4 热力学第二定律
第十章 第4讲 热力学第二定律
第4讲 热力学第二定律[目标定位] 1.通过自然界中客观过程的方向性,了解热力学第二定律.2.了解热力学第二定律的两种不同表述,以及两种表述的物理实质.3.了解什么是第二类永动机,知道为什么它不能制成.一、热力学第二定律1.一切与热现象有关的宏观自然过程都是不可逆的.如物体间的传热、气体的膨胀、扩散……都有特定的方向性.2.反映宏观自然过程方向性的定律就是热力学第二定律.二、热力学第二定律的两种表述1.克劳修斯表述:热量不能自发地从低温物体传到高温物体.2.开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.三、热机1.热机的效率η:热机输出的机械功与燃料产生的热量的比值,用公式表示为η=W Q.热机的效率不可能达到100%.2.第二类永动机:只有单一热源,从单一热源吸收热量,可以全部用来做功的热机叫第二类永动机,它不违背能量守恒定律,但违背热力学第二定律,所以不能实现.一、宏观过程的方向性1.热传导具有方向性:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体,结果使高温物体的温度降低,低温物体的温度升高.2.气体的扩散现象具有方向性:两种不同的气体可以自发地进入对方,最后成为均匀的混合气体,但这种均匀的混合气体,决不会自发地分开,成为两种不同的气体.3.机械能和内能的转化过程具有方向性:物体在水平面上运动,因摩擦而逐渐停止下来,但绝不可能出现物体吸收原来传递出去的热量后,在地面上重新运动起来.4.气体向真空膨胀具有方向性:气体可自发地向真空容器膨胀,但绝不可能出现气体自发地从容器中流出,容器变为真空.5.在整个自然界中,无论有生命的还是无生命的,所有的宏观自发过程都具有单向性,都有一定的方向性,都是一种不可逆过程.例1下列说法正确的是()A.热量能自发地从高温物体传给低温物体B.热量不能从低温物体传到高温物体C.热传递是有方向性的D.气体向真空中膨胀的过程是有方向性的答案ACD解析如果是自发地进行,热量只能从高温物体传到低温物体,但这并不是说热量不能从低温物体传到高温物体,只是不能自发地进行,在外界条件的帮助下,热量也能从低温物体传到高温物体,A、C对,B错;气体向真空中膨胀的过程也是不可逆,具有方向性的,D对.借题发挥两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体,使高温物体的温度降低,低温物体的温度升高,这个过程是自发进行的,不需要任何外界的影响或者帮助,有时我们也能实现热量从低温物体传给高温物体,如电冰箱,但这不是自发地进行的,需要消耗电能,其实自然界中所有的热现象都是具有单向性的.二、热力学第二定律和第二类永动机1.克劳修斯表述是按热传导的方向性表述的.热量可以由低温物体传到高温物体但不能是自发的,如:冰箱、空调.2.开尔文表述是按照机械能与内能转化过程的方向性来表述的.不是不能从单一热库吸收热量而对外做功,而是这样做的结果,一定伴随着其他变化或影响.3.这两种表述看似毫无联系,其实是等价的,可以从一种表述导出另一种表述.4.热力学第二定律揭示了自然界中进行的涉及热现象的宏观过程都具有方向性.5.第二类永动机不可能制成,它也是热力学第二定律的一种表述形式.虽然第二类永动机不违反能量守恒定律,但大量的事实证明,在任何情况下热机都不可能只有一个热源,热机要不断地把吸取的热量变为有用的功,就不可避免地将一部分热量传给低温热源.例2根据热力学第二定律可知,下列说法中正确的是()A.不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化B.没有冷凝器,只有单一的热源,能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机是可以实现的C.制冷系统将冰箱里的热量传给外界较高温度的空气中,而不引起其他变化D.不可能使热量由低温物体传递到高温物体,而不引起其他变化答案AD解析热力学第二定律揭示了与热现象有关的物理过程的方向性,机械能和内能的转化过程具有方向性,机械能可以全部转化为内能,而内能要转化为机械能必须借助外部的帮助,即会引起其他变化,A选项正确,B选项错误;热传递过程也具有方向性,热量能自发地从高温物体传给低温物体,但是热量要从低温物体传到高温物体,必然要引起其他变化(外界对系统做功),故C选项错误,D选项正确.借题发挥(1)一切物理过程均遵守能量守恒定律,但遵守能量守恒定律的物理过程不一定均能实现.(2)热力学第二定律的关键在于“自发性”和“方向性”.例3第二类永动机不可能制成的原因是()A.违背了能量守恒定律B.热量总是从高温物体传递到低温物体C.机械能不能全部转化为内能D.内能不能全部转化为机械能而不引起其他变化答案 D解析第二类永动机的设想并不违背能量守恒定律,但是违背了热力学第二定律,所以不可能制成.宏观过程的方向性1.下列哪个过程具有方向性()A.热传导过程B.机械能向内能的转化过程C.气体的扩散过程D.气体向真空中的膨胀答案ABCD解析这四个过程都是与热现象有关的宏观过程,根据热力学第二定律可知,它们都是不可逆的,具有方向性.热力学第二定律和第二类永动机2.根据热力学第二定律,下列判断正确的是()A.电流的能不可能全部变为内能B.在火力发电机中,燃气的内能不可能全部变为电能C.热机中,燃气内能不可能全部变为机械能D.在热传导中,热量不可能自发地从低温物体传递给高温物体答案BCD解析根据热力学第二定律可知,凡与热现象有关的宏观过程都具有方向性,电流的能可全部变为内能(由焦耳定律可知),而内能不可能全部变成电流的能,而不产生其他影响.机械能可全部变为内能,而内能不可能全部变成机械能.在热传导中,热量只能自发地从高温物体传递给低温物体,而不能自发地从低温物体传递给高温物体.3.关于热力学第一定律和热力学第二定律,下列论述正确的是()A.热力学第一定律指出内能可以与其他形式的能相互转化,而热力学第二定律则指出内能不可能完全转化为其他形式的能,故这两条定律是相互矛盾的B.内能可以全部转化为其他形式的能,只是会产生其他影响,故两条定律并不矛盾C.两条定律都是有关能量的转化规律,它们不但不矛盾,而且没有本质区别D.其实,能量守恒定律已经包含了热力学第一定律和热力学第二定律答案 B解析热力学第一定律揭示了内能与其他形式能量之间的转化关系,是能量守恒定律在热学中的具体体现.热力学第二定律则进一步阐明了内能与其他形式能量转化时的方向性,二者表述的角度不同,本质不同,相互补充,并不矛盾,故选项C、D错误,选项B正确;内能在一定条件下可以全部转化为机械能,热量也可以由低温物体传递到高温物体,但是要引起其他变化,如电冰箱制冷机工作还要消耗电能,故选项A错误.4.关于热现象和热学规律,下列说法中正确的是()A.随着低温技术的发展,我们可以使温度逐渐降低,并达到绝对零度,最终实现热机效率100%B.热量是不可能从低温物体传递给高温物体的C.第二类永动机遵从能量守恒定律,故能制成D.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,同时空气向外界放出热量1.5×105 J,则空气的内能增加了5×104 J答案 D解析由热力学第二定律知,B、C错;绝对零度不可能达到,A错;由热力学第一定律知D正确.(时间:60分钟)题组一宏观过程的方向性1.关于热传导的方向性,下列说法正确的是()A.热量能自发地由高温物体传给低温物体B.热量能自发地由低温物体传给高温物体C.在一定条件下,热量也可以从低温物体传给高温物体D.热量不可能从低温物体传给高温物体答案AC解析在有外力做功的情况下,热量可以从低温物体传给高温物体,但热量只能自发地从高温物体传给低温物体.2.下列说法中正确的是()A.一切涉及热现象的宏观过程都具有方向性B.一切不违反能量守恒定律的物理过程都是可能实现的C.由热力学第二定律可以判断物理过程能否自发进行D.一切物理过程都不可能自发地进行答案AC解析能量转移和转化的过程都是具有方向性的,A对;第二类永动机不违背能量守恒定律,但是不能实现,B错;在热传递的过程中,能量可以自发地从高温物体传到低温物体,但其逆过程不可能自发地进行,C对,D错.3.以下说法正确的是()A.热量不仅可以从高温物体传到低温物体,也可自发地从低温物体传到高温物体B.