法会更加安全可靠、操作简洁、实施快速、降低造价,在桥梁建设中将发挥越来越大的作用,产生越来越好的社会和经济效益。