空调等设备就是利用了热传导的方向性C.无论采用什么方法,都不可能把热量从低温物体传递给高温物体D.热量能自发地传递的条件是必须存在温度差答案 D解析热传导具有方向性,热量可以自发地由高温物体传到低温物体,也可以从低温物体传到高温物体,但不能自发地进行,故A错;空调等可以将热量由低温物体传到高温物体,但消耗了电能,故B、C错.题组二热力学第二定律的理解4.关于热力学定律和分子动理论,下列说法中正确的是()A.我们可以利用高科技手段,将流散到周围环境中的内能重新收集起来加以利用而不引起其他变化B.利用浅层海水和深层海水之间的温度差制造一种热机,将海水的一部分内能转化为机械能,这在原理上是可行的C.在分子力作用范围内,分子力总是随分子间距离的增大而减小D.温度升高时,物体中每个分子的运动速率都将增大答案 B解析由热力学第二定律可知,A错误,B正确;由分子间作用力与分子间距的关系可知,C项错误;温度升高时,物体中分子平均动能增大,但并不是每个分子的动能都增大,即并不是每个分子的运动速率都增大,故D项错误.5.用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图1所示,电流计指针会发生偏转,这就是温差发电现象.关于这一现象的正确说法是()图1A.这一实验不违背热力学第二定律B.在实验过程中,热水温度降低,冷水温度升高C.在实验过程中,热水的内能全部转化成电能,电能则部分转化成冷水的内能D.在实验过程中,热水的内能只有部分转化成电能,电能则全部转化成冷水的内能答案AB解析自然界中的任何自然现象或过程都不违反热力学定律,本实验现象也不违反热力学第二定律,A正确;整个过程中能量守恒且热传递有方向性,B正确;在实验过程中,热水中的内能除转化为电能外,还升高金属丝的温度,内能不能全部转化为电能;电能除转化为冷水的内能外,还升高金属丝的温度,电能不能全部转化为冷水的内能,C、D错误.6.图2为电冰箱的工作原理示意图.压缩机工作时,强迫制冷剂在冰箱内、外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外.下列说法正确的是()图2A.热量可以自发地从冰箱内传到冰箱外B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能C.电冰箱的工作原理不违反热力学第二定律D.电冰箱的工作原理违反热力学第二定律答案BC解析根据热力学第二定律,热量不能自发地从低温物体传到高温物体,要想使热量从低温物体传到高温物体必须借助于其他系统做功,A错误,B正确.电冰箱的工作原理不违反热力学第二定律,C正确,D错误.故选B、C.7.关于空调机,下列说法正确的是()A.制冷空调机工作时,热量从低温物体传到高温物体B.制暖空调机工作时,热量从高温物体传到低温物体C.冷暖空调机工作时,热量既可以从低温物体传到高温物体,也可以从高温物体传到低温物体D.冷暖空调机工作时,热量只能从低温物体传到高温物体答案AD解析空调机工作时,热量可以从低温物体传到高温物体,因为这里有外界做功.题组三综合应用8.下列说法中正确的是()A.功可以完全转化为热量,而热量不可以完全转化为功B.热机必须是具有两个热库,才能实现热功转化C.热机的效率不可能大于1,但可能等于1D.热机的效率必定小于1答案 D解析开尔文表述没有排除热量可以完全转化为功,但必然要产生其他变化,比如气体等温膨胀,气体内能完全转化为功,但气体体积增大了,A错误;开尔文表述指出,热机不可能只有单一热库,但未必就是两个热库,可以具有两个以上热库,B错误;由η=Q1-Q2Q1可知,只要Q2≠0,η≠1,如果Q2=0,则低温热库不存在,违背了开尔文表述,故C错误,D正确.9.如图3所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有用形状记忆合金制成的叶片.轻推转轮后,进入热水的叶片因伸展而“划水”,推动转轮转动.离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动.下列说法正确的是()图3A.转轮依靠自身惯性转动,不需要消耗外界能量B.转轮转动所需能量来自形状记忆合金自身C.转动的叶片不断搅动热水,水温升高D.叶片在热水中吸收的热量一定大于在空气中释放的热量答案 D解析轻推转轮后,叶片开始转动,由能量守恒定律可知,叶片在热水中吸收的热量一部分释放到空气中,另一部分使叶片在热水中膨胀做功,所以叶片在热水中吸收的热量一定大于在空气中释放的热量,D正确.10.关于热力学定律,下列说法正确的是()A.为了增加物体的内能,必须对物体做功或向它传递热量B.对某物体做功,必定会使该物体的内能增加C.可以从单一热源吸收热量,使之完全变为功D.不可能使热量从低温物体传向高温物体E.功转变为热的实际宏观过程是不可逆过程答案ACE解析由ΔU=W+Q可知做功和热传递是改变内能的两种途径.它们具有等效性,故A正确,B错误;由热力学第二定律可知,可以从单一热源吸收热量,使之全部变为功,但会产生其他影响,故C正确;热量只是不能自发的从低温物体传向高温物体,则D错误;一切与热现象有关的宏观过程都是不可逆的,则E正确.11.热力学第二定律常见的表述有两种:第一种表述:不可能使热量由低温物体传递到高温物体,而不引起其他变化;第二种表述:不可能从单一热库吸收热量并把它全部用来做功,而不引起其他变化.图4甲是根据热力学第二定律的第一种表述画出的示意图:外界对制冷机做功,使热量从低温物体传递到高温物体.请你根据第二种表述完成示意图乙.根据你的理解,热力学第二定律的实质是_____________________________________________________________________________________________________________________________________.图4答案见解析解析示意图如图所示.一切与热现象有关的宏观过程都具有方向性.。
第四章 热力学第二定律
2.开尔文-普朗克叙述——不可能制造循环热机,只从一 个热源吸热,将之全部转化为功,而 不在外界留下任何影响。
3.第二定律各种表述的等效性
T1 失去Q1– Q2 T2 无得失 热机净输出功Wnet= Q1– Q2
6
三.关于第二类永动机 第二类永动机:以环境为单一热源,使
机器从中吸热对外做功。 热力学第二定律说明第二类永动机是不
可能制成的。
7
4–2 卡诺循环和卡诺定理
一、卡诺循环及其热效率
1. 卡诺循环
1 绝热压缩 2
2 等温吸热3
3 绝热膨胀 4
4 等温放热1
定义:卡诺循环是两个热源间的可逆 正循环。它由两个定温和两个绝热可 逆过程组成。
8
2. 卡诺循环热效率
33
讨论: 1)孤立系统熵增原理ΔSiso=Sg ≥ 0,可作为第二定律
的又一数学表达式,而且是更基本的一种表达式; 2)孤立系统的熵增原理可推广到闭口绝热系;
3)一切实际过程都不可逆,所以可根据熵增原理判 别过程进行的方向;
4)孤立系统中一切过程均不改变其总内部储能,即 任意过程中能量守恒。但各种不可逆过程均可 造成机械能损失,而任何不可逆过程均是ΔSiso>0, 所以熵可反映某种物质的共同属性。
w1a A wac B A C E G wc2 F G
18
w1ac2 w1a wac wc2
A (B A C E G) (F G) BCEFDF CEF
D C E w12
又 u12 u1ac2
所以 q12 u12 w12 q1ac2 u1ac2 w1ac2
17
4–3 熵和热力学第二定律的数学表达式
第四章热力学第二定律
第四章热力学第二定律主要内容:4.1 自发过程及热力学第二定律4.2 卡诺循环与卡诺定理4.3熵的概念4.4Clausius不等式及熵增加原理4.5 熵变的计算及熵的物理意义4.6 热力学第三定律与规定熵4.7 亥姆霍兹能及吉布斯能4.8 热力学基本方程及麦克斯韦关系式4.9吉布斯自由能及温度、压力的关系§4.1 自发过程及热力学第二定律自发过程热力学第二定律1. 自发过程自发过程无需依靠消耗环境的作用(即不借助外力),就能自动进行的过程。
(1) 焦耳热功当量中功自动转变成热;(2) 气体向真空膨胀;(3) 热量从高温物体传入低温物体;(4) 浓度不等的溶液混合均匀;(5) 锌片与硫酸铜的置换反应等,它们的逆过程都不能自动进行。
当借助外力,系统恢复原状后,会给环境留下不可磨灭的影响。
自发过程的特征:1)自发过程总是单向趋于平衡;2)自发过程均具有不可逆性;3)自发过程具有对环境作功的能力,如配有合适的装置,则可从自发过程中获得可用的功。
如:温度传递;气体流动;系统自发过程达到平衡后,无环境作用系统是不可能自动反方向进行并回到原来状态;自发过程的不可逆性是指自然界中所有自发过程都具有热力学的不可逆性;2. 热力学第二定律克劳修斯(Clausius) 的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”—热传导的不可逆性开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。
”—摩擦生热的不可逆性二者说法是等效的,均指明某种自发过程的逆过程是不能自动进行的重要结论: (1)均指明过程的方向性;(2)自发过程存在内在的联系,可以从某一自发过程的不可逆性,便可以推导出其它自发过程的不可逆性。
理解:♦并非“功可以转变为热,而热不能完全变为功”,而是在不引起其它变化的条件下,热才不能完全转变为功。
如:理想气体等温膨胀。
♦第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。
(完整版)热力学第二定律.ppt
热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度 变化的规律。 •功转换为热:大量分子的有序运动向无序运动转化, 是可 能的;而相反的过程,是不可能的。
•热传导:大量分子运动的无序性由于热传导而增大了。 •自由膨胀:大量分子向体积大的空间扩散,无序性增大。
不可能从单一热源吸收热量,使它
Q
完全转变为功而不引起其它变化。
热源
A. 从单一热源吸收热量,使它完全转变为功,一定要引起 其它变化。
特例:等温过程从单一热源吸收热量,并完全用来做功, 必导致系统体积变化。
B. 第二类永动机不可能制成。
η 100% 2.克劳修斯表述
热量不能自动地从低温物体传向高温物体。
讨论: A.没有外界做功,不可能从低温热源将
热量传输到高温热源。 B.第二类永动机不可能制成。
高温热源 Q1 A
Q2 低温热源
热力学第二定律是研究热机效率和制冷系数时提 出的。对热机,不可能吸收的热量全部用来对外 作功;对制冷机,若无外界作功,热量不可能从 低温物体传到高温物体。热力学第二定律的两种 表述形式,解决了物理过程进行的方向问题。
S 0
(孤立系, 自然过程)ห้องสมุดไป่ตู้
§8-6 热力学过程的不可逆性
广义定义:假设所考虑的系统由一个状态出发
经过某一过程达到另一状态,如果存在另一个 过程,它能使系统和外界完全复原(即系统回 到原来状态,同时原过程对外界引起的一切影 响)则原来的过程称为可逆过程;反之,如果 用任何曲折复杂的方法都不能使系统和外界完 全复员,则称为不可逆过程。
各种宏观态不是等几率的。那种宏观态包含的微观态 数多,这种宏观态出现的可能性就大。
热工基础 第四章.热力学第二定律
注意:由于是可逆过程,T 既是工质的温度, 也等于热源的温度。
16
对于质量为 m 的工质, Q dS T
Q T 0
2. 克劳修斯不等式与不可逆过程熵的变化
(1)克劳修斯不等式 根据卡诺定理,在相同的恒温高温热源T1 和恒温低温热源T2之间工作的不可逆热机的热 效率一定小于可逆热机的热效率,即
q 克劳修斯 T 0 积分等式
15
q T 0
q q 1 A2 T 1B 2 T
q 一定是某一参数的全微分。 T q 的积分与积分路径无关。 T
根据状态参数的特点断定,q/T一定是某一 状态参数的全微分。这一状态参数被称为比熵, 用 s 表示,即
q ds T
2.热力学第二定律的表述 随自然界中热过程的种类不同,热力学第 二定律有多种表述方式,并且彼此是等效的。
克劳修斯表述: 不可能将热从低温物体传 至高温物体而不引起其它变化。 开尔文-普朗克表述:不可能从单一热源取 热,并使之完全转变为功而不产生其它影响。
第二类永动机是不可能制造成功的。
2
4-2
1. 热力循环
3.孤立系统熵增原理与作功能力损失
(1)孤立系统熵增原理 Q 0 对于孤立系统,dSf T
Siso Sg 0
上式表明:孤立系统的熵只能增大,或者不变,绝 不能减小。这一规律称为孤立系统熵增原理。 孤立系统熵增原理说明,一切实际过程都一 定朝着使孤立系统的熵增大的方向进行,任何使孤 立系统的熵减小的过程都是不能发生的。 上式揭示了一切热力过程进行时所必须遵循的 客观规律,突出地反映了热力学第二定律的本质, 是热力学第二定律的另一种数学表达式。
1
7
2.卡诺循环
卡诺循环是法国工程师 卡诺(S. Carnot)于1824年 提出的一种理想热机工作循 环,它由两个可逆定温过程 和两个可逆绝热过程组成。 卡诺循环热效率:
3.4 热力学第二定律(解析版)
第4节热力学第二定律【知识梳理与方法突破】1.热力学第二定律的理解(1)“自发地”过程就是不受外来干扰进行的自然过程,在热传递过程中,热量可以自发地从高温物体传到低温物体,却不能自发地从低温物体传到高温物体。
要将热量从低温物体传到高温物体,必须“对外界有影响或有外界的帮助”,就是要有外界对其做功才能完成。
电冰箱就是一例,它是靠电流做功把热量从低温处“搬”到高温处的。
(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响。
如吸热、放热、做功等。
(3)热力学第二定律的每一种表述都揭示了大量分子参与的宏观过程的方向性。
如机械能可以全部转化为内能,内能却不可能全部转化为机械能而不引起其他变化,进一步揭示了各种有关热的物理过程都具有方向性。
(4)适用条件:只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。
而不适用于少量的微观体系,也不能把它扩展到无限的宇宙。
(5)热力学第二定律的两种表述是等价的,即一个说法是正确的,另一个说法也必然是正确的;如一个说法是错误的,另一个说法必然是不成立的。
2.热力学第一定律与第二定律的比较项目热力学第一定律热力学第二定律定律揭示的问题它从能量守恒的角度揭示了功、热量和内能改变量三者间的定量关系它指出自然界中出现的宏观过程是有方向性的机械能和内能的转化当摩擦力做功时,机械能可以全部转化为内能内能不可能在不引起其他变化的情况下全部转化为机械能热量的传递热量可以从高温物体自发地传到低温物体说明热量不能自发地从低温物体传到高温物体表述形式只有一种表述形式有多种表述形式联系两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理过程所遵循的规律,二者相互独立,又相互补充,都是热力学的理论基础3.能量耗散的理解(1)各种形式的能最终都转化为内能,流散到周围的环境中,分散在环境中的内能不管数量多么巨大,它也只能使地球、大气稍稍变暖一点,却再也不能自动聚集起来驱动机器做功了。
第十章第4节热力学第二定律
第4节 热力学第二定律1.了解热传递、扩散现象、机械能与内能的转化等都具有方向性.知道具有方向性的过程为不可逆的.2.了解热力学第二定律的两种表述,并能用热力学第二定律解释第二类永动机不能制造成功的原因.3.能用热力学第二定律解释自然界中的能量转化、转移及方向性问题.4.尝试运用热力学第二定律解决一些实际问题.一、热力学第二定律的一种表述1.热传导的方向性:一切与热现象有关的宏观自然过程都是不可逆的.2.克劳修斯表述:德国物理学家克劳修斯在1850年提出:热量不能自发地从低温物体传到高温物体.热力学第二定律的克劳修斯表述,阐述的是传热的方向性.1.(1)一切与热现象有关的宏观自然过程都是不可逆的.( )(2)热量不会从低温物体传给高温物体.( )(3)由冰箱能自发地把热量从低温物体传给高温物体.( )提示:(1)√ (2)× (3)×二、热力学第二定律的另一种表述1.热机(1)热机工作的两个阶段:第一个阶段是燃烧燃料,把燃料中的化学能变成工作物质的内能.第二个阶段是工作物质对外做功,把自己的内能变成机械能.(2)热机的效率:热机输出的机械功W 与燃料产生的热量Q 的比值.用公式表示为η=W Q. 2.开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.(该表述阐述了机械能与内能转化的方向性)3.热力学第二定律的其他描述(1)一切宏观自然过程的进行都具有方向性.(2)气体向真空的自由膨胀是不可逆的.(3)第二类永动机是不可能制成的.4.第二类永动机(1)定义:只从单一热库吸收热量,使之完全变为功而不引起其他变化的热机.(2)第二类永动机不可能制成的原因:虽然第二类永动机不违反能量守恒定律,但大量的事实证明,在任何情况下,热机都不可能只有一个热库,热机要不断地把吸取的热量变为有用的功,就不可避免地将一部分热量传给低温热库.2.(1)可以从单一热库吸收热量,使之完全变为功.( )(2)第二类永动机违背了能量守恒定律.( )(3)第二类永动机违背了热力学第二定律.( )提示:(1)√ (2)× (3)√知识点一对热力学第二定律的理解在热力学第二定律的表述中,“自发地”“不可能”“不产生其他影响”的涵义1.“自发地”是指热量从高温物体“自发地”传给低温物体的方向性.在传递过程中不会对其他物体产生影响或不需借助其他物体提供能量等.2.关于“不可能”:实际上热机或制冷机系统循环终了时,除了从单一热库吸收热量对外做功,以及热量从低温热库传到高温热库以外,过程所产生的其他一切影响,不论用任何曲折复杂的办法都不可能加以消除.3.“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.(2016·永州高二检测)下列说法正确的是()A.机械能全部变成内能是不可能的B.第二类永动机不可能制造成功是因为能量既不会凭空产生,也不会凭空消失,只能从一个物体转移到另一个物体,或从一种形式转化成另一种形式C.根据热力学第二定律可知,热量不可能从低温物体传到高温物体D.从单一热源吸收的热量全部变成功是可能的[解析]机械能可以全部转化为内能,故A错;第二类永动机不可能制造成功是因为它违背了热力学第二定律,故B错;热量不能自发地从低温物体传到高温物体,但如果不是自发地,是可以进行的,故C错;从单一热源吸收热量全部用来做功而不引起其他变化,是不可能的,但如果是从单一热源吸收热量全部变为功的同时也引起了其他的变化,是可能的,故D项对.[答案] D对热力学第二定律理解的两个误区(1)误认为热量只能由高温物体传到低温物体,不能由低温物体传到高温物体.热量可以由高温物体传到低温物体,也可以由低温物体传到高温物体;但是,前者可以自发完成,而后者则必须有外界参与.(2)误认为机械能可以完全转化为内能,而内能不能完全转化为机械能.机械能可以完全转化为内能,内能也可以完全转化为机械能;但是,前者可以不产生其他影响,而后者一定会产生其他影响.1.(多选)电冰箱能够不断地把热量从温度较低的冰箱内部传给温度较高的外界空气,这说明了()A.热量能自发地从低温物体传给高温物体B.在一定条件下,热量可以从低温物体传给高温物体C.热量的传递过程不具有方向性D.在自发的条件下热量的传递过程具有方向性解析:选BD.一切自发过程都有方向性,如热传递,热量总是由高温物体自发地传向低温物体;又如扩散,气体总是自发地由密度大的地方向密度小的地方扩散.如果在外界帮助下气体可以由密度小的地方向密度大的地方扩散,热量可以从低温物体传向高温物体,电冰箱就是借助外界做功把热量从低温物体——冷冻食品传向高温物体——周围的大气.所以在解答热力学过程的方向性问题时,要区分是自发过程还是非自发过程,电冰箱内热量传递的过程是有外界参与的.知识点二热力学第一定律与热力学第二定律的比较1.两个定律的区别:热力学第一定律是能量守恒定律在热力学中的具体表现形式,在转化的过程中,总的能量保持不变.热力学第二定律是指在有限的时间和空间内,一切和热现象有关的物理过程具有不可逆性.2.两个定律的联系:两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理过程所遵循的规律.二者既相互独立,又相互补充,都是热力学的理论基础.关于热力学第一定律和热力学第二定律,下列论述正确的是() A.热力学第一定律指出内能可以与其他形式的能相互转化,而热力学第二定律则指出内能不可能完全转化为其他形式的能,故这两条定律是相互矛盾的B.内能可以全部转化为其他形式的能,只是会产生其他影响,故两条定律并不矛盾C.两条定律都是有关能量的转化规律,它们不但不矛盾,而且没有本质区别D.其实,能量守恒定律已经包含了热力学第一定律和热力学第二定律[解析]热力学第一定律揭示了内能与其他形式能量之间的转化关系,是能量守恒定律在热力学中的具体体现.热力学第二定律则进一步阐明了内能与其他形式能量转化时的方向性,二者表述的角度不同,本质不同,相互补充,并不矛盾,故C、D错误,B正确.内能在一定条件下可以全部转化为机械能,热量也可以由低温物体传递到高温物体,但是要引起其他变化,如电冰箱制冷机工作要消耗电能,故A错误.[答案] B2.(多选)关于两类永动机和热力学两大定律,下列说法正确的是()A.热力学第一定律和热力学第二定律是相互独立的B.热力学第二定律的两种表述是等效的C.由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D.由热力学第二定律可知热量从低温物体传向高温物体是可能的,从单一热库吸收热量,完全变成功也是可能的解析:选ABD.热力学第二定律有几种不同的表述形式,但它们是等价的,它与热力学第一定律是各自独立的,故A、B正确.由热力学第一定律可知W≠0,Q≠0,但ΔU=W +Q可以等于0,C错误;由热力学第二定律可知D中现象是可能的,但不引起其他变化是不可能的,D正确.典型问题——热机和永动机的比较1.热机(1)热机是把内能转化成机械能的一种装置.例如:蒸汽机把水蒸气的内能转化为机械能;内燃机是把燃烧后的高温高压气体的内能转化为机械能.(2)热机的工作原理:工作物质从热源吸收热量Q1,推动活塞做功W,然后排出废气,同时把热量Q2散发到冷凝器中.根据能量守恒有Q1=W+Q2.(3)热机的效率:η=WQ1因为Q1=W+Q2,所以Q1>W,η<1.这说明热机不可能把吸收的热能全部转化为机械能,总有一部分要散失到冷凝器中.热机的效率不可能达到100%.2.第一类永动机(1)第一类永动机:不消耗能量,能源源不断地对外做功的一种机器.(2)第一类永动机不可能制成的原因是违背能量守恒定律.3.第二类永动机(1)第二类永动机:只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机,效率为100%.(2)第二类永动机不违背能量守恒定律,它不可能制成是因为违背热力学第二定律.(2016·济南高二检测)热力学第二定律常见的表述方式有两种,其一:不可能使热量由低温物体传递到高温物体而不引起其他变化;其二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.第一种表述方式可以用图甲来表示,根据你对第二种表述的理解,如果也用类似的示意图来表示,你认为图乙示意图中正确的是()[解析]由题图甲可知,使热量由低温物体传递到高温物体必伴随着压缩机的做功,即引起其他变化;对于第二种方式,热机工作时,从高温物体吸收热量,只有一部分用来对外做功,转变为机械能,另一部分热量要排放给低温物体,故B正确,A、C、D错误.[答案] B(多选)关于热机和永动机,下列说法中正确的是()A.效率为100%的热机是不可能制成的B.第二类永动机可以制成C.不需要任何外力做功而可正常运行的制冷机是不可能制成的D.能把从单一热源吸收的热量全部用来做功而不引起其他变化的热机是可以实现的解析:选AC.热机在工作过程中,必然向外排出热量,故热机效率小于100%,故A对;由热力学第二定律可得C对,B错;内能要全部转化为机械能,必须借助外界的帮助,因而一定会引起其他变化,故D错.[随堂达标]1.(2016·烟台高二检测)热力学第二定律使人们认识到自然界中进行的涉及热现象的宏观过程()A.都具有方向性B.只是部分具有方向性C.没有方向性D.无法确定解析:选A.一切涉及热现象的宏观过程都具有方向性.2.下列说法正确的是()A.物体放出热量,温度一定降低B.物体内能增加,温度一定升高C.热量能自发地从低温物体传给高温物体D.热量能自发地从高温物体传给低温物体解析:选D.热量和内能之间没有必然的联系,A错;内能和宏观的温度和体积有关,所以B错;热量能自发地从高温物体传给低温物体,不能自发地从低温物体传给高温物体,所以C错D对.3.我们绝不会看到:一个放在水平地面上的物体,靠降低温度,可以把内能自发地转化为动能,使这个物体运动起来,其原因是()A.违反了能量守恒定律B.在任何条件下内能不可能转化为机械能,只有机械能才能转化为内能C.机械能和内能的转化过程具有方向性,内能转化成机械能是有条件的D.以上说法均不正确解析:选C.机械能和内能的相互转化,必须通过做功来实现.机械能可以自发地转化为内能,但内能不能自发地转化为机械能.4.(多选)根据热力学第二定律,下列说法正确的是()A.热机中燃气的内能不可能全部变成机械能B.电流的能不可能全部转变成内能C.在火力发电机中,燃气的内能不可能全部转变成电能D.在传热中,热量不可能自发地从低温物体传递给高温物体解析:选ACD.任何热机效率都不可能是100%,故A正确;由电流热效应中的焦耳定律可知,电流的能可以全部转化为内能,故B错误;火力发电机发电时,能量转化的过程为内能→机械能→电能,因为内能→机械能的转化过程中会对外放出热量,故燃气的内能必然不能全部变为电能,C正确;热量从低温物体传递到高温物体不能自发进行,必须借助外界的帮助,故D正确.故选ACD.5.下列说法正确的是()A.热量不能由低温物体传递到高温物体B.外界对物体做功,物体的内能必定增加C.第二类永动机不可能制成,是因为违背了能量守恒定律D.不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响解析:选D.根据热力学第二定律,热量不能自发地从低温物体传到高温物体,但在外界帮助下,热量可以从低温物体传到高温物体,例如电冰箱制冷时,压缩机工作,消耗了电能,同时热量由冰箱内的低温物体传递到冰箱外的高温物体,所以选项A错误;外界对物体做功的同时,物体可能放热,物体的内能不一定增加,所以选项B错误;第二类永动机不可能制成,虽不违背能量守恒定律,但它违背了热力学第二定律,因此它不可能制成,所以选项C错误;而D选项中的表述就是热力学第二定律的一种表述形式,所以选项D正确.[课时作业] [学生用书P103(单独成册)]一、单项选择题1.关于热力学第二定律,下列说法正确的是()A.热力学第二定律是通过实验总结出来的实验定律B.热力学第二定律是通过大量自然现象的不可逆性总结出来的经验定律C.热力学第二定律是物理学家从理论推导出来的结果D.由于热力学第二定律没有理论和实验的依据,因此没有实际意义解析:选B.热力学第二定律是物理学家通过对大量自然现象的分析,又总结了生产和生活经验得到的结论,是一个经验定律,它并不能通过理论推导出来和实验来证明,但它符合客观事实,因此是正确的.它揭示了与热有关的宏观过程的方向性,使人们认识到第二类永动机不可制成,对我们认识自然和利用自然有着重要的指导意义.2.热力学定律表明自然界中与热现象有关的宏观过程是()A.有的只遵守热力学第一定律B.有的只遵守热力学第二定律C.有的既不遵守热力学第一定律,也不遵守热力学第二定律D.所有的都遵守热力学第一、第二定律解析:选D.热力学第一、第二定律是热力学的基本定律,对所有涉及热现象的宏观过程都成立,选项D正确,选项A、B、C错误.3.(2016·海口高二检测)下列说法中,正确的是()A.一切形式的能量间的相互转化都具有方向性B.热量不可能由低温物体传给高温物体C.气体的扩散过程具有方向性D.一切形式的能量间的相互转化都不具有可逆性解析:选C.热力学第二定律反映的所有与热现象有关的宏观过程都具有方向性,A、D 错误;热量不是不能从低温物体传给高温物体,关键是能否还产生其他影响,B错误;气体扩散过程具有方向性,C正确.故选C.4.根据热力学定律,下列判断正确的是()A.我们可以把火炉散失到周围环境中的能量全部收集到火炉中再次用来取暖B.利用浅层海水和深层海水间的温度差制造出一种热机,将海水的一部分内能转化为机械能,这在原理上是可行的C.制冷系统能将冰箱内的热量传给外界较高温度的空气,而不引起其他变化D.满足能量守恒定律的客观过程都可以自发地进行解析:选B.热量不能自发地从低温物体传到高温物体,所以不能说把散失的能量全部收集起来重新加以利用,A错;由热力学第二定律可知,B对;热量从低温物体传给高温物体时一定会发生其他变化,C错;只满足能量守恒定律而不满足热力学第二定律的过程是不可能发生的,D错.5.下列说法正确的是()A.冰箱能使热量从低温物体传递给高温物体,因此不遵从热力学第二定律B.空调工作时消耗的电能与室内温度降低所放出的热量可以相等C.自发的热传导是不可逆的D.不可能通过给物体加热而使它运动起来,因为违背热力学第一定律解析:选C.有外界的帮助和影响,热量可以从低温物体传递到高温物体,空调消耗的电能必须大于室内温度降低所放出的热量.不可能通过给物体加热而使它运动起来,违背了热力学第二定律.6.如图所示,汽缸内盛有一定质量的理想气体,汽缸壁是导热的,缸外环境保持恒温,活塞与汽缸壁接触光滑,但不漏气,现将活塞杆缓慢地向右移动,气体膨胀对外做功.已知理想气体的内能只与温度有关,则下列说法中正确的是()A.气体是从单一热库吸热,全用来对外做功,因此此过程违反热力学第二定律B.气体是从单一热库吸热,但并未全用来对外做功,因此此过程不违反热力学第二定律C.气体是从单一热库吸热,全部用来对外做功,但此过程不违反热力学第二定律D.以上三种说法都不正确解析:选C.由于气体始终通过汽缸壁与外界接触,外界温度不变,活塞杆与外界连接并使其缓慢地向右移动过程中,有足够时间进行热交换,所以汽缸内的气体温度也不变.要保持其内能不变,该过程气体是从单一热源即外部环境吸收热量,即全部用来对外做功才能保证内能不变,但此过程不违反热力学第二定律.此过程由外力对活塞做功来维持,如果没有外力F对活塞做功,此过程不可能发生.7.下列过程中,可能发生的是()A.某工作物质从高温热源吸收20 kJ的热量,全部转化为机械能,而没有产生其他任何影响B.打开一高压密闭容器,其内气体自发溢出后又自发跑进去,恢复原状C.利用其他手段,使低温物体的温度更低,高温物体的温度更高D.两瓶不同液体自发混合,然后又自发地各自分开解析:选C.根据热力学第二定律,热量不可能从低温物体自发地传给高温物体,而不引起其他的变化,但通过一些物理过程是可以实现的,故C项正确;内能自发地全部转化为机械能是不可能的,故A项错误;气体膨胀具有方向性,故B项错误;扩散现象也有方向性,D项也错误.8.下列有关能量转化的说法中正确的是()A.不可能从单一热库吸收热量并把它全部用来做功,而不产生其他影响B.只要对内燃机不断改进,就可以把内燃机得到的全部内能转化为机械能C.满足能量守恒定律的物理过程都能自发进行D.外界对物体做功,物体的内能必然增加解析:选A.由热力学第二定律的开尔文表述可知,选项A正确.热机效率总低于100%,选项B错误.满足能量守恒的过程未必能自发进行,任何热力学过程一定都满足热力学第二定律,则选项C错误.由热力学第一定律ΔU=W+Q可知,W>0,ΔU不一定大于0,即内能不一定增加,选项D错误.二、多项选择题9.下列哪些现象能够发生,并且不违背热力学第二定律()A.一杯热茶在打开杯盖后,茶会自动变得更热B.蒸汽机把蒸汽的内能全部转化成机械能C.桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离D.电冰箱通电后把箱内低温物体的热量传到箱外高温物体解析:选CD.A、B都违背了热力学第二定律,都不能发生.C中系统的势能减少了,D中消耗了电能,所以不违背热力学第二定律,均能发生.10.下列宏观过程能用热力学第二定律解释的是()A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100%解析:选BCD.热力学第二定律反映的是与热现象有关的宏观过程的方向性的规律,A 不属于热现象,A错误;由热力学第二定律可知B、C、D正确.11.如图为电冰箱的工作原理示意图,压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环.在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外.下列说法正确的是()A.热量可以自发地从冰箱内传到冰箱外B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能C.电冰箱的工作原理不违反热力学第一定律D.电冰箱的工作原理违反热力学第一定律解析:选BC.热力学第一定律是热现象中内能与其他形式能的转化规律,是能的转化和守恒定律的具体表现,适用于所有的热学过程,故C正确,D错误;再根据热力学第二定律,热量不能自发地从低温物体传到高温物体,必须借助于其他系统做功,A错误,B正确,故选B、C.12.根据热力学第二定律,下列说法正确的是()A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量C.科技的进步可以使内燃机成为单一热源的热机D.对能源的过度消耗将使自然界的能量不断减少,形成能源危机解析:选AB.热力学第二定律有两种表述:第一是热量不能自发地从低温物体传到高温物体,即自发热传递具有方向性,选项A中热量从低温物体传到高温物体是电冰箱工作的结果,选项A正确;第二是不可能从单一热库吸收热量,使之完全变为功,而不产生其他影响,即第二类永动机不存在,选项B正确,选项C错误;由能量守恒定律知,能量总是守恒的,只是存在的形式不同,选项D错误.13.下列说法正确的是()A.热传导过程是有方向性的B.第二类永动机不可能制成,因为它违反能量守恒定律C.第二类永动机不可能制成,因为机械能和内能的转化具有方向性D.热力学第二定律表明,所有的物理过程都具有方向性解析:选AC.根据热力学第二定律和实验事实都说明,热传导的过程是有方向性的,热量可以从高温物体自发地传给低温物体,却不能自发地由低温物体传给高温物体,所以A 正确;第二类永动机是一种热机,它希望能够从单一热源吸热全部用来做功而不引起其他任何变化,这种设想并不违反能量守恒定律,但违反热力学第二定律,所以B错误,C正确;热力学第二定律指出了所有与热现象有关的宏观物理过程都具有方向性,并不是所有的物理过程都具有方向性,因此D错误.故选AC.14.用两种不同的金属丝组成一个回路,接触点1插在热水中,接触点2插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象.关于这一现象,正确的说法是()A.这一实验过程不违反热力学第二定律B.在实验过程中,热水一定降温、冷水一定升温C.在实验过程中,热水内能全部转化成电能,电能则部分转化成冷水的内能D.在实验过程中,热水的内能只有部分转化成电能,电能则全部转化成冷水的内能解析:选AB.温差发电现象中产生了电能是因为热水中的内能减少,一部分转化为电能,一部分传递给冷水,转化效率低于100%,不违反热力学第二定律.热水温度降低,冷水温度升高,故A、B正确,C、D错误.。
热力学第二定律
700K
Q1 ?
Wnet 10000 kJ
Q2 4000kJ
400K
解:设为热机循环 TL 400 tc 1 1 0.4286 Th 700
Q2 Wnet 10000 t 1 0.7126 Q1 Q1 14000
设为制冷循环
Tc 400 c 1.33 T0 Tc 700 400
以上例子说明: ①.能量是有‘质’的差别的,机械能属高 质能,热能属低质能,热能所处温度越接近环境温度, 其能质也越低。 ②.能质高的能量可以全部转换成能质低的 能量,而能质低的不能全部转换成能质高的,而且必 须有补偿条件。 ③.能量的传递过程总是朝着消除势差的方 向进行的,在传递过程中,能量在数量上虽然保持守 恒,但在能质上却降低了。
§4-1 热力学第二定律的实质及表述
一 热力学第二定律的实质 热力学第二定律的实质就是“能质衰贬原理”, 即一切实际过程总是朝着使孤立系总的能质下降 的方向进行的。 二 热力学第二定律的表述: 1 . 开尔文—普朗克说法(1851年提出) 表述I:只从单一热库吸热而连续不断做功的循 环机器是不可能造成的。
④在一定的环境条件下,系统能量的有用能、无 用能、(火用)、(火无)等均为状态参数。
五、 熵
1)熵的物理意义
熵是系统无序程度(混乱度)的度量,熵值越大, 则无序度越大,系统能质越低,无用能也越大, 因此 熵是表征系统无用能大小的状态参数。 dE无用 --------- 可逆,不可逆均适用。 2) 定义式 dS T0
A
T
S
B
V
§4—2 有关“能质”的基本概念
一、 寂态及(火无)库 结论:①周围环境中能量的能质为零,没有转换能力; ②系统温度、压力越高,则能量的品质越高。 ③系统温度、压力低于周围环境越多,则能量 品质也越高。 (火无)库:指周围环境。 能质是相对于周围环境而言的,以周围环境作为能质 分析时的基准库,称为(火无)库,(火无)库中的能量 不可能被利用。
热力学第二定律解析热力学第二定律及其与熵的关系
热力学第二定律解析热力学第二定律及其与熵的关系热力学第二定律作为热力学基本定律之一,对于研究热力学系统的行为和性质具有重要意义。
它揭示了自然界中一种普遍存在的规律,并与熵这一热力学量密切相关。
本文将对热力学第二定律的核心内容进行解析,并探讨它与熵的关系。
一、热力学第二定律的概念与表述热力学第二定律是描述自然界中热现象发生方向性的基本定律,它有多种表述方式。
其中,开尔文表述是最常见的。
开尔文表述指出,不可能从单一热源中吸热完全转化为可做的功而不引起其他变化的过程。
这意味着热能不会自发地从低温物体传递给高温物体,而只会沿着温度梯度由高温传向低温。
二、热力学第二定律的数学描述除了开尔文表述,热力学第二定律还可以通过数学方式进行描述。
热力学第二定律可以用克劳修斯表述来表达,即热量不会自发地从低熵物体传递到高熵物体。
在这种描述中,熵是一个关键的热力学量,它代表了系统的无序程度或混乱程度。
根据克劳修斯表述,任何孤立系统的熵都不会减少,而是增加或保持不变。
这意味着自然界趋向于朝着更高的熵方向发展,即朝着更大的无序性发展。
三、熵的概念与计算方法熵是描述热力学系统无序程度的物理量,它可以用数学方法进行计算。
熵的计算方法主要有两种:统计熵和宏观熵。
统计熵是基于热力学微观模型和概率统计原理得出的熵计算方法,它涉及到粒子的状态数和相应的概率。
而宏观熵是基于宏观性质和测量结果得出的熵计算方法,它通过物态方程和其他宏观性质来计算系统的熵。
四、热力学第二定律与熵的关系热力学第二定律与熵的关系是热力学研究中的一个重要问题。
根据熵的定义和计算方法,熵的增加可以看作是系统自发朝热平衡状态发展的结果,而热力学第二定律则描述了热现象发生的方向性。
从数学上讲,熵的增加可以用热力学第二定律来解释,即熵的增加是由于热能在温度梯度下自发地从高温物体传递到低温物体,从而使得整个系统的无序程度增加。
因此,熵与热力学第二定律密切相关。
五、实例分析:热机工作过程中的熵增为了更好地理解热力学第二定律和熵的关系,我们可以以热机工作过程为例进行分析。
第四章 热力学第二定律
T1 = 400 K 时, u1 = 286.16kJ / kg
4
工程热力学
T2 = 280 K 时, u 2 = 199.75kJ / kg
第四章 热力学第二定律
185.45 − 178.28 × (257.76 − 250)]kJ / kg = 183.34kJ / kg 260 − 250
W0 = Q1 − Q2 = mc p (TA − TATB ) − mc p ( TATB − TB ) = mc p (TA + TB − 2 TATB )
(3)如果抽掉可逆热机,使二物体直接接触,直至温度相等。这时二物体的熵增为
=−
− 169.064kJ / kg − 468.72kJ / kg 676.25kJ / kg + 468.72kJ / kg − 300 K 1200 K = 1.1718kJ /( kg ⋅ K )
2
工程热力学
4-4
第四章 热力学第二定律
两台卡诺热机串联工作。A热机工作在700℃和t之间;B热机工作在t和20℃之间。试计
T2 s = 257.76 K 时, u 2 s = [178.28 +
ws = u1 − u 2 s = 286.16kJ / kg − 183.84kJ / kg = 102.32kJ / kg
有内摩擦
w = u1 − u 2 = 286.16kJ / kg − 199.75kJ / kg = 86.41kJ / kg
(3)定温放热过程3→4
qT 2 = wT 2 = wt ,T 2 = R g T2 ln
10.4 热力学第二定律
电冰箱工作时违反热力学第二定律吗?
电冰箱的内部
温度比外部温度低,
为什么致冷系统还 能不断地把箱内热 量传给外界的空气?
大气
电冰箱制 冷系统
因为电冰箱消耗了 电能,对制冷系统做了 功,一旦切断电源,电 冰箱就不能把其内部的 热量传给外界的空气 了.相反,外界的热量 会自发地传给电冰箱,
贮藏的 食品
以上这些自然现象的“逆过程”能发生吗?
自然过程的方向性:
结论1:热量自发地由高温物体向低温物体传递的过程 是不可逆的。 结论2:扩散现象进行是有方向的,过程是不可逆的。 结论3:功可以自动转化为热,但热却不能自动转化为 功。通过摩擦而使功转变为热的过程是不可逆的。 结论4:气体膨胀(绝热自由膨胀)的过程是不可逆的。 无数事实告诉我们:凡是实际的过程,只要涉及 热现象,如热传递、气体的膨胀、扩散、有摩擦的机 械运动都有特定方向性。这些过程自发地朝某个 方向进行,而相反的过程,即使不违背能量守恒定律, 我们也从未见到它们会自发地进行。也就是说,一切 与热现象有关的宏观自然过程都是不可逆的。
这种机器就是热机,其工作原理如图甲, T1为高温热库,T2为低温热库,W为外界所做 的功,Q2为向低温热库散发的热量,Q1为向 高温热库吸收的热量。 如果Q2→0,该机器在 一个循环动作恢复原状后,外界也没有变化, 唯一的结果就是把热量Q1从单一热库全部转变 为功,如图乙。
根据热力学第二定律分析,下列说法中正确的是:
解析:热力学第一定律是热现象中内能与其他 形式能的转化规律,是能的转化和守恒定律的 D 错误;再根据热力学第二定律,热量不能自
具体表现,适用于所有的热学过程,故 C 正确,
发地从低温物体传到高温物体,必须借助于其
他系统做功.A错误,B正确,故选B、C.
第四章 热力学第二定律
虽然为实现各种非自发过程补偿是必不可少 的,但是为提高能量利用的经济性,人们一 直在最大限度地减少补偿。 热力学第二定律的任务:研究热力过程的方 向性,以及由此而引出的非自发过程的补偿 和补偿限度等。 二、热力学第二定律的表述 克劳修斯的说法:不可能把热量从低温物体 传向高温物体而不引起其他变化。
⑵卡诺循环热效率永远小于1。这是因为Tl= ∞或T2 = 0 是不可能达到的。 ⑶当Tl= T2时,卡诺循环热效率为零,即只 有单一热源存在时,不可能将热能转变为机 械能。 二、逆卡诺循环 如果卡诺循环按逆时针方向进行,则称为卡 诺逆循环。 如下图所示。
对于制冷机的卡诺逆循环,其制冷系数用下 式表示,
同理可证 A B 也不成立,因此唯一可以
成立的结果是 A B 。
定理一得证。
例题: 1.某热力设备,工作在1650℃ 的炉膛燃气 温度和15℃的低温热源之间,求:1)该 热力设备按卡诺循环工作时的热效率以及 产生 6×105 kw时的吸热量Q1和放热量Q2 ; 2)如果热力设备的实际效率只有40% , 其有效功率仍为6×105 kw ,问吸热量Q1 和放热量Q2又是多少?
若循环中全部过程都可逆,则该循环称为可逆循环; 若循环中部分过程或全部过程都不可逆,则该循环为 不可逆循环。 根据循环的热力学特征,可把循环分为热机循环(正 循环)和制冷循环(逆循环)。 正循环的效果是使热能转变为机械能,系统向外输出 功。如图所示,循环按顺时针方向进行,图(a)中12-3为工质膨胀,从高温热源吸收热量Q1。工质经3-41回到初态的过程中,工质受压缩,向低温热源放出热 量Q2。工质对外做功的净功为W,用循环1-2-3-4-1所 包围的面积表示,等于工质从高温热源吸取的热量与 向低温源放出的热量之差。即
第四章 热力学第二定律
4-1可逆绝热压缩过程,对内作功
卡诺循环热机效率
q w t 1 2 q1 q1
t,C
q1 q2 T2q T2 2s2 s1 1 1 1 q q1 T T1 11 s2 s1
T1
q1 Rc w
卡诺循环热机效率
t,C
T2 s2 s1 T2 1 1 T1 s2 s1 T1
1000 K
2000 kJ A 1200 kJ 1500 kJ 800 kJ 500 kJ 300 K
w 1200 t 60% 可能 q1 2000
如果:W=1500 kJ
1500 t 75% 不可能 2000
例题
• 某科学家设想利用海水的温差发电。设海洋表面 的温度为20℃,在500m深处,海水的温度为5℃, 如果采用卡诺循环,其热效率是多少? 解:计算卡诺循环热效率时,要用热力学绝对温度 T1=20+273.15=293.15K T2=5+273.15=278.15K
q2
对于整个不可逆循环:
1a 2
q1
T1
2b1
q2
q 0 T2 T irr
克劳修斯不等式:
q 0 T
即
q 0 T
上式是热力学第二定律的数学表达式之一,可用于判断一个循环是否能进行,是否 可逆。
不 可 p 逆 过 程 熵 变 化 q T irr
转变为机械能,只有一个热源的热机(第二类永动机)是 不可能的。
卡诺逆循环卡诺制冷循环
T T0
制冷
T2
s1
s2 s T2 ( s2 s1 ) T2 T0 ( s2 s1 ) T2 ( s2 s1 ) T0 T2
热力学第二定律公式
热力学第二定律公式
热力学第二定律描述了热能在任何发生物理或化学变化时的按照
规律运动,它是解释物理学中温度变化的关于热能运动的定律。
热力
学第二定律公式简单地表示为热能流动时,它对热源和汇合处的统一性。
其公式为dQ=TdS,其中dQ为热能流动的量,T是温度,dS是热能的熵变。
热力学第二定律是必需有一种热源,即热源处的守恒量需要大于
汇合处的守恒量,以实现传递和传导热能,即利用从热源处至汇合处
之间自然属性的压力。
而TdS,T代表温度,dS代表熵,熵是表示一个热站热量流动的量,它使得熵的变量影响热流的大小。
所以在TdS(T
温度的熵变)的影响下,熵增加量越大,热流量就越大,熵减小量越大,热流越小。
热力学第二定律告诉我们,任何热能运动的原理,其变化只能从
热源处至汇合处,而不是相反。
它也让我们明白,只有熵变才会影响
热流,熵变越大热流也越大,熵变越小热流也越小。
因此,我们可以
从历史和实验中考察物种热量和熵的定义,进而了解它们变化的规律。
热力学第二定律4
( − d G )T , p > −δ W '
若是不可逆过程,系统所作的非膨胀功小于 小于Gibbs 若是不可逆过程,系统所作的非膨胀功小于 不可逆过程 自由能的减少值。 自由能的减少值。
如果系统在等温、等压、且不作非膨胀功的条件下, 如果系统在等温、等压、且不作非膨胀功的条件下, 等温 的条件下 (dG)T , p,W ' =0 ≤ 0 (−dG )T , p ,W ' =0 ≥ 0 或
(dG )T , p ,W ' =0 ≤ 0
" = " 表示可逆,平衡 " < " 表示不可逆,自发
即自发变化总是朝着Gibbs自由能减少的方向进行 自由能减少的方向进行, 自发变化总是朝着 自由能减少的方向进行 这就是Gibbs自由能判据,系统不可能自动发生dG>0 自由能判据,系统不可能自动发生 这就是 自由能判据 的变化。 的变化。 因为大部分实验在等温、等压条件下进行, 因为大部分实验在等温、等压条件下进行,所以这 个判据特别有用。 个判据特别有用。
600 300
T2 T1
−1
+ 19.5 × ln
)]J ⋅ K
例3. 在268.2K和100kPa压力下, 1.0mol液态苯 268.2K和100kPa压力下 1.0mol液态苯 压力下, 凝固,放热9874J,求苯凝固过程的熵变。已知, 凝固,放热9874J,求苯凝固过程的熵变。已知, 苯熔点278.7K,标准摩尔熔化热为9916J/mol, 苯熔点278.7K,标准摩尔熔化热为9916J/mol, Cp,m(l) =126.8J/K/mol, Cp,m(s) =122.6J/K/mol 。 解:过冷液体的凝固是不可逆过程,需要在相 过冷液体的凝固是不可逆过程, 同始终态间设计一个可逆过程来计算熵变。设 同始终态间设计一个可逆过程来计算熵变。 计的可逆过程为
热力学第二定律.
S f
2 dQ 1T
系统熵的变化量与熵流之差定义为熵产,用“Sg”表示
Sg S2 S1 S f
(S2 S1) S f Sg
熵流是由于系统与外界的发生热交换而引起的,其取 值可正可负可为零,而熵产是过程不可逆性的度量, 可逆过程熵产为零,不可逆过程熵产大于零,任何过 程的熵产不可能小于零。
• (2)若把此热机当制冷机使用,同样由克劳修斯积分 判断
Q Q1 Q2 2000 800 0.585 kJ / K 0
T T1 T2 973 303
工质经过任意不可逆循环,克劳修斯积分必小于零, 因此循环不能进行。
• 若使制冷循环能从冷源吸热800kJ,假设至少 耗功Wmin,根据孤立系统熵增原理有△Siso=0:
因为工质恢复到原来状态,所以工质熵变
△SE=0
对热源而言,由于热源放热,所以
SH
Q1 T1
2000 973
2.055 kJ / K
• 对冷源而言,冷源吸热
S L
Q2 T2
800 303
2.64 k J
/K
代入得:
Siso (2.055) 2.64 0 0.585 kJ / K 0
2 Q
1T
对于微元过程:
ds
(
dq T
) re v
或 dS
dQ
( T
) re v
mds
由于熵是状态参数,所以不论过程是否可逆,熵 变只由初终状态决定。
可逆与不可逆的情况
S2
S1
2 1
Q
T
4-热力学第二定律
tC =65.9% 实际t =40% 回热t 可达50%
§5.1 热力学第二定律
一、自然过程的方向性
经验告诉我们,自然界发生的许多过程是有方 向性的。例如:
1、热功转化
功转换成热的试验。如图,重物下降,搅动 容器中的流体使流体温度升高,但不能让流体自 动冷却而产生动力把重物举起。即重物下降能使 流体温度升高,但流体温度降低不能使重物上升
1、热—功转换的方向性
续2
1、热—功转换的方向性
续2
1、热—功转换的方向性
续2
1、热—功转换的方向性
续2
1. 热—功转换的方向性
2、热量传递的方向性
热量传递的方向性图
A物体
热量传递
AB
B物体
3、 自由膨胀与压缩过程的方向性Biblioteka 真空4、混合与分离过程的方向性
自然过程的方向性
上述诸现象说明自然过程具有 方向性,即只能自发地向一个方向进行, 如果要逆向进行,就必须付出代价,或 者说具备一定的补充条件,即自然过程 是不可逆的。
由于摩擦等耗散因素的实际 存在,不可能使系统和外界完 全复原。因此有关热现象的实 际宏观过程和非准静态过程都 是不可逆过程。
§5.1 热力学第二定律
二、热力学第二定律的表述
由于人们分析问题的出发点不同,所 以“热力学第二定律”有各种各样的说法, 但无论有多少种不同的说法,它们都反映 了客观事物的一个共同本质,即自然界的 一切自发过程有方向性。
§5.1 热力学第二定律
1、克劳修斯说法(1850):
不可能把热从低温物体传到高温物体而不 引起其它变化。
2、开尔文说法(1851):
不可能从单一热源取热,使之完全变为有 用功,而不引起其它变化。(第二类永动机是不 可以实现的)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热机的工作原理热力学第二定律
教学建议
由于学生在初中阶段已学过一些热机的知识,对蒸汽机、内燃机的结构和工作原理并不陌生,教师可在演示模型或展示结构挂图的基础上加以分析讲解,重点不在于介绍热机的结构及其循环过程本身,而是突出热机工作过程中的能量转化与守恒,使学生了解在热机循环中能量转化的方向性以及热机效率为什么小于1。
对于制冷机,要使学生明白:制冷机是与蒸汽机、内燃机功热转换方向相反的另一类热机,在一个循环中,外界对其工作物质所做的功,有一部分要以热量的形式向低温热库放出,而无法实现100%的功热转换效率。
中学物理之所以讲授热力学第二定律,一是使学生能认识自然界普遍存在的、与能量转化相联系的宏观演化过程为何能发生的原因,更好地理解能量转化与守恒定律的本质;二是当代许多科学技术领域是以热力学第二定律为基础的,需要在更大的范围内普及有关热力学第二定律的知识。
在讲授热力学第二定律时,首先通过浅显的实例,向学生揭示宏观现象实际上受到另一种规律的制约,使学生感悟到自己原有认识上的不足,有了探究新规律的愿望,因此,设计好能引发学生思考兴趣的引入情境是本节教学的关键。
资源参考
热力学的主要奠基人——开尔文
1824年6月26日开尔文生于爱尔兰的贝尔法斯特。
1845年毕业于剑桥大学。
毕业后他赴巴黎跟随物理学家和化学家V·勒尼奥从事实验工作一年,1846年受聘为格拉斯哥大学自然哲学(物理学当时的别名)教授,任职达53年之久。
由于装设第一条大西洋海底电缆有功,英政府于1866年封他为爵士,并于1892年晋升为开尔文勋爵,开尔文这个名字就是从此开始的。
1890~1895年任伦敦皇家学会会长。
1877年被选为法国科学院院士。
1904年任格拉斯哥大学校长,直到1907年12月17日在苏格兰的内瑟霍尔逝世为止。
开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都作出了贡献。
他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望,受到英国本国和欧美各国科学家、科学团体的推崇。
他在热学、电磁学及它们的工程应用方面的研究最为出色。
开尔文是热力学的主要奠基人之一,在热力学的发展中作出了一系列的重大贡献。
他根据盖—吕萨克、卡诺和克拉伯龙的理论于1848年创立了热力学温度。
他是热力学第二定律的两个主要奠基人之一(另一个是克劳修斯),1851年他提出热力学第二定律:“不可能从单一热源吸热使之完全变为有用功而不产生其他影响。
”这是公认的热力学第二定律的标准说法。
并且指出,如果此定律不成立,就必须承认可以有一种永动机,它借助于使海水或土壤冷却而无限制地得到机械功,即所谓的第二类永动机。
他从热力学第二定律断言,能量耗散是普遍的趋势。
1852年他与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳—汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。
这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。
1856年他从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量,这一现象后叫汤姆孙效应。